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Abstract: Sediment transport to river channels in a basin is of great significance for a variety of reasons
ranging from soil preservation to siltation prevention of reservoirs. Among the commonly used
models of sediment transport, the SEdiment Delivery Distributed model (SEDD) uses an exponential
function to model the likelihood of eroded soils reaching the rivers and denotes the probability as the
Sediment Delivery Ratio of morphological unit i (SDRi). The use of probability to model SDRi in
SEDD led us to examine the model and check for its statistical validity. As a result, we found that
the SEDD model had several false assertions and needs to be revised to correct for the discrepancies
with the statistical properties of the exponential distributions. The results of our study are presented
here. We propose an alternative model, the Revised SEDD (RSEDD) model, to better estimate SDRi.
We also show how to calibrate the model parameters and examine an example watershed to see if the
travel time of sediments follows an exponential distribution. Finally, we reviewed studies citing the
SEDD model to explore if they would be impacted by switching to the proposed RSEDD model.
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1. Introduction

Surface soil erosion is a major threat to food production and the environment, and the problem
has been compounded by climate change in recent years. As the weather becomes more unpredictable
and extreme, soil erosion is expected to increase more rapidly and therefore to become more damaging
in the future. Furthermore, when the eroded soils or sediments are carried away by overland flow to
navigable rivers, they also create significant problems for the safe navigation and the proper use of
waterways. In the case of non-navigable rivers (such as those leading to reservoirs), the situation is
worse. The accumulation of sediments can be a major origin of non-point source pollution, critically
affecting water supply and demand in the region. Because of the damaging consequences of soil
erosion, establishing a model to assess the creation and transport of sediments is vitally important at
the basin scale, and it has been a topic of research for the last quarter-century.

1.1. SEDD Model

Sediment Delivery Ratio (SDR) is the ratio between the sediment yield at the basin outlet and the
gross erosion of the basin. There are several basin-scale sediment delivery models, such as the SEdiment
Delivery Distributed (SEDD), the Unit Stream Power Based Erosion Deposition (USPED), and the
WaTEM/SEDEM models. The WaTEM/SEDEM is a soil erosion and deposition model developed and
extended by KU Leuven [1–3]. This model considers the transport capacity of sediments and the flow
routing according to topological changes to determine whether the dominant process for each grid
cell is deposition or erosion. Similar to WaTEM/SEDEM, the USPED model assumes that the soil
erosion rate and flow accumulation are transport capacity limited [4–7]. The LS factor of the Universal
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Soil Loss Equation (USLE) model is modified with the upslope contributing area to determine the
transport capacity function (T). In the USPED model, the divergence of the transport capacity index
(∆T) for each grid cell determines whether deposition or erosion is the dominant process. Finally,
the SEDD model was proposed by Ferro and Porto [8], although its formulation can be traced back to
Ferro and Minacapilli [9]. Based on probability, the authors of SEDD hypothesized that “the Sediment
Delivery Ratio, SDRi, of each morphological area is a measurement of the probability that the eroded
particles arrive from the considered area into the nearest stream reach” [9]. Furthermore, the authors
defined the travel time as “the time that particles eroded from the source area and transported through
the hillslope conveyance system take to arrive at the channel network” [9]. Assuming that Fi is the
cumulative distribution function (CDF) of the travel time tp,i, the authors assert that the relationship
between lnFi and tp,i is linear. Then, they support the assertion with data from seven Sicilian basins.
As a result, the following exponential function was used to describe the relationship between the SDRi
and the travel time:

SDRi = e−βtp,i (1)

where SDRi is the SDR of morphological unit i, β is a constant for a given basin (1/m), and tp,i is the
travel time of morphological unit i (m) and defined as:

tp,i =
lp,i
√sp,i

=

Np∑
j=1

λi, j
√si, j

(2)

where sp,i = the slope of the hydraulic path (m/m), lp,i = the length of the hydraulic path (m). Combining
Equations (1) and (2), SDRi can be represented as:

SDRi = e−βtp,i = e
−β

lp,i
√sp,i = e

−β
∑Np

j=1

λi, j
√si, j (3)

where Np = the number of morphological units localized along the hydraulic path j, and λi,j and
si,j = the length (m) and slope (m/m) of each morphological unit i localized along the hydraulic path j.

Many studies have used Equations (1)–(3) and the subsequent SDRw (SDR for the entire basin) to
estimate the movement of sediments and their impact on particular watersheds [10–14]. However,
our examination of the SEDD model led us to believe that the model might have been inadequately
formulated to represent the probability concept declared. We will show why we think so and present
our revised version of the model in the following sections.

1.2. Incorrect Assertions of SEDD

There are several improper assumptions and false assertions of SEDD:

(a) “the Sediment Delivery Ratio, SDRi, of each morphological area is a measurement of the probability
that the eroded particles arrive from the considered area into the nearest stream reach” [9];

(b) the SDRi equation is an exponential distribution (exponential probability distribution);
(c) “the relationship between lnFi and −tp,i is linear” [9];
(d) “the probability that the eroded particles arrive from the morphological unit into the nearest

stream reach is assumed proportional to the probability of non-exceedance of the travel time,
tp,i” [9];

(e) the β coefficient can be lumped together with “the effects due to roughness and runoff along the
hydraulic path” [8];

(f) the Fi is a CDF of the travel time represented by Equation (2).
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It was further asserted by Ferro and Minacapilli [9] that:

βi =
−lnFi

tp,i
(4)

These incorrect assertions will be discussed in Section 2.2.

2. Analysis

We will start by describing the statistical properties of exponential functions and distributions,
outline the potential issues of the SEDD model, and explain how to formulate a Revised SEDD
(RSEDD) model.

2.1. Properties of Exponential Distributions

The exponential function has a nice property concerning its differentiation and integration:

d
dx

(ex) = ex (5)∫
exdx = ex + C (6)

where ex is the exponential function and C is a constant.
In other words, the differentiation and integration of an exponential function is still an exponential

function. Exponential functions play a crucial role in statistical analysis. For example, if a probability
distribution takes the form of an exponential function, its probability distribution function (or probability
density function, PDF) will be an exponential distribution. The exponential distribution is generally
written as:

f (x) = λe−λx x ≥ 0 and λ > 0 (7)

where f (x) denotes a PDF, the curve of a continuous probability distribution. Equation (7) is also called
the exponential PDF. Note the difference between exponential functions and exponential distributions.
It is also worth noting that the value f (x) is known as the probability density at x, not the probability at
x. For discrete random variables, however, relative frequency is the probability density. Unfortunately,
for continuous random variables, “it is not meaningful to associate a probability value with each
possible outcome on a continuum. Instead, for continuous random variables we associate probability
values with intervals on the continuum” [15]. For a continuous random variable, the probability at x is
zero. It is the area under the curve of a PDF that represents the probability of a variable falling in the
corresponding interval.

The exponential distribution is a one-parameter probability distribution, which is λ. The mean of
the exponential distribution is 1/λ, and the standard deviation of the exponential distribution is also
1/λ. The exponential distribution has been applied to various fields of study, such as vehicle headway
distribution [16], the failure rates of air conditioning system in airplanes [17], the catchment-scale water
residence time [18], and the relative species abundance [19]. The cumulative distribution function
(CDF) of the exponential distribution is:

F(x) =
∫ x

−∞

f (u)du =

∫ x

0
λe−λudu = 1− e−λx x ≥ 0 and λ > 0 (8)

where F(x) denotes a CDF (the Fi in SEDD). The PDF and CDF of the exponential distribution of typical
values of λ are shown in Figure 1a,b, respectively.
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Figure 1. The (a) probability distribution function (PDF) and the (b) cumulative distribution function
(CDF) of the exponential distribution of typical values of λ.

2.2. Examination of SEDD Assertions

The SEDD model was described in Section 1.1, and the incorrect assertions were listed in Section 1.2.
We will devote this section to discussing the issues of SEDD. We will identify the potential problems
that call for a revised SEDD (RSEDD) model to better suit the underlying statistical requirements for
modeling SDRi.

As mentioned earlier, using morphological units, Ferro and Minacapilli [9] considered SDRi as
the probability that the eroded particles arrive from the source area into the nearest river channel.
This seems to imply that they consider SDRi to be the PDF of travel time, tp,i. On the other hand, they also
wrote that the probability as mentioned above is “proportional to the probability of non-exceedance of
the travel time”. This statement seems to suggest that they consider SDRi to be the CDF of travel time
instead. Although the statements might be contradictory to each other, it would not matter because
neither is correct. To formulate the relationship between SDRi and tp,i, the authors of SEDD decided to
use an exponential function as shown in Equation (1) and repeated here as Equation (9):

SDRi = e−βtp,i (9)

This is probably because of the nice properties of the exponential function (Equations (5) and (6))
and the fact that they needed a linear relationship (Equation (4)) between lnFi and tp,i to explain the
observed linear data from the seven Sicilian basins. However, there are a few critical problems. First,
the total area under a PDF has to be equal to one:∫

∞

−∞

f (x)dx = 1 (10)

f (x) ≥ 0 for all x (11)

Second, the CDF should be a non-decreasing function of x and satisfy the following equation:

lim
x→+∞

F(x) = 1 (12)
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The integration of Equation (9) is:∫ x

−∞

SDRi =

∫ x

−∞

f (u)du =

∫ x

0
e−λudu =

1
λ

(
1− e−λx

)
=

1
β

(
1− e−βtp,i

)
(13)

Obviously, the total area under Equation (9) is not equal to one, and Equation (13) does not
approach one when x approaches infinity. Hence, Equation (9) is not a PDF. Moreover, since Equation (9)
is not a non-decreasing function, Equation (9) is not a CDF, either. As a result, we can conclude that
assertions (a), (b), (d), and (f) are incorrect.

In addition, it can be seen that the logarithm of the CDF of Equation (9) is not linear because
Equation (13) is not a linear function. It can also be observed from Equation (13) that the integration
(i.e., CDF) of Equation (9) is not an exponential function. Therefore, a linear relationship between
lnFi and tp,i such as that in Equation (4) does not exist. The only condition that Equation (4) is valid
occurs when Equation (9) is a CDF. Since we have already shown that Equation (9) is not a CDF, we can
conclude that assertion (c) and Equation (4) are incorrect.

Finally, the SEDD model assumes that tp,i of each morphological unit increases with the increase
of the length of the hydraulic path (lp,i) and with the decrease of the square root of the slope of the
hydraulic path (sp,i):

tp,i ∝ lp,i (14)

tp,i ∝
1
√sp,i

(15)

Therefore, there exists a constant between tp,i and the product of lp,i and 1/√sp,i. The SEDD model
lumps together the constant and the β coefficient, which changes the coefficient β from its original
meaning. Therefore, we think assertion (e) is not appropriate. We will correct these problems by
presenting the Revised SEDD (RSEDD) model in the next section.

2.3. RSEDD Model

To distinguish from the SEDD model, we will call the following model the Revised SEDD model
(RSEDD). To comply with the statistical requirements of a probability distribution function, Equation (1)
is re-written as follows:

SDRi = βe−βtp,i tp,i ≥ 0 (16)

Note that β is always positive and tp,i is an exponential random variable. The CDF of Equation (16)
is the integration of Equation (16):

Fi = F
(
tp,i

)
=

∫ tp,i

0
βe−βudu = 1− e−βtp,i tp,i ≥ 0 (17)

We plot the natural logarithm of Y-axis values in Figure 2. The PDF and CDF of the exponential
distribution of typical values of λ are shown in Figure 2a,b, respectively. Note that the logarithm of
Equation (17) is not a linear function (Figure 2b). Therefore, the relationship between lnFi and tp,i is
not linear as was suggested by the SEDD model. On the contrary, Figure 2a reveals that the natural
logarithm of the exponential PDF is linear. We will use this linear property to solve for the model
parameters of RSEDD later.

Recall that the original SEDD model assumes that tp,i of each morphological unit increases with
the increase of the ratio of the length of the hydraulic path (lp,i) to the square root of the slope of the
hydraulic path (sp,i). Therefore,

SDRi = e−βtp,i = e
−β

lp,i
√sp,i tp,i ≥ 0 (18)
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Equation (18) holds because the SEDD model lumps together the constant between tp,i and
lp,i/
√sp,i (representing “the effects due to roughness and runoff along the hydraulic path”) and the β

coefficient. However, this would change the coefficient β from its original meaning. We will introduce
a new constant k (dimensionless) and re-write Equation (2) as follows:

tp,i = k
lp,i
√sp,i

= kdp,i (19)

dp,i =
lp,i
√sp,i

(20)

where dp,i is the pseudo travel time (m). Therefore,

SDRi = βe−βtp,i = βe
−βk

lp,i
√sp,i = βe−βkdp,i dp,i ≥ 0 (21)

The rest is the same as the SEDD model. The exponent term has to be summed along the path
traveled by the sediments from the morphological unit i to the nearest river. This summation is
illustrated in Figure 3 and Equation (22):

lp,i
√sp,i

=

Np∑
j=1

λi, j
√si, j

(22)

where Np = the number of morphological units localized along the hydraulic path j, and λi,j and
si,j = the length (m) and slope (m/m) of each morphological unit i localized along the hydraulic path j.

There are two parameters (β and k) of the RSEDD model as shown in Equation (21). As previously
shown in Figure 2, the logarithm of CDF is not linear, but the logarithm of PDF is. Therefore, to determine
the model parameters, the PDF of a basin (instead of the CDF) should be used. This modification will
guarantee that the new RSEDD model is a proper depiction of the exponential distribution of travel
time and that SDRi is the “probability density” of the eroded particles arriving from the considered
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area into the nearest stream reach. To solve for model parameters β and k, take the natural logarithm of
Equation (21):

ln(SDRi) = ln(βe−βkdp, i) = lnβ− βkdp,i (23)
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morphological unit i to the nearest river in a basin.

Equation (23) is a linear function. By plotting ln(SDRi) against dp,i, we can determine β from the
intercept and k from the slope of the linear plot (similar to Figure 2a). In other words, given SDRi and
pseudo travel time dp,i, we can determine β and k and use RSEDD to model sediment delivery at the
basin scale.

3. Example Watershed

To test if the travel time follows an exponential distribution, we use a watershed from literature
as an example [20]. Conceptually, the basin can be divided into morphological units with uniform
gradients (and properties) as shown in Figure 4. Assuming that all units have the same gradient of 0.3
and that their hydraulic paths (arrows) are shown in Figure 5, we can calculate the slope lengths and
travel times using Figure 5 and Table 1. Note that ordinary GIS software calculates the flow lengths
to the outlet of the basin, but RSEDD (SEDD) calculates the flow lengths only to the river channels.
Here are the null hypothesis and alternative hypothesis:

H0: the travel times follow an exponential distribution (24)

Ha: the travel times do not follow an exponential distribution (25)
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Figure 5. Divide the sample watershed in Figure 4 into morphological units and calculate the travel
times (re-drawn from [20]). The arrows indicate flow directions, and the dots correspond to the dots in
Figure 4.

Table 1. Pseudo travel time of each morphological area.

Morphological Unit Hydraulic Path λi,j si,j
λi,j
√si,j

dp,i

1 1 1.0 0.3 1.83 1.83
2 2 2.7 0.3 4.93 4.93
3 3 2.6 0.3 4.75 4.75
4 4 1.6 0.3 2.92 2.92
5 5 3.9 0.3 7.12 7.12
6 6–7 1.6 0.3 2.92 6.02
7 7 1.7 0.3 3.10 3.10
8 8–9 0.9 0.3 1.64 2.92
9 9 0.7 0.3 1.28 1.28
10 10 2.6 0.3 4.75 4.75
11 11 2.1 0.3 3.83 3.83
12 12 1.3 0.3 2.37 2.37

We used the Kolmogorov-Smirnov test in our statistical hypothesis testing. Reordering the dp,i in
Table 1 from the smallest to the largest, we can calculate the cumulative distribution of our sample
watershed and the corresponding cumulative distribution of the exponential distribution as shown
in Table 2. For a confidence coefficient (1–α) of 0.95, we obtained the sample statistic of 0.213 (Dn).
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Since Dn is not greater than the critical value of 0.375 (D12,0.05), we cannot reject the null hypothesis (H0)
that these data come from an exponential distribution. However, we cannot accept the null hypothesis
(H0) either because we only know a Type I error (probability equal to α = 0.05) and do not know
the probability of making a Type II error [21]. The hypothesis testing on this example watershed is
not conclusive.

Table 2. Results of the Kolmogorov-Smirnov test.

x Frequency Cumulative Cumulative (%) Corresponding Exponential CDF (%) Difference

1.28 1 1 0.083 0.284 0.201
1.83 1 2 0.167 0.380 0.213
2.37 1 3 0.250 0.463 0.213
2.92 1 4 0.333 0.535 0.201
2.92 1 5 0.417 0.535 0.118
3.10 1 6 0.500 0.556 0.056
3.83 1 7 0.583 0.634 0.050
4.75 1 8 0.667 0.711 0.045
4.75 1 9 0.750 0.711 0.039
4.93 1 10 0.833 0.725 0.108
6.02 1 11 0.917 0.794 0.123
7.12 1 12 1.000 0.845 0.155

Total 12
Mean 3.82 Dn 0.213
λ 0.262 D12,0.05 0.375

4. Discussion

The original studies of the SEDD model preceded several studies evaluating SDR, and its impact
on geomorphology and other related issues was far-reaching. Therefore, a revision to the model
would have an impact on the conclusions of some (but not all) of the publications which cited the
original model. There are two different categories of impacts we have ascertained from our literature
review: (a) foundation research that established and confirmed the SEDD model and validated the
use of the model, and (b) studies which merely mention the SEDD model without implementation.
The first category is strongly impacted by the revision of SEDD, while the revision has no impact on
the second category.

The first collection of studies are studies that established, tested, and calibrated the SEDD model
parameters (or its offsets, such as MOSEDD) and those studies in which SEDD plays a significant role
in the procedure of the research. The first type of studies established that although there were many
different gross erosion estimation models (RUSLE, USLE, USLE-M, USLE-MM, etc.), the SDR of the
SEDD model was conceptually practical for estimating the sediment yield. Therefore, the specific
gross erosion model considered was not particularly influential. The conclusions of these studies
would require recalibration as the base model would be changed. However, the separation of the
physical concept of sediment delivery and the SEDD from the gross erosion estimation concept remains
intact. Alternatively, the second type of study used the SEDD model as a significant component.
The conclusions and results would need to be re-evaluated to see the extent of the impact due to the
use of a new model. These studies and their contributions are as follows: the relationship between
channel network parameters and the sediment transport efficiency [22], the testing and calibration of
the SEDD model [8,23–28], the assessment of sediment connectivity in dendritic and parallel Calanchi
systems [29,30], sediment load impact on a reservoir [14], the estimation of the response to land
use/cover change in a catchment [31], sediment yield in monocrop plantation areas, such as reafforested
eucalyptus and olive orchards [13,32], the assessment of sediment delivery/soil erosion processes using
Caesium-137 [23,33–37], testing of the correction of the topographic factors of the RUSLE [38–42],
soil erosion and sediment yield estimation [10,43–58], agricultural non-point pollution [59], clay content
relationship with sediment delivery [60], the assessment of the temporal variation of sediment yield [61],
chemical transport in sediment delivery processes [62,63], agricultural methods impact on soil erosion
and sediment yield [11,12], impact of bushfire or wildfire on soil erosion [64], comparison of multiple
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SDR models/gross erosion models [65,66], soil texture prediction [67], relating geomorphic features
to soil erosion [68], landscape management and water resources management [69], and land use and
impact of check dams on sediment yield [70–72].

Many studies have cited the conclusions or observations made by Ferro and Minacapilli [9] and
the SEDD model within their literature review. However, they have not explicitly employed the
SEDD model or the SDR equation. These represent the second collection of studies related to the
SEDD model. Common citations are for the following reasons: (1) as an example of research which
uses RUSLE, (2) travel time as a basis for the regionalization of SDR, (3) defining SDR, (4) sediment
transport and its relationship with storage time and the sediment delivery ratio, (5) lumped sediment
delivery ratio, (6) linkage between different scales using the SDR equation, (7) empirical models to
evaluate sediment yield and soil erosion, (8) sediment yield being proportional to the sediment delivery
processes, (9) topographic factors and their relationship with SDR, (10) spatially distributed empirical
erosion models, and (11) calibration of measured and calculated sediment yields [2,68,73–129].

The preceding literature review includes all accessible papers to the authors of this study (using the
Scopus database). It confirms that between 1995, the year the SEDD model was published, to 2019,
there has been no revision of the SEDD model similar to what is proposed in this study. Note that
there might be additional studies that have not been included in the literature review of this study
because these papers utilized the SEDD model but did not reference the original study of the SEDD
model [9]. For example, Diwediga et al. [130] utilized the SEDD model to study soil erosion response to
sustainable land management in the Mo River Basin, Togo, Africa, but referenced the Di Stefano et al. [36]
equation instead. Finally, the great influence the original paper on sediment delivery research over the
past 25 years gives rise to an innumerable number of references. These references might exist in less
accessible databases, conference materials, and in national/state/municipal level public research that are
beyond our ability to review.

5. Summary and Conclusions

Using exponential distributions to model naturally occurring phenomena is quite common in
natural science and engineering analysis. The use of exponential distribution to model the probability
of sediments entering river channels is an essential contribution of SEDD, and the model has been
widely used to study different basins in the world. However, there are several false assertions by the
SEDD model, which do not seem to have been noticed in the literature. We reviewed this often used
model and proposed to revise it to better suit the underlying statistical requirements. As a result,
the RSEDD model was introduced with two model parameters, β and k. The calibration of these
parameters can be done using the logarithm of PDF. We also reviewed literature citing the SEDD
model to see the impact of the revision on these studies. The first collection of studies are studies that
calibrated the SEDD model parameters or used the SEDD model as a significant component of the
studies. These studies need to be re-evaluated to see the extent of the impact. The second collection of
studies used the SEDD model as an example or merely mentioned the model without implementation.
The revision does not affect these studies. However, it remains to be seen whether the new RSEDD
model can reliably predict SDRi and sediment yield in future watershed research.
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