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Abstract: With an overwhelming increase in the demand of autonomous systems, especially in the 

applications related to intelligent robotics and visual surveillance, come stringent accuracy 

requirements for complex object recognition. A system that maintains its performance against a 

change in the object’s nature is said to be sustainable and it has become a major area of research for 

the computer vision research community in the past few years. In this work, we present a 

sustainable deep learning architecture, which utilizes multi-layer deep features fusion and selection, 

for accurate object classification. The proposed approach comprises three steps: (1) By utilizing two 

deep learning architectures, Very Deep Convolutional Networks for Large-Scale Image Recognition 

and Inception V3, it extracts features based on transfer learning, (2) Fusion of all the extracted 

feature vectors is performed by means of a parallel maximum covariance approach, and (3) The best 

features are selected using Multi Logistic Regression controlled Entropy-Variances method. For 

verification of the robust selected features, the Ensemble Learning method named Subspace 

Discriminant Analysis is utilized as a fitness function. The experimental process is conducted using 

four publicly available datasets, including Caltech-101, Birds database, Butterflies database and 

CIFAR-100, and a ten-fold validation process which yields the best accuracies of 95.5%, 100%, 98%, 

and 68.80% for the datasets respectively. Based on the detailed statistical analysis and comparison 

with the existing methods, the proposed selection method gives significantly more accuracy. 

Moreover, the computational time of the proposed selection method is better for real-time 

implementation. 

Keywords: object classification; deep learning; features fusion; features selection; recognition 

 

1. Introduction 

Object recognition is currently one of the most focused areas of research due to its emerging 

application in intelligent robotics and visual surveillance [1,2]. The researchers, however, are still 

facing problems in this domain for correct object recognition, such as in recognizing an object’s shape 



Sustainability 2020, 12, 5037 2 of 21 

and spotting a minor difference among several objects. Therefore, a sustainable system—the one that 

maintains its performance against a change in the object’s nature—is required for the correct 

recognition of complex objects [3]. Object classification is the key to a sustainable visual surveillance 

system [4]. Besides the latter, object classification finds its application in numerous domains, 

including intelligent robotics, face and action recognition, video watermarking, pedestrian tracking, 

autonomous vehicles, semantic scene analysis, content-based image retrieval, and many more. We 

believe that a genuinely sustainable object recognition system still has to overcome numerous 

challenges, including complex background, different shape and same color for different objects, 

continuously moving objects, different angles, and many more, since the conventionally used—

unsustainable systems—did not prove to work well for complex object classification [5]. 

Many techniques have been introduced in computer vision to overcome the previously 

discussed challenges related to complex objects. What most of them tried to accomplish was an 

optimal method that would perform the same for many types of problems, but this was a 

considerable challenge. Although in the past few decades, the conventional approaches, such as 

Hand-Crafted Features (HCF), were used, as the time passed, however, the objects and their 

backgrounds became more confusing, thereby restricting their use. Handcrafted features included 

Histogram of Oriented Graph (HOG) [6], geometric features [7], Scale Invariant Feature 

Transformation (SIFT) [8], Difference of Gaussian (DoG) [9], Speeded-Up Robust Features (SURF) 

[10], and texture features (HARLICK) [11]. Recent techniques, in contrast, proposed to exploit a 

hybrid set of features to get a better representation of an object [12]. Unfortunately, those techniques 

were unable to recognize the growing complexities of objects and images as well. 

In the face of the challenges as mentioned earlier, the concept of deep learning has been recently 

introduced in this context, which has also shown improved performance against reduced 

computational time. With this, a large number of convolutional neural networks (CNN) pre-trained 

models have been proposed. This includes AlexNet [13], VGG (VGG-16, VGG-19 [14], GoogleNet 

[14], ResNet (Resnet-50, ResNet-102, and ResNet-152) [15], and Inception [16]; all these models are 

trained on the ImageNet dataset. Even with these contributions, however, acceptable accuracy has 

been difficult to achieve. This has given rise to the concept of features fusion [15,16]—a process of 

combining several feature populations into a single feature space, which has been adopted in various 

applications ranging from medical imaging to object classification [17–19]. The concept of features 

fusion does manage to achieve increased classification accuracy, but only at an increased 

computational cost. In addition, some of the recent works have shown that the fusion process may 

add irrelevant features that are not important for the classification task [17,18]. We believe that if the 

irrelevant features were selected and removed from the fused vector, then the computational time 

could be minimized with an increased accuracy. 

Feature selection can be categorized into three: Filter-based, wrapper-based, and embedded. The 

filter-based selection selects the features from subsets independently. The wrapper-based methods 

initially assume the features, and then select them based on predictive power. The embedded 

selection initially utilizes the selection in the training phase, which enjoys the advantages of both 

filter-based and wrapper based [19]. Some of the famous feature selection techniques include 

Principle Component Analysis (PCA) [20], Linear Discriminant Analysis (LDA) [21], Pearson 

Correlation Coefficient (PCC) [22], Independent Component Analysis (ICA) [22], Entropy Controlled 

[23], Genetic Algorithm-based (GA) [24], and many more. 

In this work, an entire sustainable framework based on a deep learning architecture is proposed. 

While we summarize our challenges and highlight our contributions in response to those in Section 

3, the details on the proposed framework are explicitly given in Section 4. Section 5 presents the 

simulation results before we conclude the manuscript in Section 6. In what follows, however, we 

review some of the existing related works, in Section 2. 

2. Related Work 

Many strategies are performed for image classification, as investigated in the area of computer 

vision and machine learning. Object categorization is the most emergent field of computer vision 
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because of its enormous applications in video surveillance, auto-assisted vehicle frameworks, 

pedestrian analysis, automatic target recognition, and so on. In the literature, very few fusion-based 

techniques are presented for the classification of complex objects. Features fusion is the process of 

combining two or more feature spaces into a single matrix. By fusion, there is a chance to get a higher 

accuracy vector having properties of multiple feature spaces. Roshan et al. [25] presented a new 

technique for object classification. They applied the presented algorithm on the VGG-16 architecture 

and performed training from scratch. Additionally, they used transfer learning (TL) on the top layers. 

They utilized the Caltech-101 dataset and achieved an accuracy of 91.66%. Jongbin et al. [26] 

introduced a new DFT-based technique for feature building by discarding the pooling layers among 

the fully connected and convolutional layers. Two modules were implemented in this technique: The 

first module, known as DFT, replaced max-pooling from the architecture by a user-defined size 

pooling. The second module, known as DFT+, was the fusion of multiple layers to get the best 

classification accuracy. They achieved 93.2% classification accuracy on the Caltech-101 dataset using 

the VGG-16 CNN network, and 93.6% accuracy on the same dataset using the Resnet-50 model. Qun 

et al. [27] used a pre-trained network with associative memory banks for feature extraction. They 

extracted the features using ResNet-50 and VGG-16. Later, the K-Means clustering was used on the 

memory banks to perform unsupervised clustering. Qing et al. [28] presented a fused framework for 

object classification. They extracted the CNN features and applied three different types of coding 

techniques onto the fused vector. 

Two pre-trained models, namely VGG-M and VGG-16, were used for feature extraction from 

the 5-Conv-Layer. Subsequently, PCA-based reduction was applied, and features were fused into a 

final vector using the proposed coding techniques. Results showed an improved accuracy of 92.54% 

on the Caltech-101 database. Xueliang et al. [29] presented a late fusion-based technique for object 

recognition. Three pre-trained networks, namely AlexNet, VGGNet, and ResNet-50, were used for 

the purpose. Firstly, they evaluated that the middle-level layers of the CNN architecture contained 

more robust information for visual representation, and then features were extracted from these 

layers. Features fusion from these three models showed the improved result, and reported 92.2% 

accuracy on the Caltech-101 dataset. Hamayun et al. [30] proved that the most robust features were 

extracted from the fully connected layer-6 (FC-6) instead of the FC-8. In the presented approach, they 

exploited the CNN output and modified it at a middle-level layer instead of the deepest layer. VGG-

16 and VGG-19 pre-trained models were used to illustrate the proposed technique. They extracted 

4096 features from the FC-6 layer and then applied reduction using PCA. For the experimental 

process, they used the Caltech-101 dataset and attained an accuracy of 91.35% using the reduced 

features from the layer FC-6. Mahmood et al. [31] gave an idea for object detection and classification 

using pre-trained networks (ResNet-50 and ResNet-152). After feature extraction, they performed 

features reduction using PCA. The Caltech-101 database was selected for evaluation and achieved an 

accuracy of 92.6%. Emine et al. [32] used convolutional architecture for fast feature embedding (Caffe) 

for object recognition. About 300 images from the Caltech-101 dataset were used to test the proposed 

technique. Results showed that 260 images were correctly classified, and 40 were misclassified. 

Chunjie et al. [33] introduced a new technique, called Contextual Exemplar, to handle the drawbacks 

caused by the local features. The method comprised three phases: In the first, they combined the 

regions-based image, followed by constructing the relationship between those regions in the second 

phase, and they used the connection of those regions for semantic representation in the third phase. 

They selected 1000 features and achieved an accuracy of 86.14%. Rashid et al. [8] focused on multiple 

features fusion and selection of the best of them for efficient object classification. They used VGG and 

Alexnet pre-trained models for CNN feature extraction and SIFT as point features extraction. Both 

types of features were fused by a simple concatenation approach. Moreover, they introduced an 

entropy-based selection approach within their framework, which achieved an accuracy of 89.7% for 

the Caltech-101 dataset. Nazar et al. [34] fused HOG and Inception V3 CNN features and improved 

the existing accuracy up to 90.1% for the Caltech-101 dataset. 
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3. Challenges and Contributions 

The computer vision research community is still facing various challenges for object 

classification, and most of them are due to the complex nature of objects. We do realize that it is not 

an easy task to classify objects into their relevant categories efficiently. To be able to tackle the 

challenges facing the community and achieve the required accuracies, in this work, we propose a 

deep learning architecture-based framework for object classification with improved accuracy. The 

highlights of the framework are as follows: 

 It uses two pre-trained deep learning architectures, namely-VGG19 and Inception V3, and 

performs TL to retrain the selected datasets. The FC7 and Average Pool layers of the CNN are 

utilized for feature extraction. 

 A parallel maximum covariance (PMC) technique is proposed for the fusion of both deep 

learning feature vectors. 

 While the Multi Logistic Regression controlled Entropy-Variances (MRcEV) method is 

employed for selecting the robust features, the Ensemble Subspace Discriminant (ESD) classifier 

is used as a fitness function. 

 A detailed statistical analysis of the proposed method is conducted and compared with recent 

techniques to examine the stability of the proposed architecture. 

4. Materials and Methods 

The proposed object classification architecture is presented in this section with detailed 

mathematical formulation and visible results. As shown in Figure 1, the proposed architecture 

consists of three core steps: Deep learning feature extraction using TL, fusion of various model 

features, and selection of the robust features for final classification. In the classification step, the ESD 

classifier is used, and the performance is compared with other learning algorithms. The details of 

each step, depicted in this figure, are discussed below. 

 

Figure 1. Proposed deep learning architecture for object classification. 

4.1. Deep Learning Features Extraction 

Since the past two decades, deep learning has proven itself as the best approach for image 

recognition and classification [8,35–37]. CNN is a method of deep learning, involving a series of 

layers. A simple CNN model consists of convolution and pooling layers. A few other layers are the 

activation layer named ReLu, and the feature layer called fully connected (FC). The first layer of CNN 
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is known as the input layer. This layer takes images as input, and the convolutional layer computes 

the neurons’ response. The latter is calculated by the dot product of weights and smaller regions. 

While the ReLu layer helps in the activation function, the pooling layer between convolution layers 

removes the inactive neurons for the next phase. Finally, the high-level features are computed using 

the FC layers, which are classified through Softmax [8]. In this work, we are using two pre-trained 

CNN models, namely VGG19 and Inception V3, for feature extraction. In what follows, we present a 

brief description of each model. 

VGG19: VGG-19 [38] consists of 16 convolutional layers, 19 learnable weights layers, which are 

utilized for transfer learning, 3 FC layers, and an output layer. This model is already trained on the 

ImageNet dataset. The input size for this model is 224 × 224 × 3, as given in Table A1 (Appendix 

Section). The learnable weights and bias of the first convolution layer are 3 × 2 × 3 × 64  and 

1 × 1 × 64 . The total learnable at this layer is 1792 . For the second convolution layer, the total 

learnable is 36928. This layer extracts the local features of an image. 
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where, ��
(�) is the output layer ��, ��

(�) is the base value, ��,�
(�) denotes the filter mapping the 

��ℎ  feature value, and ℎ� means the � − 1 output layer. The learnable weights and bias of the first 

FC layer are 4096 × 25,088 and 4096 × 1. The dropout layer is added between FC layers, where the 

dropout rate is 50%. For FC layer 7, the total learnable is 16781312, and learnable weights are 

4096 × 4096 . For the last FC layer, the total learnable is 4097000, and learnable weights are 

1000 × 4096. Hence, when the activation is applied, it returns a feature map vector of dimension 

1 × 1 × 1000. For fully connected layers 1 and 2, the feature map vector dimension is 1 × 1 × 4096. 

Inception V3: It is an advanced pre-trained CNN model. It consists of 316 layers and 350 

connections. The number of convolution layers is 94 of different filter sizes, where the size of the first 

input layer is 299 × 299 × 3. A brief description of this model is given in Table A2 (Appendix 

Section). In this table, it is shown that a scaling layer is added after the input layer. On the first 

convolution layer, activation is performed and obtained a weight matrix of dimension 

149 × 149 × 32, where 32 denotes the number of filters. Later, the batch normalization and ReLu 

activation layers are added. Mathematically, the ReLu layer is defined as: 
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Between the convolution layers, a pooling layer is also added to get active neurons. In the first 

max-pooling layer, the filter size is 2 × 2. Mathematically, the max-pooling is defined as: 
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where, �� denotes the stride, ���
�, ���

�, and ���
� are defined filters for feature set maps such as 

2 × 2, 3 × 3. Moreover, a few other layers are also added in this architecture, such as addition and 

concatenation layers. In the end, an average pool layer is added. The activation is performed, and in 

the output, a resultant weight matrix is obtained as a features map of dimension 1 × 1 × 2048. The 

last layer is FC, and its learnable weight matrix is 1000 × 2048, and the ensuing feature matrix is 

1 × 1 × 1000. Mathematically, the FC layer is defined as follows: 
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Feature Extraction using TL: In the feature extraction step, we employ TL, by which we retrain 

both the specific CNN models (VGG19 and InceptionV3) on the selected datasets. For training, we 

set a 60:40 approach along with labeled data. Furthermore, we perform preprocessing, in which we 

resize the images according to the input layer of each model. Later, we select the input convolutional 

and output layers as feature mapping. For VGG19, we choose the first convolutional layer as an input 

layer, and the FC7 as the output. After that, the CNN activation is performed, and we obtain the 

training and testing vectors. On the feature layer FC7, a resultant feature vector is obtained of 

dimension 1 × 4096 denoted by �(��) and utilized in the next process. A modified architecture of 

VGG19 is also shown in Figure 2. For Inception V3, we select the first convolutional layer as input, 

and the average pool layer as a feature map. Similar to VGG19, we perform TL and retrain this model 

on the selected datasets, and apply the CNN activation on the average pool layer. On this layer, we 

obtain a feature vector of dimension 1 × 2048, denoted by �(��). Both training and testing vectors 

proceed for the next features fusion process. The modified architecture of Inception V3 is shown in 

Figure 3. In this figure, it is shown that the last three layers are removed before being retrained on 

the selected datasets for this work. 

 

Figure 2. Modified VGG-19 architecture for features extraction. 

 

Figure 3. Modified Inceptionv3 architecture for features extraction. 

4.2. Features Fusion 

The fusion of multiple features in one matrix is the latest research area of pattern recognition. 

The primary purpose of features fusion is to obtain a stronger feature vector for classification. From 

the latest research, it is noticed that the fusion process improves the overall accuracy, but on the other 

side, its main disadvantage is high computational time (sec). However, our usual priority is to 

improve the classification accuracy. For this purpose, we implement a new Parallel Maximum 

Covariance (PMC) approach for features fusion. In this approach, we need to equalize the lengths of 

both extracted feature vectors. Later, we find the maximum covariance for fusion in a single matrix. 

Consider two deep learning feature vectors �(��) and �(��) of dimensions � × � and � × �, 

where � denotes the number of images, � indicates VGG19 deep learning feature vector length of 

� × 4096 and � denotes Inception V3 feature vector of dimension � × 2048, respectively. To make 
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the length of vectors equal, we first find out the maximum length vector and perform average value 

padding. The average feature is calculated from a higher length vector. Let � be an arbitrary unit 

column � vector presenting a pattern in �� field, and � indicates a random unit column vector 

representing a pattern in the �� field, respectively. The time series projections on row vectors are 

defined as follows: 

�� = ��  
� �(��) (7) 

�� = ��  
� �(��) (8) 

For optimal solutions �� and ��, maximize their covariance as follows: 

�̃ = ���[��, ��] (9) 

�̃ = ������  
� �(��), ��  

� �(��)� (10) 

�̃ =
1

� − 1
���  

� �(��)���  
� �(��)�� (11) 

�̃ = ��������
��� (12) 

�����
=

1

� − 1
��(��) �(��)�

� (13) 

where, �����
 is the covariance value among �� and �� whose �th and �th features are ��(�) and 

��(�). Hence, the feature pair � and � of maximum covariance �����
 is saved in the final fused 

vector. However, it is possible that few of the feature pairs are redundant. This process is continued 

until all pairs are compared with each other. In the end, a fused vector is obtained, denoted by �(��) 

of dimensions � × �, where � denotes the feature-length, which varies according to the selected 

features. In this work, the fused feature-length is � × 3294 for the Caltech-101 dataset, � × 2981 

for the Birds dataset, and � × 3089 for the Butterflies dataset. 

4.3. Feature Selection 

Feature selection is an exciting research topic in machine learning (ML) nowadays, and shows 

significant improvement in the classification accuracy. In this work, we propose a new technique for 

feature selection, namely, Multi Logistic Regression controlled Entropy-Variances (MRcEV). It 

exploits a partial derivative-based activation function to remove the irrelevant features, and the 

remaining robust features are passed to the entropy-variances function. Through the latter, a new 

vector is obtained, which only contains positive values. Finally, this vector is presented to the ESD 

fitness function, and the validity of the proposed technique is determined. Mathematically, the 

formulation is given as: 

For a given dataset, a fused vector is represented as Δ = ��(��), �(��)�
����

�
 having � sample 

images, where �(��) denotes the fused feature vector, which is utilized as the input, and �(��) ∈ ℝ�. 

The �(��) indicates the corresponding labels and defined as �(��) ∈ ℝ. The probability among �(��) 

for the class � is then computed as follows: 

���(��)|�(��)� =
exp���

(��)
�

∑ ������

(��)
�

�
���

 (14) 

��
(��)

= � �����
(��)

�

���

 (15) 

The parameter of logistic regression �� = (��, ��, … , ��) is obtained by minimizing the negative 

likelihood of features. If features are independent, then a multinomial distribution is computed as 

follows: 



Sustainability 2020, 12, 5037 8 of 21 

�� = − � � ��
(��)

log  ���(��)|�(��)�

�

���

�

��

 (16) 

To get a sparse model, a regularization parameter �� is added to negative log-likelihood. The 

modified MLR criteria for the active features are defined as follows: 

� = �� + ����  (17) 

�� = � |��|

�

���

 (18) 

where r� is regularization parameter. 

At the minimum value of �, the partial derivative with respect to �� is formulated as follows: 

⎩
⎨

⎧�
���

���

� = ��    ��   |��| > 0

�
���

���

� < ��    ��  |��| = 0 

 (19) 

This expression shows that if the partial derivative of �� with respect to �� is less then ��, then 

that feature value is set to zero, and removed from the final vector. Later, entropy-variances-based 

function is implemented to obtain a more robust vector. Mathematically, this function is formulated 

as: 

����� = − � ������ log ��(��)

���

���

 (20) 

������ =
∑(��� − ��)

� − 1
 (21) 

���(��) = − �
ln ������

���
� + ������

�� ������
�

+ ������� + �� ������
�

− �������
� (22) 

where, ����� is an entropy function, ������ denotes variance of the selected vector, and ���(��) 

represents the final entropy-variances function. The selected features are passed to this function to 

get a clear difference among all the features based on the classification classes. This proposed 

selection technique picks almost 50% to 60% robust features from the fused feature vector. The 

selected features are finally verified through the ESD classifier [39]. In the ensemble learning 

classifier, the subspace discriminant method is used. The proposed system’s predicted results are 

shown in Figures 4–6. 

 

Figure 4. Proposed system’s predicted labeled output for the Caltech-101 dataset. 
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Figure 5. Proposed system’s predicted labeled output for the Birds dataset. 

 

Figure 6. Proposed system’s predicted labeled output for the Butterflies dataset. 

5. Results 

This section presents the simulation results with detailed numerical analysis and visual plots. 

As stated above, in this work, we utilize four publicly available datasets for evaluation of the 

proposed framework, including Caltech-101, Birds database, Butterflies database, and CIFAR-100 

[40]. A brief description of the selected datasets is given in Table 1, where we have highlighted the 

total number of images, their specific classes (categories), and the number of images that each class 

comprises. As understandable, the Caltech-101 and CIFAR-100 are relatively more challenging for 

object classification. For validation, the 60:40 approach is employed along with ten-fold cross-

validation. We used various classifiers for the experimental process, such as Ensemble learning, SVM, 

KNN, and Linear Discriminant classifiers. The performance of each classifier is validated using three 

essential measures, including accuracy, FNR, and computational time. All the simulations are 

conducted in MATLAB2019a installed on a 2.4 Gigahertz Corei7 processor with 16 Gigabytes of 

RAM, 128 SSD, and a Radeon R7 graphic card. 

Table 1. Numerical description of selected datasets. 

Image Database Sample Classes Total Samples Min-Max 

Caltech [41] 101 9144 31~800 

Birds [42] 6 600 100~100 

Butterflies [43] 7 619 42~134 

CIFAR-100 [40] 100 
1000 (Testing) 

50,000 (Training) 
100 
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5.1. Caltech-101 Dataset Results 

The results achieved on the Caltech-101 dataset are presented in three different ways: In the first 

method, both VGG19- and inceptionV3-based deep features are fused using a serial-based method, 

and the classification is performed without features selection. In the second method, the fusion of 

deep features is conducted using the proposed fusion approach, as presented in Section 4.2. In the 

third method, the feature selection is performed on the proposed fused vector, followed by 

classification. The results are shown in Table 2, where it is evident that the ESD classifier yields the 

best results against the rest for each method. However, it may be noticed that a massive difference 

exists among the accuracies achieved using M1 and the other methods. For example, consider the 

case of the ESD classifier, where the achieved accuracy rises from 79% to 90.8% upon using the 

proposed fusion method, which further jumps to 95.5% once the proposed selection method is 

applied. Additionally, observe that the computational time drops by around 74% between M1 and 

the P-selection method, making the latter more superior to the other two methods. The accuracy of 

the P-Selection method may also be verified through Figure 7. The effectiveness of the proposed P-

Fusion and P-Selection methods while using other classifiers is also evident in Table 2. Observe that 

the best accuracies are provided by the P-Selection method irrespective of the classifier, while the P-

Fusion stands second, both in terms of accuracy and computational time. Overall, the proposed 

selection method shows significant performance on ESD classifier for the Caltech-101 dataset. 

Table 2. Proposed classification results using the Caltech-101 dataset. M1 represents simple serial-

based fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection 

represents the proposed selection method results. Where, ESD described ensemble subspace 

discriminant, LDA represent linear discriminant analysis, LSVM denotes linear support vector 

machine, QSVM denotes quadratic SVM, and Co-KNN describe cosine K-Nearest Neighbor. 

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s) 

ESD 

 - - 79.0 21.0 180.00 

-  - 90.8 9.2 93.70 

- -  95.5 4.5 47.00 

ES-KNN 

 - - 75.8 24.2 665.80 

-  - 80.1 19.9 286.45 

- -  85.3 14.7 191.27 

LDA 

 - - 75.0 25.0 597.84 

-  - 81.8 18.2 127.83 

- -  94.4 5.5 106.57 

L-SVM 

 - - 76.0 24.0 9723.70 

-  - 88.0 12.0 3154.70 

- -  91.6 8.6 2045.00 

Q-SVM 

 - - 77.2 22.8 1896.00 

-  - 87.6 12.4 1341.00 

- -  92.0 8.0 753.57 

Cu-SVM 

 - - 77.9 22.1 7493.00 

-  - 87.7 12.3 3647.70 

- -  92.3 7.7 1889.50 

F-KNN 

 - - 75.7 24.3 152.06 

-  - 84.9 15.1 96.96 

- -  89.9 10.1 71.57 

M-KNN 

 - - 74.8 25.2 57.95 

-  - 84.5 15.5 47.44 

- -  89.6 10.4 33.90 

W-KNN 
 - - 76.8 23.2 228.19 

-  - 85.7 14.3 187.50 
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- -  90.5 9.5 105.87 

Co-KNN 

 - - 52.4 21.0 61.35 

-  - 87.6 12.4 48.76 

- -  92.8 7.2 23.83 

 

Figure 7. Confusion matrix of the proposed selection accuracy on ESD classifier. 

5.2. Birds Dataset Results 

The classification results using the Birds dataset are presented in this section. As before, three 

methods are applied for the evaluation, and all the results obtained previously hold true in this case 

as well. Table 3 summarizes these results, and verifies that the ESD classifier yields the best results 

for all the three methods when compared with various classifiers. Irrespective of the classifier used, 

it may also be verified that the proposed fusion method outperforms the M1 both in terms of the 

achieved accuracies and computational time, while the proposed selection method even surpasses 

the fusion method in both metrics. Its accuracy is also confirmed by Figure 8. Due to the simplicity in 

the dataset, the accuracies achieved by the three methods are relatively comparable, unlike in the case 

of Caltech-101, where the proposed methods outperformed the M1 by a considerable margin. The 

computational time, however, gives the proposed methods a substantial edge on the equivalent 

techniques. 

Table 3. Proposed classification results using the Birds dataset. M1 represents simple serial-based 

fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection 

represents the proposed selection method results. 

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s) 

ESD 

 - - 99.0 15.5 85.09 

-  - 99.5 1.0 68.31 

- -  100.0 0.0 42.45 

E-S-KNN 

 - - 96.7 3.3 45.09 

-  - 97.6 2.4 38.31 

- -  97.4 2.6 25.54 

LD 

 - - 98.0 2.0 48.39 

-  - 99.0 1.0 31.11 

- -  100.0 0.0 23.92 
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L-SVM 

 - - 97.9 2.1 45.36 

-  - 99.0 0.5 20.00 

- -  100.0 0.0 17.66 

Q-SVM 

 - - 84.5 1.0 51.03 

-  - 99.3 0.7 24.06 

- -  100.0 0.0 15.25 

Cub-SVM  - - 99.0 1.0 54.59 

 -  - 99.5 0.5 43.32 

 - -  100.0 0.0 21.29 

F-KNN 

 - - 96.2 3.8 41.47 

-  - 97.4 2.6 19.58 

- -  99.5 0.5 14.89 

M-KNN 

 - - 97.6 2.4 32.30 

-  - 98.8 1.2 17.31 

- -  100.0 0.0 15.82 

W-KNN 

 - - 97.9 2.1 23.96 

-  - 99.3 0.7 13.10 

- -  100.0 0.0 9.16 

Cos-KNN 

 - - 95.7 4.3 31.08 

-  - 99.0 1.0 22.00 

- -  99.8 0.2 16.11 

 

Figure 8. Confusion matrix for Birds dataset using proposed selection method on ESD classifier. 

5.3. Butterflies Dataset 

The results for the Butterflies dataset are given in Table 4. It may be observed that the ESD 

classifier gives better outcomes for all three feature methods. For M1, the ESD classifier achieves an 

accuracy of 95.1%, which is improved to 95.6% after using the P-Fusion method. The computational 

time of M1 is 46.05 (sec), but after P-Fusion, the time is reduced to 31.95 (sec). In comparison, the P-

Selection method achieves an accuracy of 98%, which is better than the M1 and P-Fusion. Moreover, 

the computational time of this method is 19.53 (sec), which is also the minimum. The performance of 

the ESD classifier for the P-Selection method may also be verified through Figure 9. The performance 

of the ESD classifier is also compared with a few other well-known techniques such as SVM, KNN, 

and LDA, as given in Table 4. From the results, it can be clearly seen that all the classifiers provide 
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better accuracy on the P-Selection method. Moreover, it is also concluded that W-KNN performs 

better in terms of computational time. 

Table 4. Proposed classification results using the Butterflies dataset. M1 represents simple serial-

based fusion and classification, P-Fusion represents the proposed fusion approach, and P-Selection 

represents the proposed selection method results. 

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (s) 

ESD 

 - - 95.1 9.4 46.05 

-  - 95.6 5.9 31.95 

- -  98.0 2.0 19.53 

E-S-KNN 

 - - 85.7 14.3 28.56 

-  - 87.7 12.3 18.27 

- -  88.7 11.3 13.08 

LD 

 - - 70.9 29.1 48.44 

-  - 94.1 4.6 22.42 

- -  96.6 3.4 17.01 

L-SVM 

 - - 91.6 8.4 40.02 

-  - 94.6 5.4 29.65 

- -  96.6 3.4 16.72 

Q-SVM 

 - - 94.1 5.9 39.46 

-  - 94.1 5.9 24.58 

- -  96.6 3.4 18.80 

Cub-SVM 

 - - 90.6 4.9 44.23 

-  - 93.6 6.4 29.41 

- -  97.0 3.0 21.51 

F-KNN 

 - - 85.7 14.3 30.82 

-  - 89.2 10.8 18.70 

- -  94.1 5.9 13.79 

M-KNN 

 - - 82.3 19.7 29.29 

-  - 85.2 14.8 18.30 

- -  92.1 7.9 10.83 

W-KNN 

 - - 85.2 14.8 15.06 

-  - 87.2 12.8 14.26 

- -  94.6 5.4 10.12 

Cos-KNN 

 - - 81.8 18.2 16.02 

-  - 85.7 14.3 14.54 

- -  94.1 5.9 10.55 
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Figure 9. Confusion matrix for Butterflies dataset. 

5.4. CIFAR-100 Dataset 

This dataset consists of 100 object classes such as bus, chair, table, train, bed, and each class 

consists of 100 samples, making this dataset more challenging. There are 50,000 images available for 

the training of this dataset, while there are 10,000 images for testing. In this work, we utilize this 

dataset for the evaluation of the proposed technique. The results are given in Tables 4 and 5. In Table 

4, the proposed training results are provided, which show the maximum accuracy of 69.76% and an 

error rate of 30.24%. For the simple fusion method (M1), the noted accuracy is 51.34%, and the 

computation time is 608 (min). After employing the proposed fusion, it takes the time of 524 (min) 

for execution, and achieved an improved accuracy of 63.97%. The proposed P-Selection method 

further improves the accuracy and reached 69.76%, whereas the execution time is also minimized to 

374 (min). The testing results are given in Table 6. The maximum achieved accuracy of the testing 

process is 68.80% using the P-Selection method and ESD classifier. The accuracy is not impressive, 

but in the view of dataset complexity, it is acceptable. The accuracy of the ESD using the P-Selection 

method can be further verified through Figure 10 (confusion matrix). 

Table 5. Proposed training results on CIFAR-100 dataset. 

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (min) 

ESD 

 - - 51.34 48.66 608 

-  - 63.97 36.03 524 

- -  69.76 30.24 374 

Table 6. Proposed testing results on CIFAR-100 dataset. 

Classifier M1 P-Fusion P-Selection Accuracy (%) FNR (%) Time (min) 

ESD 

 - - 47.84 52.16 258 

-  - 62.34 37.66 204 

- -  68.80 31.2 111 
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Figure 10. Confusion matrix of CIFAR-100 dataset for proposed P-Selection method. 

5.5. Analysis and Comparison with Existing Techniques 

A comprehensive analysis and comparison with existing techniques are presented in this section 

to examine the authenticity of the proposed method results. The proposed fusion and robust feature 

selection methods give a significant performance of 95.5%, 100%, 98%, and 68.70%, respectively, for 

ESD classifier on the selected datasets. Results can be seen in Tables 2–4. However, it is essential to 

examine the accuracy of ESD against each classifier based on a detailed statistical analysis. For 

Caltech-101 dataset, we run the proposed algorithm 500 times for each method and get two 

accuracies: average (76.3%, 87.9%, and 92.7%), and maximum (79%, 90.8%, and 95.5%). These 

accuracies are also plotted in Figure 11a. In this figure, it is shown that a minor change is occurring 

in the accuracy after 500 iterations. For the Birds database, two accuracies are also obtained: minimum 

(97.2%, 98.9%, and 99.4%) and maximum (99%, 99.5%, and 100%). These values are also plotted in 

Figure 11b. In this figure, it can be observed that the change in M1 is a bit higher as compared to P-

Fusion and P-Selection. In the end, the statistical analysis is conducted for the Butterflies dataset, as 

shown in Figure 11c. This figure shows a slight change in the accuracy of each method. 

 

Figure 11. Statistical analysis of ESD classifier using all three methods. Where (a) represent M1 

method, (b) denotes P-Fusion method, and (c) denotes P-Selection method, respectively. 

We performed the classification using other deep neural nets such as VGG16, AlexNet, 

ResNet50, and ResNet101 to compare the proposed scheme classification performance. The results 

are computed from the last two layers, such as Vgg16 (FC7 and FC8), AlexNet (FC7 and FC8), and 

ResNet (Average Pool and FC Layer). The features extracted from these layers are fused using the 

proposed approach and later perform the selection technique. For the classification of these neural 

nets, we used the original classifier named Softmax. Results are given in Tables 7 and 8 below for 

Caltech-101 and CIFAR-100 datasets. In these tables, we noticed that the P-Fusion and P-Selection 
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techniques are performed well using the proposed scheme. A brief comparison with existing 

techniques is also presented in Table 9. From this table, we computed the results on different 

training/testing ratios and get a variety of results. Based on the results, it is show that the increase in 

a training ratio minimizes the error rate. For example, in this table, accuracy of CIFAR-100 is 65.46%, 

68.80%, 73.16%, and 77.28% for training/testing ratio 50:50, 60:40, 70:30, and 80:20, respectively. The 

minimum error rate is 22.72% for 80:30 approach whereas for standard approach (70:30), error rate is 

26.84%. From this table, it is evident that the proposed method gives improved accuracy. 

Table 7. Classification results on Caltech-101 dataset using different neural nets. 

Method 
Features Measures 

P-Fusion P-Selection Accuracy (%) FNR (%) 

AlexNet 
 - 86.70 13.30 

-  90.24 9.76 

Vgg16 
 - 85.16 14.84 

-  89.24 10.76 

ResNet50 
 - 88.57 11.43 

-  92.36 7.64 

ResNet101 
 - 89.96 10.04 

-  92.83 7.17 

Proposed 
 - 90.80 9.20 

-  95.50 4.50 

Table 8. Classification results on CIFAR-100 dataset using different neural nets. 

Method 
Features Measures 

P-Fusion P-Selection Accuracy (%) FNR (%) 

AlexNet 
 - 61.29 38.71 

-  65.82 34.18 

Vgg16 
 - 60.90 39.10 

-  64.06 35.94 

ResNet50 
 - 61.82 38.18 

-  65.71 34.29 

ResNet101 
 - 61.98 38.02 

-  66.25 33.75 

Proposed 
 - 62.34 38.71 

-  68.80 34.18 

Table 9. Comparison of proposed accuracy with recent techniques. MLFFS = Multi-Layers Features 

Fusion and Selection. 

Reference Technique Dataset Accuracy (%) 

Roshan et al. [25] Fine-tuning on top layers Caltech-101 91.66 

Jongbin et al. [26] Discrete Fourier transform Caltech-101 93.60 

Qun et al. [27] Memory banks-based unsupervised learning Caltech-101 91.00 

Qing et al. [28] PCA-based reduction on fused features Caltech-101 92.54 

Xueliang et al. [29] A fusion of mid-level layers-based features Caltech-101 92.20 

Rashid et al. [8]  Fusion of SIFT and CNN features Caltech-101 89.70 

Svetlana [43] Local affine parts-based approach Butterflies 90.40 

Ma et al. [44] Genetic CNN designer approach (70:30) CIFAR-100 66.77 

Alom et al. [45] 

IRRCNN (70:30) CIFAR-100 72.78 

IRCNN (70:30) CIFAR-100 71.76 

EIN (70:30) CIFAR-100 68.29 

EIRN (70:30) CIFAR-100 69.22 

Proposed MLFFS Butterflies 98.00 

Proposed MLFFS Birds 100% 

Proposed MLFFS Caltech-101 95.5 
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Proposed MLFFS (50:50) CIFAR-100 65.46 

- MLFFS (60:40) CIFAR-100 68.80 

- MLFFS (70:30) CIFAR-100 73.16 

- MLFFS (80:20) CIFAR-100 77.28 

6. Conclusions 

A new multi-layer deep features fusion and selection-based method for object classification is 

presented in this work. The major contribution of this work lies in the fusion of deep learning models, 

and then selection of the robust features for final classification. Three core steps are involved in the 

proposed system: Feature extraction using transfer learning, features fusion of two different deep 

learning models (VGG19 and Inception V3) using PMC, and selection of the robust features using 

Multi Logistic Regression controlled Entropy-Variances (MRcEV) method. An ESDA classifier is used 

to validate the performance of MRcEV. We utilize three datasets for the experimental process and 

demonstrate an improved achieved accuracy. From the results, we conclude that the proposed 

method is useful for large, as well as small datasets. The fusion of two different deep learning features 

shows an impact on classification accuracy. Additionally, the selection of robust features shows an 

effect on both computational time and classification accuracy. The main limitation of the proposed 

method is the quality of features—by using low-quality images, it is not possible to get strong 

features. In the future, this problem will be rectified through contrast, stretching deep learning 

architecture. Moreover, for the improvement of experimental process, the Caltech-256 and CIFAR-

100 datasets will be considered. 
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Appendix A 

Table A1. Detailed description of VGG19 pre-trained CNN model. 

Sr No. Name Type Activation 
Learnable 

Total Learnables 
Weights Bias 

1 Input Image Input 224 × 224 × 3 - - - 

2 conv1_1 Convolution 224 × 224 × 64 3 × 3 × 3 × 64 1 × 1 × 64 1792 

3 relu1_1 ReLU 224 × 224 × 64 - - - 

4 conv1_2 Convolution 224 × 224 × 64 3 × 3 × 64 × 64 1 × 1 × 64 36928 

5 relu1_2 ReLU 224 × 224 × 64 - - - 

6 pool1 Max Pooling 112 × 112 × 64 - - - 

7 conv2_1 Convolution 112 × 112 × 128 3 × 3 × 64 × 128 1 × 1 × 128 73856 

8 relu2_1 ReLU 112 × 112 × 128 - - - 

9 conv2_2 Convolution 112 × 112 × 128 3 × 3 × 128 × 128 1 × 1 × 128 147584 

10 relu2_2 ReLU 112 × 112 × 128 - - - 

11 pool2 Max Pooling 56 × 56 × 128 - - - 

12 conv3_1 Convolution 56 × 56 × 256 3 × 3 × 128 × 256 1 × 1 × 256 295168 

13 relu3_1 ReLU 56 × 56 × 256 - - - 

14 conv3_2 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590080 

15 relu3_2 ReLU 56 × 56 × 256 - - - 

16 conv3_3 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590080 

17 relu3_3 ReLU 56 × 56 × 256 - - - 

18 conv3_4 Convolution 56 × 56 × 256 3 × 3 × 256 × 256 1 × 1 × 256 590080 

19 relu3_4 ReLU 56 × 56 × 256 - - - 

20 pool3 Max Pooling 28 × 28 × 256 - - - 
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21 conv4_1 Convolution 28 × 28 × 512 3 × 3 × 256 × 512 1 × 1 × 512 1180160 

22 relu4_1 ReLU 28 × 28 × 512 - - - 

23 conv4_2 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

24 relu4_2 ReLU 28 × 28 × 512 - - - 

25 conv4_3 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

26 relu4_3 ReLU 28 × 28 × 512 - - - 

27 conv4_4 Convolution 28 × 28 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

28 relu4_4 ReLU 28 × 28 × 512 - - - 

29 pool4 Max Pooling 14 × 14 × 512 - - - 

30 conv5_1 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

31 relu5_1 ReLU 14 × 14 × 512 - - - 

32 conv5_2 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

33 relu5_2 ReLU 14 × 14 × 512 - - - 

34 conv5_3 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

35 relu5_3 ReLU 14 × 14 × 512 - - - 

36 conv5_4 Convolution 14 × 14 × 512 3 × 3 × 512 × 512 1 × 1 × 512 2359808 

37 relu5_4 ReLU 14 × 14 × 512 - - - 

38 pool5 Max Pooling 7 × 7 × 512 - - - 

39 fc6 Fully Connected 1 × 1 × 4096 4096 × 25,088 4096 × 1 102764544 

40 relu6 ReLU 1 × 1 × 4096 - - - 

41 drop6 Dropout 1 × 1 × 4096 - - - 

42 fc7 Fully Connected 1 × 1 × 4096 4096 × 4096 4096 × 1 16781312 

43 relu7 ReLU 1 × 1 × 4096 - - - 

44 drop7 Dropout 1 × 1 × 4096 - - - 

45 fc8 Fully Connected 1 × 1 × 1000 1000 × 4096 1000 × 1 4097000 

46 Prob Softmax 1 × 1 × 1000 - - - 

47 Output Classification   - - - 

Table A2. Detailed description of Inception V3 pre-trained CNN model. 

S/N Name Type Activation 
Learnable 

Weights Bias Offset Scale 

1 input_1 Image Input 299 × 299 × 3 - - - - 

2 scaling Scaling 299 × 299 × 3 - - - - 

3 conv2d_1 Convolution  
149 × 149 × 

32 
[3,3,3,32] [1,1,32] - - 

4 batch_normalization_1 Batch Normalization 
149 × 149 × 

32 
- - 1 × 1 × 32 1 × 1 × 32 

5 activation_1_relu ReLU 
149 × 149 × 

32 
- - - - 

6 conv2d_2 Convolution 
147 × 147 × 

32 
[3,3,32,32] [1,1,32] - - 

7 batch_normalization_2 Batch Normalization 
147 × 147 × 

32 
- - [1,1,32] [1,1,32] 

8 activation_2_relu ReLU 
147 × 147 × 

32 
- - - - 

9 conv2d_3 Convolution 
147 × 147 × 

64 
[3,3,32,64] [1,1,64] - - 

10 batch_normalization_3 Batch Normalization 
147 × 147 × 

64 
- - [1,1,64] [1,1,64] 

11 activation_3_relu ReLU 
147 × 147 × 

64 
- - - - 

12 max_pooling2d_1 Max Pooling 73 × 73 × 64 - - - - 

13 conv2d_4 Convolution 73 × 73 × 80 [1,1,64,80] [1,1,80] - - 

14 batch_normalization_4 Batch Normalization 73 × 73 × 80 - - [1,1,80] [1,1,80] 

15 activation_4_relu ReLU 73 × 73 × 80 - - - - 

16 conv2d_5 Convolution 71 × 71 × 192 [3,3,80,192] [1,1,192] - - 

17 batch_normalization_5 Batch Normalization 71 × 71 × 192 - - [1,1,192] [1,1,192] 

18 activation_5_relu ReLU 71 × 71 × 192 - - - - 

19 max_pooling2d_2 Max Pooling 35 × 35 × 192 - - - - 

20 conv2d_9 Convolution 35 × 35 × 64 [1,1,192,64] [1,1,64] - - 

21 batch_normalization_9 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64] 
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22 activation_9_relu ReLU 35 × 35 × 64 - - - - 

23 conv2d_7 Convolution 35 × 35 × 48 [1,1,192,48] [1,1,48] - - 

24 conv2d_10 Convolution 35 × 35 × 96 [3,3,64,96] [1,1,96] - - 

25 batch_normalization_7 Batch Normalization 35 × 35 × 48 - - [1,1,48] [1,1,48] 

26 batch_normalization_10 Batch Normalization 35 × 35 × 96 - - [1,1,96] [1,1,96] 

27 activation_7_relu ReLU 35 × 35 × 48 - - - - 

28 activation_10_relu ReLU 35 × 35 × 96 - - - - 

29 average_pooling2d_1 Avg Pooling 35 × 35 × 192 - - - - 

30 conv2d_6 Convolution 35 × 35 × 64 [1,1,192,64] [1,1,64] - - 

31 conv2d_8 Convolution 35 × 35 × 64 [5,5,48,64] [1,1,64] - - 

32 conv2d_11 Convolution 35 × 35 × 92 [3,3,96,96] [1,1,96] - - 

33 conv2d_12 Convolution 35 × 35 × 32 [1,1,192,32] [1,1,32] - - 

34 batch_normalization_6 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64] 

35 batch_normalization_8 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64] 

36 batch_normalization_11 Batch Normalization 35 × 35 × 96 - - [1,1,96] [1,1,96] 

37 batch_normalization_12 Batch Normalization 35 × 35 × 32 - - [1,1,32] [1,1,32] 

38 activation_6_relu ReLU 35 × 35 × 64 - - - - 

39 activation_8_relu ReLU 35 × 35 × 64 - - - - 

40 activation_11_relu ReLU 35 × 35 × 96 - - - - 

41 activation_12_relu ReLU 35 × 35 × 32 - - - - 

42 mixed0 Depth Concat 35 × 35 × 256 - - - - 

43 conv2d_16 Convolution 35 × 35 × 64 [1,1,256,64] [1,1,64] - - 

44 batch_normalization_16 Batch Normalization 35 × 35 × 64 - - [1,1,64] [1,1,64] 

45 activation_16_relu Fully Connected 35 × 35 × 64 - - - - 

46 conv2d_14 Convolution 35 × 35 × 48 [1,1,256,48] [1,1,48] - - 

47 conv2d_17 Convolution 35 × 35 × 96 [3,3,64,96] [1,1,96] - - 

-- -- -- -- -- -- -- -- 

307 batch_normalization_94 Batch Normalization 8 × 8 × 192 - - [1,1,192] [1,1,192] 

308 activation_86_relu ReLU 8 × 8 × 320 - - - - 

309 mixed9_1 Depth Concat 8 × 8 × 768 - - - - 

310 concatenate_2 Depth Concat 8 × 8 × 768 - - - - 

311 activation_94_relu ReLU 8 × 8 × 192 - - - - 

312 mixed10 Depth Concat 8 × 8 × 2048 - - - - 

313 avg_pool Avg Pooling 1 × 1 × 2048 - - - - 

314 predictions Fully Connected 1 × 1 × 1000 1000 × 2048 1000 × 1 - - 

315 predictions_softmax Softmax 1 × 1 × 1000 - - - - 

316 
classification  

layer_predictions 

Classification 

Output 
 - - - - 
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