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Abstract: With an overwhelming increase in the demand of autonomous systems, especially in
the applications related to intelligent robotics and visual surveillance, come stringent accuracy
requirements for complex object recognition. A system that maintains its performance against a
change in the object’s nature is said to be sustainable and it has become a major area of research for
the computer vision research community in the past few years. In this work, we present a sustainable
deep learning architecture, which utilizes multi-layer deep features fusion and selection, for accurate
object classification. The proposed approach comprises three steps: (1) By utilizing two deep learning
architectures, Very Deep Convolutional Networks for Large-Scale Image Recognition and Inception
V3, it extracts features based on transfer learning, (2) Fusion of all the extracted feature vectors is
performed by means of a parallel maximum covariance approach, and (3) The best features are
selected using Multi Logistic Regression controlled Entropy-Variances method. For verification of the
robust selected features, the Ensemble Learning method named Subspace Discriminant Analysis is
utilized as a fitness function. The experimental process is conducted using four publicly available
datasets, including Caltech-101, Birds database, Butterflies database and CIFAR-100, and a ten-fold
validation process which yields the best accuracies of 95.5%, 100%, 98%, and 68.80% for the datasets
respectively. Based on the detailed statistical analysis and comparison with the existing methods,
the proposed selection method gives significantly more accuracy. Moreover, the computational time
of the proposed selection method is better for real-time implementation.

Keywords: object classification; deep learning; features fusion; features selection; recognition

1. Introduction

Object recognition is currently one of the most focused areas of research due to its emerging
application in intelligent robotics and visual surveillance [1,2]. The researchers, however, are still
facing problems in this domain for correct object recognition, such as in recognizing an object’s shape
and spotting a minor difference among several objects. Therefore, a sustainable system—the one
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that maintains its performance against a change in the object’s nature—is required for the correct
recognition of complex objects [3]. Object classification is the key to a sustainable visual surveillance
system [4]. Besides the latter, object classification finds its application in numerous domains, including
intelligent robotics, face and action recognition, video watermarking, pedestrian tracking, autonomous
vehicles, semantic scene analysis, content-based image retrieval, and many more. We believe that a
genuinely sustainable object recognition system still has to overcome numerous challenges, including
complex background, different shape and same color for different objects, continuously moving objects,
different angles, and many more, since the conventionally used—unsustainable systems—did not
prove to work well for complex object classification [5].

Many techniques have been introduced in computer vision to overcome the previously discussed
challenges related to complex objects. What most of them tried to accomplish was an optimal method
that would perform the same for many types of problems, but this was a considerable challenge.
Although in the past few decades, the conventional approaches, such as Hand-Crafted Features (HCF),
were used, as the time passed, however, the objects and their backgrounds became more confusing,
thereby restricting their use. Handcrafted features included Histogram of Oriented Graph (HOG) [6],
geometric features [7], Scale Invariant Feature Transformation (SIFT) [8], Difference of Gaussian
(DoG) [9], Speeded-Up Robust Features (SURF) [10], and texture features (HARLICK) [11]. Recent
techniques, in contrast, proposed to exploit a hybrid set of features to get a better representation of
an object [12]. Unfortunately, those techniques were unable to recognize the growing complexities of
objects and images as well.

In the face of the challenges as mentioned earlier, the concept of deep learning has been recently
introduced in this context, which has also shown improved performance against reduced computational
time. With this, a large number of convolutional neural networks (CNN) pre-trained models have been
proposed. This includes AlexNet [13], VGG (VGG-16, VGG-19 [14], GoogleNet [14], ResNet (Resnet-50,
ResNet-102, and ResNet-152) [15], and Inception [16]; all these models are trained on the ImageNet
dataset. Even with these contributions, however, acceptable accuracy has been difficult to achieve.
This has given rise to the concept of features fusion [15,16]—a process of combining several feature
populations into a single feature space, which has been adopted in various applications ranging from
medical imaging to object classification [17–19]. The concept of features fusion does manage to achieve
increased classification accuracy, but only at an increased computational cost. In addition, some of the
recent works have shown that the fusion process may add irrelevant features that are not important
for the classification task [17,18]. We believe that if the irrelevant features were selected and removed
from the fused vector, then the computational time could be minimized with an increased accuracy.

Feature selection can be categorized into three: Filter-based, wrapper-based, and embedded.
The filter-based selection selects the features from subsets independently. The wrapper-based methods
initially assume the features, and then select them based on predictive power. The embedded
selection initially utilizes the selection in the training phase, which enjoys the advantages of both
filter-based and wrapper based [19]. Some of the famous feature selection techniques include Principle
Component Analysis (PCA) [20], Linear Discriminant Analysis (LDA) [21], Pearson Correlation
Coefficient (PCC) [22], Independent Component Analysis (ICA) [22], Entropy Controlled [23], Genetic
Algorithm-based (GA) [24], and many more.

In this work, an entire sustainable framework based on a deep learning architecture is proposed.
While we summarize our challenges and highlight our contributions in response to those in Section 3,
the details on the proposed framework are explicitly given in Section 4. Section 5 presents the simulation
results before we conclude the manuscript in Section 6. In what follows, however, we review some of
the existing related works, in Section 2.

2. Related Work

Many strategies are performed for image classification, as investigated in the area of computer
vision and machine learning. Object categorization is the most emergent field of computer vision
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because of its enormous applications in video surveillance, auto-assisted vehicle frameworks, pedestrian
analysis, automatic target recognition, and so on. In the literature, very few fusion-based techniques
are presented for the classification of complex objects. Features fusion is the process of combining
two or more feature spaces into a single matrix. By fusion, there is a chance to get a higher accuracy
vector having properties of multiple feature spaces. Roshan et al. [25] presented a new technique for
object classification. They applied the presented algorithm on the VGG-16 architecture and performed
training from scratch. Additionally, they used transfer learning (TL) on the top layers. They utilized
the Caltech-101 dataset and achieved an accuracy of 91.66%. Jongbin et al. [26] introduced a new
DFT-based technique for feature building by discarding the pooling layers among the fully connected
and convolutional layers. Two modules were implemented in this technique: The first module, known
as DFT, replaced max-pooling from the architecture by a user-defined size pooling. The second module,
known as DFT+, was the fusion of multiple layers to get the best classification accuracy. They achieved
93.2% classification accuracy on the Caltech-101 dataset using the VGG-16 CNN network, and 93.6%
accuracy on the same dataset using the Resnet-50 model. Qun et al. [27] used a pre-trained network
with associative memory banks for feature extraction. They extracted the features using ResNet-50
and VGG-16. Later, the K-Means clustering was used on the memory banks to perform unsupervised
clustering. Qing et al. [28] presented a fused framework for object classification. They extracted the
CNN features and applied three different types of coding techniques onto the fused vector.

Two pre-trained models, namely VGG-M and VGG-16, were used for feature extraction from
the 5-Conv-Layer. Subsequently, PCA-based reduction was applied, and features were fused into a
final vector using the proposed coding techniques. Results showed an improved accuracy of 92.54%
on the Caltech-101 database. Xueliang et al. [29] presented a late fusion-based technique for object
recognition. Three pre-trained networks, namely AlexNet, VGGNet, and ResNet-50, were used for
the purpose. Firstly, they evaluated that the middle-level layers of the CNN architecture contained
more robust information for visual representation, and then features were extracted from these layers.
Features fusion from these three models showed the improved result, and reported 92.2% accuracy
on the Caltech-101 dataset. Hamayun et al. [30] proved that the most robust features were extracted
from the fully connected layer-6 (FC-6) instead of the FC-8. In the presented approach, they exploited
the CNN output and modified it at a middle-level layer instead of the deepest layer. VGG-16 and
VGG-19 pre-trained models were used to illustrate the proposed technique. They extracted 4096
features from the FC-6 layer and then applied reduction using PCA. For the experimental process,
they used the Caltech-101 dataset and attained an accuracy of 91.35% using the reduced features
from the layer FC-6. Mahmood et al. [31] gave an idea for object detection and classification using
pre-trained networks (ResNet-50 and ResNet-152). After feature extraction, they performed features
reduction using PCA. The Caltech-101 database was selected for evaluation and achieved an accuracy
of 92.6%. Emine et al. [32] used convolutional architecture for fast feature embedding (Caffe) for object
recognition. About 300 images from the Caltech-101 dataset were used to test the proposed technique.
Results showed that 260 images were correctly classified, and 40 were misclassified. Chunjie et al. [33]
introduced a new technique, called Contextual Exemplar, to handle the drawbacks caused by the local
features. The method comprised three phases: In the first, they combined the regions-based image,
followed by constructing the relationship between those regions in the second phase, and they used
the connection of those regions for semantic representation in the third phase. They selected 1000
features and achieved an accuracy of 86.14%. Rashid et al. [8] focused on multiple features fusion and
selection of the best of them for efficient object classification. They used VGG and Alexnet pre-trained
models for CNN feature extraction and SIFT as point features extraction. Both types of features were
fused by a simple concatenation approach. Moreover, they introduced an entropy-based selection
approach within their framework, which achieved an accuracy of 89.7% for the Caltech-101 dataset.
Nazar et al. [34] fused HOG and Inception V3 CNN features and improved the existing accuracy up to
90.1% for the Caltech-101 dataset.
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3. Challenges and Contributions

The computer vision research community is still facing various challenges for object classification,
and most of them are due to the complex nature of objects. We do realize that it is not an easy
task to classify objects into their relevant categories efficiently. To be able to tackle the challenges
facing the community and achieve the required accuracies, in this work, we propose a deep learning
architecture-based framework for object classification with improved accuracy. The highlights of the
framework are as follows:

• It uses two pre-trained deep learning architectures, namely-VGG19 and Inception V3, and performs
TL to retrain the selected datasets. The FC7 and Average Pool layers of the CNN are utilized for
feature extraction.

• A parallel maximum covariance (PMC) technique is proposed for the fusion of both deep learning
feature vectors.

• While the Multi Logistic Regression controlled Entropy-Variances (MRcEV) method is employed
for selecting the robust features, the Ensemble Subspace Discriminant (ESD) classifier is used as a
fitness function.

• A detailed statistical analysis of the proposed method is conducted and compared with recent
techniques to examine the stability of the proposed architecture.

4. Materials and Methods

The proposed object classification architecture is presented in this section with detailed mathematical
formulation and visible results. As shown in Figure 1, the proposed architecture consists of three core
steps: Deep learning feature extraction using TL, fusion of various model features, and selection of
the robust features for final classification. In the classification step, the ESD classifier is used, and the
performance is compared with other learning algorithms. The details of each step, depicted in this figure,
are discussed below.
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4.1. Deep Learning Features Extraction

Since the past two decades, deep learning has proven itself as the best approach for image
recognition and classification [8,35–37]. CNN is a method of deep learning, involving a series of
layers. A simple CNN model consists of convolution and pooling layers. A few other layers are the
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activation layer named ReLu, and the feature layer called fully connected (FC). The first layer of CNN
is known as the input layer. This layer takes images as input, and the convolutional layer computes the
neurons’ response. The latter is calculated by the dot product of weights and smaller regions. While
the ReLu layer helps in the activation function, the pooling layer between convolution layers removes
the inactive neurons for the next phase. Finally, the high-level features are computed using the FC
layers, which are classified through Softmax [8]. In this work, we are using two pre-trained CNN
models, namely VGG19 and Inception V3, for feature extraction. In what follows, we present a brief
description of each model.

VGG19: VGG-19 [38] consists of 16 convolutional layers, 19 learnable weights layers, which are
utilized for transfer learning, 3 FC layers, and an output layer. This model is already trained on the
ImageNet dataset. The input size for this model is 224× 224× 3, as given in Table A1 (Appendix A).
The learnable weights and bias of the first convolution layer are 3× 2× 3× 64 and 1× 1× 64. The total
learnable at this layer is 1792. For the second convolution layer, the total learnable is 36,928. This layer
extracts the local features of an image.

Vi
(M) = Bi

(M) +

n1
(M−1)∑
k=1

ψ
(M)
i,k × h(M−1)

k (1)

where, Vi
(M) is the output layer Ly, Bi

(M) is the base value, ψi,k
(M) denotes the filter mapping the kth

feature value, and hk means the M− 1 output layer. The learnable weights and bias of the first FC layer
are 4096× 25, 088 and 4096× 1. The dropout layer is added between FC layers, where the dropout rate
is 50%. For FC layer 7, the total learnable is 16,781,312, and learnable weights are 4096× 4096. For the
last FC layer, the total learnable is 4,097,000, and learnable weights are 1000× 4096. Hence, when the
activation is applied, it returns a feature map vector of dimension 1× 1× 1000. For fully connected
layers 1 and 2, the feature map vector dimension is 1× 1× 4096.

Inception V3: It is an advanced pre-trained CNN model. It consists of 316 layers and 350
connections. The number of convolution layers is 94 of different filter sizes, where the size of the
first input layer is 299× 299× 3. A brief description of this model is given in Table A2 (Appendix A).
In this table, it is shown that a scaling layer is added after the input layer. On the first convolution
layer, activation is performed and obtained a weight matrix of dimension 149 × 149 × 32, where 32
denotes the number of filters. Later, the batch normalization and ReLu activation layers are added.
Mathematically, the ReLu layer is defined as:

Re(l)i = max
(
hv, hv(l−1)

i

)
(2)

Between the convolution layers, a pooling layer is also added to get active neurons. In the first
max-pooling layer, the filter size is 2× 2. Mathematically, the max-pooling is defined as:

mx(q)1 = mx(q−1)
1 (3)

mx(q)2 =
mx(q−1)

2 − F(q)

Sq + 1 (4)

mx(q)3 =
mx(q−1)

3 − F(q)

Sq + 1 (5)

where, SM denotes the stride, mxM
1 , mxM

2 , and mxM
3 are defined filters for feature set maps such as

2 × 2, 3 × 3. Moreover, a few other layers are also added in this architecture, such as addition and
concatenation layers. In the end, an average pool layer is added. The activation is performed, and in
the output, a resultant weight matrix is obtained as a features map of dimension 1× 1× 2048. The last
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layer is FC, and its learnable weight matrix is 1000× 2048, and the ensuing feature matrix is 1× 1× 1000.
Mathematically, the FC layer is defined as follows:

Fc(l)i = f
(
z(l)i

)
with z(l)i =

n(l−1)
1∑
j=1

n(l−1)
2∑
r=1

n(l−1)
3∑
s=1

w(l)
i, j,r,s

(
Fc(l−1)

i

)
r,s

(6)

Feature Extraction using TL: In the feature extraction step, we employ TL, by which we retrain
both the specific CNN models (VGG19 and InceptionV3) on the selected datasets. For training, we set a
60:40 approach along with labeled data. Furthermore, we perform preprocessing, in which we resize the
images according to the input layer of each model. Later, we select the input convolutional and output
layers as feature mapping. For VGG19, we choose the first convolutional layer as an input layer, and
the FC7 as the output. After that, the CNN activation is performed, and we obtain the training and
testing vectors. On the feature layer FC7, a resultant feature vector is obtained of dimension 1× 4096
denoted by ϕ(k1) and utilized in the next process. A modified architecture of VGG19 is also shown in
Figure 2. For Inception V3, we select the first convolutional layer as input, and the average pool layer
as a feature map. Similar to VGG19, we perform TL and retrain this model on the selected datasets,
and apply the CNN activation on the average pool layer. On this layer, we obtain a feature vector of
dimension 1× 2048, denoted by ϕ(k2). Both training and testing vectors proceed for the next features
fusion process. The modified architecture of Inception V3 is shown in Figure 3. In this figure, it is shown
that the last three layers are removed before being retrained on the selected datasets for this work.
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4.2. Features Fusion

The fusion of multiple features in one matrix is the latest research area of pattern recognition.
The primary purpose of features fusion is to obtain a stronger feature vector for classification. From
the latest research, it is noticed that the fusion process improves the overall accuracy, but on the other
side, its main disadvantage is high computational time (s). However, our usual priority is to improve
the classification accuracy. For this purpose, we implement a new Parallel Maximum Covariance
(PMC) approach for features fusion. In this approach, we need to equalize the lengths of both extracted
feature vectors. Later, we find the maximum covariance for fusion in a single matrix.
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Consider two deep learning feature vectors ϕ(k1) and ϕ(k2) of dimensions n×m and n× q, where
n denotes the number of images, m indicates VGG19 deep learning feature vector length of n× 4096
and q denotes Inception V3 feature vector of dimension n × 2048, respectively. To make the length
of vectors equal, we first find out the maximum length vector and perform average value padding.
The average feature is calculated from a higher length vector. Let a be an arbitrary unit column m
vector presenting a pattern in ϕ1 field, and b indicates a random unit column vector representing a
pattern in the ϕ2 field, respectively. The time series projections on row vectors are defined as follows:

x1 = ϕT
1 ϕ

(k1) (7)

x2 = ϕT
2 ϕ

(k2) (8)

For optimal solutions ϕ1 and ϕ2, maximize their covariance as follows:

c̃ = Cov[x1, x2] (9)

c̃ = Cov[ϕT
1 ϕ

(k1),ϕT
2 ϕ

(k2)] (10)

c̃ =
1

n− 1
[ϕT

1 ϕ
(k1)(ϕT

2 ϕ(k2))] (11)

c̃ = ϕ1
(
Cϕ1ϕ2

)
ϕ2 (12)

Cϕ1ϕ2 =
1

n− 1

(
ϕ(k1) ϕ(k2)T

)
(13)

where, Cϕ1ϕ2 is the covariance value among ϕ1 and ϕ2 whose ith and jth features are ϕi(t) and ϕ j(t).
Hence, the feature pair i and j of maximum covariance Cϕ1ϕ2 is saved in the final fused vector. However,
it is possible that few of the feature pairs are redundant. This process is continued until all pairs are
compared with each other. In the end, a fused vector is obtained, denoted by ϕ( f u) of dimensions
N × K, where K denotes the feature-length, which varies according to the selected features. In this
work, the fused feature-length is N × 3294 for the Caltech-101 dataset, N × 2981 for the Birds dataset,
and N × 3089 for the Butterflies dataset.

4.3. Feature Selection

Feature selection is an exciting research topic in machine learning (ML) nowadays, and shows
significant improvement in the classification accuracy. In this work, we propose a new technique for
feature selection, namely, Multi Logistic Regression controlled Entropy-Variances (MRcEV). It exploits a
partial derivative-based activation function to remove the irrelevant features, and the remaining robust
features are passed to the entropy-variances function. Through the latter, a new vector is obtained, which
only contains positive values. Finally, this vector is presented to the ESD fitness function, and the validity
of the proposed technique is determined. Mathematically, the formulation is given as:

For a given dataset, a fused vector is represented as ∆ =
{
ϕ( f u), y( f u)

}N

f u=1
having N sample

images, where ϕ( f u) denotes the fused feature vector, which is utilized as the input, and ϕ( f u)
∈ Rp.

The y( f u) indicates the corresponding labels and defined as y( f u)
∈ R. The probability among ϕ( f u) for

the class i is then computed as follows:

p(y( f u)
|ϕ( f u)) =

exp
{
r( f u)

i

}
∑q

j=1 exp
{
r( f u)

i

} (14)

r( f u)
i =

p∑
j=1

βi jϕ
( f u)
j (15)
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The parameter of logistic regression ri =
(
r0, r1, . . . , rp

)
is obtained by minimizing the negative

likelihood of features. If features are independent, then a multinomial distribution is computed as follows:

E∆ = −
n∑
f u

q∑
i=1

y( f u)
i log p( y( f u)

∣∣∣ϕ( f u) ) (16)

To get a sparse model, a regularization parameter β̃ is added to negative log-likelihood.
The modified MLR criteria for the active features are defined as follows:

M = E∆ + β̃Er (17)

Er =

p∑
i=1

|ri| (18)

where ri is regularization parameter.
At the minimum value of M, the partial derivative with respect to ri is formulated as follows:

∣∣∣∣∂E∆
∂ri

∣∣∣∣ = β̃ i f |ri| > 0∣∣∣∣∂E∆
∂ri

∣∣∣∣ < β̃ i f |ri| = 0
(19)

This expression shows that if the partial derivative of E∆ with respect to ri is less then β̃, then that
feature value is set to zero, and removed from the final vector. Later, entropy-variances-based function
is implemented to obtain a more robust vector. Mathematically, this function is formulated as:

H(β̃) = −
N−1∑
i=0

pi(β̃) log pi(β̃) (20)

σ2(β̃) =

∑
(β̃i − β̃)

n− 1
(21)

Ent(FV) = −

 ln
(
H(β̃)i+1

)
+ σ2(β̃)

ln
(
H(β̃)i + σ2(β̃)

)
+ ln

(
H(β̃)i − σ

2(β̃)
)  (22)

where, H(β̃) is an entropy function, σ2(β̃) denotes variance of the selected vector, and Ent(FV)

represents the final entropy-variances function. The selected features are passed to this function to get
a clear difference among all the features based on the classification classes. This proposed selection
technique picks almost 50% to 60% robust features from the fused feature vector. The selected features
are finally verified through the ESD classifier [39]. In the ensemble learning classifier, the subspace
discriminant method is used. The proposed system’s predicted results are shown in Figures 4–6.
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5. Results

This section presents the simulation results with detailed numerical analysis and visual plots.
As stated above, in this work, we utilize four publicly available datasets for evaluation of the
proposed framework, including Caltech-101, Birds database, Butterflies database, and CIFAR-100 [40].
A brief description of the selected datasets is given in Table 1, where we have highlighted the total
number of images, their specific classes (categories), and the number of images that each class
comprises. As understandable, the Caltech-101 and CIFAR-100 are relatively more challenging for
object classification. For validation, the 60:40 approach is employed along with ten-fold cross-validation.
We used various classifiers for the experimental process, such as Ensemble learning, SVM, KNN, and
Linear Discriminant classifiers. The performance of each classifier is validated using three essential
measures, including accuracy, FNR, and computational time. All the simulations are conducted in
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MATLAB2019a installed on a 2.4 Gigahertz Corei7 processor with 16 Gigabytes of RAM, 128 SSD,
and a Radeon R7 graphic card.

Table 1. Numerical description of selected datasets.

Image Database Sample Classes Total Samples Min-Max

Caltech [41] 101 9144 31~800
Birds [42] 6 600 100~100

Butterflies [43] 7 619 42~134

CIFAR-100 [40] 100 1000 (Testing)
50,000 (Training) 100

5.1. Caltech-101 Dataset Results

The results achieved on the Caltech-101 dataset are presented in three different ways: In the first
method, both VGG19- and inceptionV3-based deep features are fused using a serial-based method,
and the classification is performed without features selection. In the second method, the fusion of deep
features is conducted using the proposed fusion approach, as presented in Section 4.2. In the third
method, the feature selection is performed on the proposed fused vector, followed by classification.
The results are shown in Table 2, where it is evident that the ESD classifier yields the best results
against the rest for each method. However, it may be noticed that a massive difference exists among
the accuracies achieved using M1 and the other methods. For example, consider the case of the ESD
classifier, where the achieved accuracy rises from 79% to 90.8% upon using the proposed fusion method,
which further jumps to 95.5% once the proposed selection method is applied. Additionally, observe
that the computational time drops by around 74% between M1 and the P-selection method, making
the latter more superior to the other two methods. The accuracy of the P-Selection method may also
be verified through Figure 7. The effectiveness of the proposed P-Fusion and P-Selection methods
while using other classifiers is also evident in Table 2. Observe that the best accuracies are provided
by the P-Selection method irrespective of the classifier, while the P-Fusion stands second, both in
terms of accuracy and computational time. Overall, the proposed selection method shows significant
performance on ESD classifier for the Caltech-101 dataset.

Table 2. Proposed classification results using the Caltech-101 dataset. M1 represents simple serial-based
fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection represents
the proposed selection method results. Where, ESD described ensemble subspace discriminant, LDA
represent linear discriminant analysis, LSVM denotes linear support vector machine, QSVM denotes
quadratic SVM, and Co-KNN describe cosine K-Nearest Neighbor.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

ESD

3 - - 79.0 21.0 180.00

- 3 - 90.8 9.2 93.70

- - 3 95.5 4.5 47.00

ES-KNN

3 - - 75.8 24.2 665.80

- 3 - 80.1 19.9 286.45

- - 3 85.3 14.7 191.27

LDA

3 - - 75.0 25.0 597.84

- 3 - 81.8 18.2 127.83

- - 3 94.4 5.5 106.57
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Table 2. Cont.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

L-SVM

3 - - 76.0 24.0 9723.70

- 3 - 88.0 12.0 3154.70

- - 3 91.6 8.6 2045.00

Q-SVM

3 - - 77.2 22.8 1896.00

- 3 - 87.6 12.4 1341.00

- - 3 92.0 8.0 753.57

Cu-SVM

3 - - 77.9 22.1 7493.00

- 3 - 87.7 12.3 3647.70

- - 3 92.3 7.7 1889.50

F-KNN

3 - - 75.7 24.3 152.06

- 3 - 84.9 15.1 96.96

- - 3 89.9 10.1 71.57

M-KNN

3 - - 74.8 25.2 57.95

- 3 - 84.5 15.5 47.44

- - 3 89.6 10.4 33.90

W-KNN

3 - - 76.8 23.2 228.19

- 3 - 85.7 14.3 187.50

- - 3 90.5 9.5 105.87

Co-KNN

3 - - 52.4 21.0 61.35

- 3 - 87.6 12.4 48.76

- - 3 92.8 7.2 23.83
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5.2. Birds Dataset Results

The classification results using the Birds dataset are presented in this section. As before, three
methods are applied for the evaluation, and all the results obtained previously hold true in this case as
well. Table 3 summarizes these results, and verifies that the ESD classifier yields the best results for all
the three methods when compared with various classifiers. Irrespective of the classifier used, it may
also be verified that the proposed fusion method outperforms the M1 both in terms of the achieved
accuracies and computational time, while the proposed selection method even surpasses the fusion
method in both metrics. Its accuracy is also confirmed by Figure 8. Due to the simplicity in the dataset,
the accuracies achieved by the three methods are relatively comparable, unlike in the case of Caltech-101,
where the proposed methods outperformed the M1 by a considerable margin. The computational time,
however, gives the proposed methods a substantial edge on the equivalent techniques.

Table 3. Proposed classification results using the Birds dataset. M1 represents simple serial-based
fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection represents
the proposed selection method results.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

ESD

3 - - 99.0 15.5 85.09

- 3 - 99.5 1.0 68.31

- - 3 100.0 0.0 42.45

E-S-KNN

3 - - 96.7 3.3 45.09

- 3 - 97.6 2.4 38.31

- - 3 97.4 2.6 25.54

LD

3 - - 98.0 2.0 48.39

- 3 - 99.0 1.0 31.11

- - 3 100.0 0.0 23.92

L-SVM

3 - - 97.9 2.1 45.36

- 3 - 99.0 0.5 20.00

- - 3 100.0 0.0 17.66

Q-SVM

3 - - 84.5 1.0 51.03

- 3 - 99.3 0.7 24.06

- - 3 100.0 0.0 15.25

Cub-SVM

3 - - 99.0 1.0 54.59

- 3 - 99.5 0.5 43.32

- - 3 100.0 0.0 21.29

F-KNN

3 - - 96.2 3.8 41.47

- 3 - 97.4 2.6 19.58

- - 3 99.5 0.5 14.89

M-KNN

3 - - 97.6 2.4 32.30

- 3 - 98.8 1.2 17.31

- - 3 100.0 0.0 15.82

W-KNN

3 - - 97.9 2.1 23.96

- 3 - 99.3 0.7 13.10

- - 3 100.0 0.0 9.16
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Table 3. Cont.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

Cos-KNN

3 - - 95.7 4.3 31.08

- 3 - 99.0 1.0 22.00

- - 3 99.8 0.2 16.11
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5.3. Butterflies Dataset

The results for the Butterflies dataset are given in Table 4. It may be observed that the ESD classifier
gives better outcomes for all three feature methods. For M1, the ESD classifier achieves an accuracy of
95.1%, which is improved to 95.6% after using the P-Fusion method. The computational time of M1 is
46.05 (s), but after P-Fusion, the time is reduced to 31.95 (s). In comparison, the P-Selection method
achieves an accuracy of 98%, which is better than the M1 and P-Fusion. Moreover, the computational
time of this method is 19.53 (s), which is also the minimum. The performance of the ESD classifier for the
P-Selection method may also be verified through Figure 9. The performance of the ESD classifier is also
compared with a few other well-known techniques such as SVM, KNN, and LDA, as given in Table 4.
From the results, it can be clearly seen that all the classifiers provide better accuracy on the P-Selection
method. Moreover, it is also concluded that W-KNN performs better in terms of computational time.

Table 4. Proposed classification results using the Butterflies dataset. M1 represents simple serial-based
fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection represents
the proposed selection method results.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

ESD

3 - - 95.1 9.4 46.05

- 3 - 95.6 5.9 31.95

- - 3 98.0 2.0 19.53

E-S-KNN

3 - - 85.7 14.3 28.56

- 3 - 87.7 12.3 18.27

- - 3 88.7 11.3 13.08
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Table 4. Cont.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s)

LD

3 - - 70.9 29.1 48.44

- 3 - 94.1 4.6 22.42

- - 3 96.6 3.4 17.01

L-SVM

3 - - 91.6 8.4 40.02

- 3 - 94.6 5.4 29.65

- - 3 96.6 3.4 16.72

Q-SVM

3 - - 94.1 5.9 39.46

- 3 - 94.1 5.9 24.58

- - 3 96.6 3.4 18.80

Cub-SVM

3 - - 90.6 4.9 44.23

- 3 - 93.6 6.4 29.41

- - 3 97.0 3.0 21.51

F-KNN

3 - - 85.7 14.3 30.82

- 3 - 89.2 10.8 18.70

- - 3 94.1 5.9 13.79

M-KNN

3 - - 82.3 19.7 29.29

- 3 - 85.2 14.8 18.30

- - 3 92.1 7.9 10.83

W-KNN

3 - - 85.2 14.8 15.06

- 3 - 87.2 12.8 14.26

- - 3 94.6 5.4 10.12

Cos-KNN

3 - - 81.8 18.2 16.02

- 3 - 85.7 14.3 14.54

- - 3 94.1 5.9 10.55Sustainability 2020, 12, 5037 14 of 21 

 
Figure 9. Confusion matrix for Butterflies dataset. 
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5.4. CIFAR-100 Dataset

This dataset consists of 100 object classes such as bus, chair, table, train, bed, and each class
consists of 100 samples, making this dataset more challenging. There are 50,000 images available for
the training of this dataset, while there are 10,000 images for testing. In this work, we utilize this
dataset for the evaluation of the proposed technique. The results are given in Tables 4 and 5. In Table 4,
the proposed training results are provided, which show the maximum accuracy of 69.76% and an error
rate of 30.24%. For the simple fusion method (M1), the noted accuracy is 51.34%, and the computation
time is 608 (min). After employing the proposed fusion, it takes the time of 524 (min) for execution,
and achieved an improved accuracy of 63.97%. The proposed P-Selection method further improves the
accuracy and reached 69.76%, whereas the execution time is also minimized to 374 (min). The testing
results are given in Table 6. The maximum achieved accuracy of the testing process is 68.80% using
the P-Selection method and ESD classifier. The accuracy is not impressive, but in the view of dataset
complexity, it is acceptable. The accuracy of the ESD using the P-Selection method can be further
verified through Figure 10 (confusion matrix).

Table 5. Proposed training results on CIFAR-100 dataset.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (min)

ESD
3 - - 51.34 48.66 608
- 3 - 63.97 36.03 524
- - 3 69.76 30.24 374

Table 6. Proposed testing results on CIFAR-100 dataset.

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (min)

ESD
3 - - 47.84 52.16 258
- 3 - 62.34 37.66 204
- - 3 68.80 31.2 111Sustainability 2020, 12, 5037 15 of 21 
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5.5. Analysis and Comparison with Existing Techniques 

A comprehensive analysis and comparison with existing techniques are presented in this section 
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5.5. Analysis and Comparison with Existing Techniques

A comprehensive analysis and comparison with existing techniques are presented in this section
to examine the authenticity of the proposed method results. The proposed fusion and robust feature
selection methods give a significant performance of 95.5%, 100%, 98%, and 68.70%, respectively, for ESD
classifier on the selected datasets. Results can be seen in Tables 2–4. However, it is essential to examine
the accuracy of ESD against each classifier based on a detailed statistical analysis. For Caltech-101
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dataset, we run the proposed algorithm 500 times for each method and get two accuracies: average
(76.3%, 87.9%, and 92.7%), and maximum (79%, 90.8%, and 95.5%). These accuracies are also plotted in
Figure 11a. In this figure, it is shown that a minor change is occurring in the accuracy after 500 iterations.
For the Birds database, two accuracies are also obtained: minimum (97.2%, 98.9%, and 99.4%) and
maximum (99%, 99.5%, and 100%). These values are also plotted in Figure 11b. In this figure, it can be
observed that the change in M1 is a bit higher as compared to P-Fusion and P-Selection. In the end,
the statistical analysis is conducted for the Butterflies dataset, as shown in Figure 11c. This figure
shows a slight change in the accuracy of each method.
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We performed the classification using other deep neural nets such as VGG16, AlexNet, ResNet50,
and ResNet101 to compare the proposed scheme classification performance. The results are computed
from the last two layers, such as Vgg16 (FC7 and FC8), AlexNet (FC7 and FC8), and ResNet (Average
Pool and FC Layer). The features extracted from these layers are fused using the proposed approach
and later perform the selection technique. For the classification of these neural nets, we used the
original classifier named Softmax. Results are given in Tables 7 and 8 below for Caltech-101 and
CIFAR-100 datasets. In these tables, we noticed that the P-Fusion and P-Selection techniques are
performed well using the proposed scheme. A brief comparison with existing techniques is also
presented in Table 9. From this table, we computed the results on different training/testing ratios and
get a variety of results. Based on the results, it is show that the increase in a training ratio minimizes
the error rate. For example, in this table, accuracy of CIFAR-100 is 65.46%, 68.80%, 73.16%, and 77.28%
for training/testing ratio 50:50, 60:40, 70:30, and 80:20, respectively. The minimum error rate is 22.72%
for 80:30 approach whereas for standard approach (70:30), error rate is 26.84%. From this table, it is
evident that the proposed method gives improved accuracy.

Table 7. Classification results on Caltech-101 dataset using different neural nets.

Method
Features Measures

P-Fusion P-Selection Accuracy (%) FNR (%)

AlexNet
3 - 86.70 13.30

- 3 90.24 9.76

Vgg16 3 - 85.16 14.84

- 3 89.24 10.76

ResNet50
3 - 88.57 11.43

- 3 92.36 7.64

ResNet101
3 - 89.96 10.04

- 3 92.83 7.17
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Table 7. Cont.

Method
Features Measures

P-Fusion P-Selection Accuracy (%) FNR (%)

Proposed 3 - 90.80 9.20

- 3 95.50 4.50

Table 8. Classification results on CIFAR-100 dataset using different neural nets.

Method
Features Measures

P-Fusion P-Selection Accuracy (%) FNR (%)

AlexNet
3 - 61.29 38.71

- 3 65.82 34.18

Vgg16 3 - 60.90 39.10

- 3 64.06 35.94

ResNet50
3 - 61.82 38.18

- 3 65.71 34.29

ResNet101
3 - 61.98 38.02

- 3 66.25 33.75

Proposed 3 - 62.34 38.71

- 3 68.80 34.18

Table 9. Comparison of proposed accuracy with recent techniques. MLFFS = Multi-Layers Features
Fusion and Selection.

Reference Technique Dataset Accuracy (%)

Roshan et al. [25] Fine-tuning on top layers Caltech-101 91.66
Jongbin et al. [26] Discrete Fourier transform Caltech-101 93.60

Qun et al. [27] Memory banks-based unsupervised learning Caltech-101 91.00
Qing et al. [28] PCA-based reduction on fused features Caltech-101 92.54

Xueliang et al. [29] A fusion of mid-level layers-based features Caltech-101 92.20
Rashid et al. [8] Fusion of SIFT and CNN features Caltech-101 89.70

Svetlana [43] Local affine parts-based approach Butterflies 90.40
Ma et al. [44] Genetic CNN designer approach (70:30) CIFAR-100 66.77

Alom et al. [45]

IRRCNN (70:30) CIFAR-100 72.78
IRCNN (70:30) CIFAR-100 71.76

EIN (70:30) CIFAR-100 68.29
EIRN (70:30) CIFAR-100 69.22

Proposed MLFFS Butterflies 98.00
Proposed MLFFS Birds 100%
Proposed MLFFS Caltech-101 95.5
Proposed MLFFS (50:50) CIFAR-100 65.46

- MLFFS (60:40) CIFAR-100 68.80
- MLFFS (70:30) CIFAR-100 73.16
- MLFFS (80:20) CIFAR-100 77.28

6. Conclusions

A new multi-layer deep features fusion and selection-based method for object classification is
presented in this work. The major contribution of this work lies in the fusion of deep learning models,
and then selection of the robust features for final classification. Three core steps are involved in the
proposed system: Feature extraction using transfer learning, features fusion of two different deep
learning models (VGG19 and Inception V3) using PMC, and selection of the robust features using
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Multi Logistic Regression controlled Entropy-Variances (MRcEV) method. An ESDA classifier is used
to validate the performance of MRcEV. We utilize three datasets for the experimental process and
demonstrate an improved achieved accuracy. From the results, we conclude that the proposed method
is useful for large, as well as small datasets. The fusion of two different deep learning features shows
an impact on classification accuracy. Additionally, the selection of robust features shows an effect on
both computational time and classification accuracy. The main limitation of the proposed method is the
quality of features—by using low-quality images, it is not possible to get strong features. In the future,
this problem will be rectified through contrast, stretching deep learning architecture. Moreover, for the
improvement of experimental process, the Caltech-256 and CIFAR-100 datasets will be considered.
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Appendix A

Table A1. Detailed description of VGG19 pre-trained CNN model.

Sr No. Name Type Activation
Learnable Total

LearnablesWeights Bias

1 Input Image Input 224 × 224 × 3 - - -
2 conv1_1 Convolution 224 × 224 × 64 3 × 3 × 3 × 64 1 × 1 × 64 1792
3 relu1_1 ReLU 224 × 224 × 64 - - -
4 conv1_2 Convolution 224 × 224 × 64 3 × 3 × 64 × 64 1 × 1 × 64 36,928
5 relu1_2 ReLU 224 × 224 × 64 - - -
6 pool1 Max Pooling 112 × 112 × 64 - - -
7 conv2_1 Convolution 112 × 112 × 128 3 × 3 × 64 × 128 1 × 1 × 128 73,856
8 relu2_1 ReLU 112 × 112 × 128 - - -
9 conv2_2 Convolution 112 × 112 × 128 3 × 3 × 128 × 128 1 × 1 × 128 147,584

10 relu2_2 ReLU 112 × 112 × 128 - - -
11 pool2 Max Pooling 56 × 56 × 128 - - -
12 conv3_1 Convolution 56 × 56 × 256 3 × 3 × 128 × 256 1 × 1 × 256 295,168
13 relu3_1 ReLU 56 × 56 × 256 - - -
14 conv3_2 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590,080
15 relu3_2 ReLU 56 × 56 × 256 - - -
16 conv3_3 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590,080
17 relu3_3 ReLU 56 × 56 × 256 - - -
18 conv3_4 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590,080
19 relu3_4 ReLU 56 × 56 × 256 - - -
20 pool3 Max Pooling 28 × 28 × 256 - - -
21 conv4_1 Convolution 28 × 28 × 512 3 × 3 × 256 × 512 1 × 1 × 512 1,180,160
22 relu4_1 ReLU 28 × 28 × 512 - - -
23 conv4_2 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
24 relu4_2 ReLU 28 × 28 × 512 - - -
25 conv4_3 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
26 relu4_3 ReLU 28 × 28 × 512 - - -
27 conv4_4 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
28 relu4_4 ReLU 28 × 28 × 512 - - -
29 pool4 Max Pooling 14 × 14 × 512 - - -
30 conv5_1 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
31 relu5_1 ReLU 14 × 14 × 512 - - -
32 conv5_2 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
33 relu5_2 ReLU 14 × 14 × 512 - - -
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Table A1. Cont.

Sr No. Name Type Activation
Learnable Total

LearnablesWeights Bias

34 conv5_3 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
35 relu5_3 ReLU 14 × 14 × 512 - - -
36 conv5_4 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2,359,808
37 relu5_4 ReLU 14 × 14 × 512 - - -
38 pool5 Max Pooling 7 × 7 × 512 - - -
39 fc6 Fully Connected 1 × 1 × 4096 4096 × 25,088 4096 × 1 102,764,544
40 relu6 ReLU 1 × 1 × 4096 - - -
41 drop6 Dropout 1 × 1 × 4096 - - -
42 fc7 Fully Connected 1 × 1 × 4096 4096 × 4096 4096 × 1 16,781,312
43 relu7 ReLU 1 × 1 × 4096 - - -
44 drop7 Dropout 1 × 1 × 4096 - - -
45 fc8 Fully Connected 1 × 1 × 1000 1000 × 4096 1000 × 1 4,097,000
46 Prob Softmax 1 × 1 × 1000 - - -
47 Output Classification - - -

Table A2. Detailed description of Inception V3 pre-trained CNN model.

S/N Name Type Activation
Learnable

Weights Bias Offset Scale

1 input_1 Image Input 299 × 299 × 3 - - - -
2 scaling Scaling 299 × 299 × 3 - - - -
3 conv2d_1 Convolution 149 × 149 × 32 [3,3,3,32] [1,1,32] - -
4 batch_normalization_1 Batch Normalization 149 × 149 × 32 - - 1 × 1 × 32 1 × 1 × 32
5 activation_1_relu ReLU 149 × 149 × 32 - - - -
6 conv2d_2 Convolution 147 × 147 × 32 [3,3,32,32] [1,1,32] - -
7 batch_normalization_2 Batch Normalization 147 × 147 × 32 - - [1,1,32] [1,1,32]
8 activation_2_relu ReLU 147 × 147 × 32 - - - -
9 conv2d_3 Convolution 147 × 147 × 64 [3,3,32,64] [1,1,64] - -

10 batch_normalization_3 Batch Normalization 147 × 147 × 64 - - [1,1,64] [1,1,64]
11 activation_3_relu ReLU 147 × 147 × 64 - - - -
12 max_pooling2d_1 Max Pooling 73 × 73 × 64 - - - -
13 conv2d_4 Convolution 73 × 73 × 80 [1,1,64,80] [1,1,80] - -
14 batch_normalization_4 Batch Normalization 73 × 73 × 80 - - [1,1,80] [1,1,80]
15 activation_4_relu ReLU 73 × 73 × 80 - - - -
16 conv2d_5 Convolution 71 × 71 × 192 [3,3,80,192] [1,1,192] - -
17 batch_normalization_5 Batch Normalization 71 × 71 × 192 - - [1,1,192] [1,1,192]
18 activation_5_relu ReLU 71 × 71 × 192 - - - -
19 max_pooling2d_2 Max Pooling 35 × 35 × 192 - - - -
20 conv2d_9 Convolution 35 × 35 × 64 [1,1,192,64] [1,1,64] - -
21 batch_normalization_9 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64]
22 activation_9_relu ReLU 35 × 35 × 64 - - - -
23 conv2d_7 Convolution 35 × 35 × 48 [1,1,192,48] [1,1,48] - -
24 conv2d_10 Convolution 35 × 35 × 96 [3,3,64,96] [1,1,96] - -
25 batch_normalization_7 Batch Normalization 35 × 35 × 48 - - [1,1,48] [1,1,48]
26 batch_normalization_10 Batch Normalization 35 × 35 × 96 - - [1,1,96] [1,1,96]
27 activation_7_relu ReLU 35 × 35 × 48 - - - -
28 activation_10_relu ReLU 35 × 35 × 96 - - - -
29 average_pooling2d_1 Avg Pooling 35 × 35 × 192 - - - -
30 conv2d_6 Convolution 35 × 35 × 64 [1,1,192,64] [1,1,64] - -
31 conv2d_8 Convolution 35 × 35 × 64 [5,5,48,64] [1,1,64] - -
32 conv2d_11 Convolution 35 × 35 × 92 [3,3,96,96] [1,1,96] - -
33 conv2d_12 Convolution 35 × 35 × 32 [1,1,192,32] [1,1,32] - -
34 batch_normalization_6 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64]
35 batch_normalization_8 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64]
36 batch_normalization_11 Batch Normalization 35 × 35 × 96 - - [1,1,96] [1,1,96]
37 batch_normalization_12 Batch Normalization 35 × 35 × 32 - - [1,1,32] [1,1,32]
38 activation_6_relu ReLU 35 × 35 × 64 - - - -
39 activation_8_relu ReLU 35 × 35 × 64 - - - -
40 activation_11_relu ReLU 35 × 35 × 96 - - - -
41 activation_12_relu ReLU 35 × 35 × 32 - - - -
42 mixed0 Depth Concat 35 × 35 × 256 - - - -
43 conv2d_16 Convolution 35 × 35 × 64 [1,1,256,64] [1,1,64] - -
44 batch_normalization_16 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64]
45 activation_16_relu Fully Connected 35 × 35 × 64 - - - -
46 conv2d_14 Convolution 35 × 35 × 48 [1,1,256,48] [1,1,48] - -
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Table A2. Cont.

S/N Name Type Activation
Learnable

Weights Bias Offset Scale

47 conv2d_17 Convolution 35 × 35 × 96 [3,3,64,96] [1,1,96] - -
– – – – – – – –

307 batch_normalization_94 Batch Normalization 8 × 8 × 192 - - [1,1,192] [1,1,192]
308 activation_86_relu ReLU 8 × 8 × 320 - - - -
309 mixed9_1 Depth Concat 8 × 8 × 768 - - - -
310 concatenate_2 Depth Concat 8 × 8 × 768 - - - -
311 activation_94_relu ReLU 8 × 8 × 192 - - - -
312 mixed10 Depth Concat 8 × 8 × 2048 - - - -
313 avg_pool Avg Pooling 1 × 1 × 2048 - - - -
314 predictions Fully Connected 1 × 1 × 1000 1000 × 2048 1000 × 1 - -
315 predictions_softmax Softmax 1 × 1 × 1000 - - - -

316 classification
layer_predictions Classification Output - - - -
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