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Abstract: Millions of people fall ill with malaria every year—most of them are located in sub-Saharan
Africa. The weight of the burden of malaria on a society is determined by a complex interplay
of environmental and social factors, including poverty, awareness and education, among others.
A substantial share of the affected population is characterized by a general lack of anticipation and
coping capacities, which renders them particularly vulnerable to the disease and its adverse side effects.
This work aims at identifying interdependencies and feedback mechanisms in the malaria social
vulnerability system and their variations in space by combining concepts, methods and tools from
Climate Change Adaptation, Spatial Analysis, and Statistics and System Dynamics. The developed
workflow is applied to a selected set of social, economic and biological vulnerability indicators
covering five East-African Nations. As the study areas’ local conditions vary in a multitude of aspects,
the social vulnerability system is assumed to vary accordingly throughout space. The study areas’
spatial entities were therefore aggregated into three system-regions using correlation-based clustering.
Their respective correlation structures are displayed as Causal Loop Diagrams (CLDs). While the
three resulting CLDs do not necessarily display causal relations (as the set of social vulnerability
indicators are likely linked through third variables and parts of the data are proxies), they give a good
overview of the data, can be used as basis for discussions in participatory settings and can potentially
enhance the understanding the malaria vulnerability system.

Keywords: malaria; vulnerability; integrated spatial modeling; East Africa; system dynamics; geons
concept; relationships and dependencies; system relations

1. Introduction

When comparing the foreword of 2015′s World Malaria Report to 2018′s, the reader may notice
a certain shift in the undertone from enthusiastic towards alarmed. While 2015′s World Health
Organization (WHO) General Director Dr. Margaret Chan speaks of a dramatic decline in the
malaria burden, the achievement of the Millennium Development Goals, extraordinary achievements,
impressive gains and effective prevention and treatment tools [1], 2018′s General Director Dr. Tedros
Adhanom Ghebreyesus warns of a decline of the global malaria response, the loss of precious gains,
reported increases in malaria cases, inadequate levels of investment in malaria control, and insufficient
levels of access to and uptake of lifesaving malaria tools and interventions [2]. These words indicate
that despite the large scale effort put into gaining control over malaria, achievements are not naturally
of a long-lasting nature and instead require a high maintenance effort. The stagnation and upsurge in
malaria on a global scale are closely related to developments in sub-Saharan Africa, where approximately
92% of malaria cases and 93% of malaria-attributable deaths in 2017 were recorded [2]. Though the
malaria incidence rate in the African region was reduced between 2010 and 2017, since 2015, the rate of
change has been stagnating [2], and some areas are even experiencing a resurgence [3]. These variations
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are a result of changing environmental, socioeconomic, behavioral or biological conditions that are
embedded in a complex web of interrelations and feedback, including macro- [4–6] and micro- [7]
climatic changes and variability, deforestation and population growth [3], human entry into formerly
uninhabited land [8], the reduction of malaria control activities [9], human migration [10] and drug
resistance [11].

1.1. Risk and Vulnerability Assessments

To maintain valuable achievements through informed decision-making, the structure of the
malaria risk system with its vulnerability components and its interrelations must be unraveled.
Carrying out comprehensive malaria risk and vulnerability assessments plays an integrative role
in disclosing such interconnections. However, in an increasingly complex world, the expectations
towards risk assessments grow beyond its recent capabilities. The majority of the published articles
and models on the assessment of malaria vulnerability and risk in East Africa are based on empirical
observations and indicators. These contributions are aimed at the description of a process rather than
its explanation [12]. The application of such models is limited to conditions that are identical to the
conditions that applied when the empirical observations were made [13] and ignore significant effects
associated with dynamic feedback.

In [14], a vulnerability framework was developed to guide the assessment of social vulnerability
to water-related vector-borne diseases in East Africa. The authors focused on conditions that make
societies particularly vulnerable to malaria. The objective of their spatially-explicit assessment was the
identification of homogenous spatial regions of risk, applying the geons approach. Geons are based on
a regionalization technique used to represent and analyze latent spatial phenomena by reallocating
space from arbitrary units, like administrative boundaries, to more homogenous units of minimized
inner variance [15,16]. Based on the vulnerability framework developed in [14,17], the levels of social
vulnerability to malaria in Rwanda were analyzed by integrating a set of weighted vulnerability
indicators, also applying the geons approach, to identify regions of homogenous malaria vulnerability.
This reallocation of spatial entities into regions of homogenous social vulnerability levels overcomes the
limitations tied to using administrative boundaries for modeling trans-boundary phenomena. A year
earlier, [18] had applied an integrated composite indicator approach for assessing social vulnerability
to malaria in Rwanda, independent of the spatial distribution of malaria, based on a purely statistical
approach. They found their results to be salient for public health policy- and decision-makers in
malaria control but suggested that future research should be focused on spatially explicit vulnerability
and risk assessments.

The key challenges in modeling social vulnerability, be it to malaria or any other hazard, encompass
the availability of (reliable) data [19] and the identification of all relevant system elements and their
interrelations, due to their inherent complexities and range of subjects [20,21]. Further complications
arise from the lack of consistent quantification strategies [22]—especially with regard to factors
of non-monetary value [23], the deep uncertainty about future developments among almost all
dimensions [24,25] and the inability to verify results [26].

1.2. Objective of This Article

Contrary to the objective of process description, the herein-presented paper aims at the qualitative
analysis of the malaria system structures. The study in [27] used a system approach to conduct
an integrated risk and vulnerability assessment of malaria in East Africa. They assessed the interplay
of biophysical (especially climate change-related) and socioeconomic factors to construct a causal loop
model and, ultimately, a Bayesian Belief Network (BBN) model, based on results from a cross-impact
multiplication method (CIMM) exercise with experts from the field. They found that their integrated
assessment framework can be implemented using BBN and can be applied at the community level using
a mixture of qualitative, quantitative and stakeholder engagement methods. However, they note the
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importance of acknowledging that climate change impacts vary in their spatial manifestations and that
adaptation responses must therefore be tailored towards the spatially varying vulnerability profiles.

With increasing manifestations of climate change impacts, operational risk assessments become
increasingly important. Therefore, tools and methods are needed to better understand, systemize and
prioritize the factors that drive risk. An existing analytical tool are so-called impact chains [28–30],
which are used in the context of climate risk assessments. Their structure represents the main
cause–effect chains that lead to a specific climate risk, including climate signals and intermediate
impacts, which interact with the vulnerability of exposed elements. To date, impact chains have
been developed based on expert judgement, by a combination of literature-based preparatory work
and subsequent refinement in participatory workshops with stakeholders and experts. To date,
no modeling approach exists that can model the risk along the impact chains in a more interconnected
and dynamic manner. To refine this approach in future assessments, statistical methods that can feed
into qualitative discussions through quantitative insights into available (spatial) data and their inner
dynamics are required.

Overall, this paper aims to extend the static assessment approach of the solely expert-based
impact chain model, by integrating system dynamics aspects, which enable the identification of
structures and “patterns” within the social malaria vulnerability system. The investigation of structural
discrepancies across space is carried out through the aggregation of geons into clusters of similar
systemic structures. This aspiration is implemented through the utilization of hierarchical clustering
algorithms in combination with correlation-based distance measures. This combination is used in the
field of gene expression analysis for its strength to cluster multivariate, noisy data into groups of similar
“expression patterns” or profiles. Furthermore, the geon approach is enhanced by identifying a typology
that enables the presentation of their structural characteristics. This is done in a mixed-methods
approach, by combining statistical methods with spatial analysis and expert judgments.

2. Materials and Methods

2.1. Study Region

The five nations under investigation—Tanzania, Rwanda, Kenya, Burundi and Uganda—together
form the East African Community (as of when the study was conducted), an organization which
has the supra-national capability to implement scientific findings across their national borders [31].
This capability is especially valuable, as malaria also does not halt at national borders. The greater
share of its inhabitants populate the East African Highlands, covering Rwanda, Burundi, almost all of
Uganda and parts of Kenya.

With their high altitudes and moderate temperatures being too low for stable mosquito vector and
parasite survival, the highlands have functioned as a natural shelter against diseases of the lowland,
such as malaria, for the last several centuries [8,32]. However, from the 1950s onwards, a progressive
rise in incidence has been reported. The highland communities have little to no immunity to malaria,
as immunity only develops under continuous exposure. Additionally, the dominant parasite species
in this area, Plasmodium falciparum, carries the most lethal form of malaria, which has resulted in
a substantial increase in morbidity and mortality due to the disease [8]. In great contrast to the densely
populated highlands and some coastal regions stand the sparsely populated dry plains of northern
Kenya and the greatest parts of Tanzania [33]. Common to all five nations are their recent independences
from colonial pasts. The transitions culminated in wars and conflicts in Burundi, Rwanda and Uganda,
which, in turn, triggered major migration movements that affected all five countries. Additionally,
they share relatively high fertility rates, a high proportion of the population that will soon enter
reproductive age and—especially in the densely populated highland nation—an increasing population
pressure that will likely intensify the already persistent problems of shortages of arable land, natural
resources, food, employment, healthcare, housing, education and basic services [33].
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As the study area covers almost 2 million km2—and considering the great variability in the
population density, development status and accessibility—there is reason to assume that not only
the conditions but also system structures vary across space. Identifying the relevant elements of
a risk system and their interrelations is, while usually tied to uncertainties, vital to support informed
decision-making. The investigation of such structural discrepancies forms the content of this article.

2.2. Conceptual Framework

This work builds on the (climate) risk and vulnerability assessment framework developed
by [14] during the course of the HEALTHY FUTURES (HF) project, which focused “on the future
distribution and spread of infectious diseases, and in particular the negative health impacts of changes
in transmission and outbreaks of vector-borne diseases as a result of climate change” [31]. The objective
of [14] was to derive a set of integrated geons [15,16]—regions that share the same risk-index—based
on a selection of vulnerability indicators and a hazard-related indicator: the Entomological Inoculation
Rate (EIR). The EIR is a measure of the intensity of malaria parasite transmission, defined as the
“product of the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage
malaria parasites” [34].

Their understanding of risk is therefore in line with the definition given in the Intergovernmental
Panel on Climate Change: Fifth Assessment Report (IPCC AR5) [35], which describes risk as
characterized by hazard, exposure and vulnerability. The authors focused on conditions that make
societies particularly vulnerable to malaria to calculate the distribution of malaria risk across space.
The vulnerability dimension was divided into the four domains of (i) generic susceptibility, (ii) biological
susceptibility, (iii) the capacity to cope and (iv) the capacity to anticipate. While (i) and (ii) are “factors
pre-disposing a community to disease burden” [36], (iii) and (iv) describe (a lack of) resilience through
the ability to anticipate risk or to recover from backlashes [36,37]. These distinctions, which were
introduced by [38] and modified by [37] to guide risk and vulnerability assessments in the context
of vector-borne diseases, are made in order to facilitate the prioritization of targeted interventions
with the aim of reducing susceptibility and strengthening resilience. Table 1 shows their selection of
vulnerability indicators. A detailed justification concerning the choice of indicators, the data sources
and their limitations and the conducted spatial analyses can be found in [14].

Table 1. List of vulnerability indicators inherited from the HF project.

Indicator Name Date Source Unit

Generic susceptibility

Number of women 2010 AfriPop:demography Per 1000
Population change 1970–2010 GPWv3, UNEP-APD %

Travel time to closest urban center 2000 JRC/WorldBank Hours
Distance to roads 2010 OSM, ESA GlobCover, SRTMv4 Least cost path
Conflict density 1997–2009 ACLED Per 100 km2

Number of people living on less than USD 2 per day 2010 CGIAR CSI %

Capacity to anticipate

Secondary/higher education 2007/8 DHS %
Child did not sleep under net last night 2007/8 DHS %

Biological susceptibility

Number of women of childbearing age 2010 AfriPop:demography %
Prevalence of stunting in children under the age of 5 2010 AfriPop:demography %

Immunity 2010 Malaria Atlas Project %
HIV prevalence among 15–49 year olds 2010 USAID %

Capacity to cope

Distance to closest hospital 2010 OSM, ESA GlobCover, SRTMv4 Path distance
Number of dependents 2010 AfriPop:demography %
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Their results are picked up here in an attempt to identify statistical cross-connections among the
vulnerability indicators.

3. Analysis and Results

The analysis aims at identifying clusters of relatively homogenous vulnerability structures among
the geons dataset inherited from [14] (Analysis Part 1). Once the clusters are identified, they are mapped
and analyzed based on their descriptive statistics. In Analysis Part 2, their inner structures—in terms
of significant correlations between vulnerability indicators—are displayed as Causal Loop Diagrams
(CLDs). Both the establishment of homogenous clusters (Analysis Part 1) and the disclosure of their
inner structures (Analysis Part 2) utilize correlation: as a distance measure in the cluster analysis and as
a filter for possible causal relationships between indicators in the CLDs.

Significant correlations between indicators per cluster are calculated and handed over to a function,
which automatically generates CLDs on the basis of said correlations.

By calculating correlation alone, however, neither the existence of causal relations nor their
direction can be determined with certainty. To clearly draw knowledge from the CLDs, it is therefore
indispensable to interpret them qualitatively in terms of causality and direction. However, since this
article is focused on the data analysis that lays the foundation for a qualitative analysis, the in-depth
interpretation is not part of this exercise. Figure 1 shows the analysis steps that are performed in the
following sections.
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To make the single steps of the analysis transparent and reproducible, a script was developed
using the programming language R, which is widely used for statistical computing. The essential
packages are factoextra [39] and causalloop [40]. A list of abbreviations can be found in Appendix A at
the end of this document (Table A1).
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3.1. Analysis Part 1: Identifying Clusters

3.1.1. The Application of Hierarchical Clustering Algorithms and Correlation-Based Distance Measures

The choice of clustering algorithms is vast. The authors of [41] give an overview of the 26 most
commonly used ones. However, those in [42] point out the fact that it is not the choice of clustering
algorithm but the parameter distance measure that is more decisive for the resulting clusters. The two
hierarchical clustering algorithms Divisive Analysis (DIANA) and Agglomerative Nesting (AGNES) were
chosen for this analysis, as they can be parametrized to use correlation-based distance measures.
The practice of using correlation as a distance measure in cluster generation is borrowed from the field
of Bioinformatics, where it is used in gene expression data analysis [43] in order to detect groups of
genes that manifest similar expression patterns [44]. Additionally, it is known for being able to handle
noise in multivariate clusters [42]. This article does not deal with genes; however, each analyzed geon
has 13 attributes with specific value constellations, which can be considered an “expression pattern”.
The aspiration to cluster geons with similar expression patterns placed the focus on hierarchical
clustering algorithms. Whether DIANA or AGNES and which correlation coefficient is best suited for
the used data is explored in the following sections.

3.1.2. Testing the Data for Normal Distribution

As correlation is at the center of this analysis, the choice of correlation coefficient is worth
considering. One of the most commonly used is the Pearson Correlation coefficient, valued, e.g., for its
high statistical efficacy [45]. However, its results are only reliable when none of the assumptions
underlying a general linear model are violated. This makes it only suitable for roughly normally
distributed data with few outliers. Spearman’s ρ and Kendall’s τ are non-parametric estimators
measuring monotonicity relationships, which makes them more robust. While slightly less statistically
efficient, they make a good compromise as they can yield interpretable results for non-normally
distributed data [46]. Therefore, the analysis begins with the standardization of the data and the
testing of them for a normal distribution using Density Plots and Shapiro–Wilk tests, shown in Figure 2.
With all the Shapiro–Wilk test values being well below the threshold (p < 0.05), none of the indicators
is normally distributed. The Pearson Correlation coefficient was therefore discarded in favor of
Spearman’s ρ and Kendall’s τ.

The Density Plots are displayed in addition to give the reader an impression of the data distribution.
The intention behind this is to facilitate the understanding of the data analysis carried out in the
following sections.

3.1.3. AGNES vs. DIANA: Testing Different Parametrizations for the Most Homogenous Results

To test whether AGNES or DIANA and which parametrization yields the most homogenous
clusters, the data were clustered using the eclust function from the package factoextra in the combinations
AGNES vs. DIANA, with three vs. four clusters and Spearman’s ρ vs. Kendall’s τ as the within-cluster
distance measure. Usually, Scree Plots are used to determine the optimal number of clusters by
calculating and visualizing the decline of within-cluster sum of squares per each additional cluster.
While the used R package factoextra offers the option the generate Scree Plots in general, the function is
not implemented to handle correlation-based distance measures. As a substitute, Scree Plots for the
Kmeans algorithm in combination with the Euclidean distance as the distance measure were tested,
which showed a discernible decrease in the within-cluster sum of squares decline at about three or four
clusters. It was therefore assumed that these results would be transferable to AGNES and DIANA in
combination with correlation-based distances. Hence, three and four clusters were tested in parallel.
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The parameter between-cluster distance, or linkage criterion, was set to Ward.D (Ward’s method),
a widely used method [47,48], which, however, had no impact on the cluster generation. The method
groups the geons based on the reduction of the sum of squared distances of each geon from the average
geon in a cluster [49]. Figures 3 and 4 show Silhouette Plots, plots designed to help validate cluster
quality [26,50]. The longer the bars, the higher the cluster score—a measure to describe how well
a geon fits into its cluster (cohesion) and how strongly it differs from the other clusters (separation).
Respectively, the higher the average cluster width and the corresponding average silhouette width,
the higher the cluster cohesion and the greater the separation.
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The superiority of correlation-based distance measures for multivariate data over the Euclidean
distance is mentioned in [41]. This observation can be made here as well (see Figure 3)—the average
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silhouette and cluster width are considerably higher when using DIANA and Spearman’s ρ than with
Kmeans with Euclidean Distance.

The plots in Figure 4 indicate that the combination DIANA/3 clusters/Spearman’s ρ yields the
most homogenous clusters, constituting the only combination scoring over 30. The highest average
silhouette width scores no higher than 33; however, each geon has a profile of 13 variables. In addition,
Figure 4 confirms that it is not the algorithm but the selected distance parameter that is decisive for the
homogeneity scores. Both DIANA and AGNES score more highly in combination with Spearman’s
ρ—at three and four clusters—than in combination with Kendall’s τ.

3.2. Analysis Part 1: Results

Three clusters derived by DIANA in combination with Spearman’s ρ yielded the most homogenous
results. This combination is therefore chosen as the basis for the structural results analysis. From here
onwards, when speaking of the clusters, this particular combination is referred to.

3.2.1. Mapping the Clusters

When visualizing the results on a map (see Figure 5), something interesting can be observed:
although spatial connectivity and proximity had no influence on the clustering process, the clusters are,
with few exceptions, adjacent polygons. Waldo Tobler’s First Law of Geography states that everything
is related to everything else but that near things are more related than distant things [51]. Likewise,
the mapped clustering results indicate relevant effects of spatial proximity on the system’s structural
similarity. A more detailed description follows in Section 3.4, in which the spatial distribution of the
clusters is discussed in connection with the CLDs.
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3.2.2. Descriptive Statistics

As shown in Table 2, Cluster #1 is characterized by high accessibility (distance to roads,
urban centers and closest hospital) and high population change, more specifically population growth,
which indicates an urban context. This is plausible, since all the densely populated area is covered by
this cluster. Consequently, it differs from the other regions by its high conflict density, while on the
other hand, the percentage of persons with secondary or higher education is the highest by a clear
margin. The share of people living on less than USD 2 per day is slightly higher than in Cluster #2,
while still being on the lower end of the spectrum. The EIR is the lowest here, while the immunity ratio
is relatively high. However, the use of bednets is not widespread. The dependency ratio is the highest,
accompanied by the highest values of human immunodeficiency virus (HIV) prevalence and number
of stunted children. The women of childbearing age (WOCBA) ratio differs between Cluster #2 and #3.

Table 2. Descriptive statistics of the three derived clusters.

Indicator
Mean Min Max

Clus. 1 Clus. 2 Clus. 3 Clus. 1 Clus. 2 Clus. 3 Clus. 1 Clus. 2 Clus. 3

Child does not sleep
under bednet 37.49 51.11 19.76 11.42 25.75 7.97 79.80 83.69 37.38

Conflict density 20,192.63 5608.33 336.83 0.00 0.00 0.00 256,389.74 31,390.34 7867.07

Dependency ratio 90.92 83.06 84.41 57.44 6.56 0.00 113.83 103.19 117.74

Distance to
closest hospital 3.49 12.28 9.48 0.67 5.00 2.94 7.31 25.53 22.07

Distance to closest
urban center 4.42 11.44 7.25 1.52 5.54 1.23 10.24 16.95 16.51

Distance to roads 199,018.11 637,532.28 650,285.27 57,950.78 237,676.00 145,383.95 411,674.85 125,8798 176,8733.13

Entomological
Inoculation RateIR 9.67 19.25 19.55 0.00 6.17 0.76 50.30 42.67 91.49

HIV prevalence 4.99 1.95 3.38 0.18 0.44 0.38 24.26 3.34 8.92

Immunity 16.27 4.31 28.83 0.30 0.54 5.69 52.29 20.68 52.30

People living on less
than USD 2 /day 11.51 9.74 32.30 0.00 4.80 0.00 26.18 19.13 145.66

Population change 2997.86 140.08 729.63 0.00 3.02 0.00 33,727.98 411.11 2177.86

Secondary or
higher education 20.77 7.64 8.66 10.77 0.16 2.84 58.46 24.01 17.34

Stunting children 0.07 0.06 0.06 0.00 0.04 0.00 0.18 0.17 0.13

Women of
childbearing age 20.86 22.80 16.49 13.60 17.29 3.67 39.37 33.47 34.18

Cluster #2 had the lowest population change/growth and is characterized by poor accessibility,
which indicates a rural context, while still suffering a relatively high conflict density. The high EIR
stands in contrast to the low immunity, which could indicate that the disease has only recently entered
this region. Moreover, the use of bednets is not yet widespread. The rate of people with secondary or
higher education is slightly lower than in Cluster #3, while the share of people living on less than USD
2 per day and HIV prevalence are the lowest here. The WOCBA ratio is the highest here, while the
dependency ratio and the number of stunted children are comparably low.

Cluster #3 has slightly better accessibility values than Cluster #2 but is, concerning infrastructure,
still rather poorly equipped. The conflict density is by far the lowest in this cluster, while the poverty
ratio exceeds the ratios in Cluster #1 and #2 by a large margin. The EIR and education rates are similar
to those in Cluster #2, being high in the former and low in the latter case. However, in contrast to
Cluster #2, immunity here is widespread, accompanied by a low rate of bednet usage. The dependency
ratio, HIV, population change and number of stunted children under the age of 5 fall somewhere in the
middle between Cluster #1 and #2. The WOCBA ratio is significantly lower in this cluster than in the
other two.
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In summary, Cluster #1 points to an urban context, whereas Cluster #2 and #3 both indicate rural
structures. However, Cluster #2 has experienced very little population change, and absolute poverty is
significantly lower than in Cluster #3. It is nevertheless plagued with a relatively high conflict density.
In Cluster #3, the high-ranking values of absolute poverty and immunity stand out.

3.3. Analysis Part 2: Deriving CLDs form Significant Correlations

Causality is defined as the relationship between cause and effect or the principle that everything
has a cause [52]. CLDs are a visual tool that helps to depict causal flows within a system, usually based
on qualitative research. Here, the CLDs are automatically generated based on significant correlations
found in three clusters. Hence, the links shown in the CLDs are not necessarily of a causal nature
but rather occur alongside, instead of reinforcing or balancing, each other. In those cases where
a causal relationship can be assumed, it is equally complex to determine its direction. For example,
the relationship between poverty and malaria prevalence is generally understood as causal to some
extent [53,54]. However, it is difficult to assess which causes which or whether they share a mutual
relationship, reinforcing each other [55].

In the next step, correlation matrices are calculated, which form the basis for the CLD generation.
As the data do not fulfill all the criteria necessary to reliably use Pearson’s Correlation coefficient,
and since Spearman’s ρ has already successfully served as a distance measure in the clustering process,
it will also be utilized here. The corrplot function is used to calculate Spearman’s ρ correlations
between the 13 vulnerability indicators and the hazard indicator EIR, for each of the three clusters.
In preparation for the CLDs, only correlations with a significance level of 95% or greater are kept.
In addition, the variable’s correlations with itself are removed from the dataframe. The package
causalloop [40] is utilized to automatically generate CLDs from significant (p < 0.05) Spearman’s
ρ correlations.

The function needs the input parameters from, to, weight and polarity to generate a CLD. From and
to describe a vulnerability indicator pair, the weight parameter describes the correlation strength and
polarity describes the information regarding whether a relationship is of a positive or negative nature.
Red arrows indicate a negative relationship, while green arrows indicate a positive one. Positive in
this context means that the variables change in the same direction (an increase/decrease in variable A
observed simultaneously with an increase/decrease in variable B); negative means that if variable A
increases, variable B decreases, and vice versa. The width of the arrows represents the strength of the
relationship (r value).

Considering the complexity and the number of identified links, relations and feedback loops,
an in-depth interpretation, including their modification towards removing non-causal relations and
defining the direction of the causal flow, is not part of this exercise. Doing this would require a local
understanding of the actual systemic connections within the clusters, based on extensive literature
research, expert judgment and qualitative narratives. The here-presented method is rather concerned
with the methods and tools available for getting to this point. The next section will, therefore,
just describe the clusters and their respective CLDs.

3.4. Analysis Part 2: Results

3.4.1. Cluster 1: The Urban Cluster

Cluster #1 (Figure 6): The urban cluster covers all of Burundi, Rwanda and Uganda,
the mountainous areas of Kenya including Nairobi, stretches along the border between Kenya and
Tanzania up to the Indian Ocean, and includes Zanzibar and Pemba island as well as Tanzania’s capital
Dar es Salaam and some parts of interior Tanzania. This makes it the cluster with the most inhabitants
by far. The central element of this CLD is the population change indicator. The three accessibility
indicators (the distances to the closest hospital, to the closest urban center, and to roads) are negatively
correlated to population change, showing that the change, or rather growth (population growth was
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recorded in every geon), between 1970 and 2010 happened in close proximity to infrastructure and
urban centers. The share of people with secondary or higher education is positively correlated with
population change. It remains open as to whether this is due to well-educated people who migrated to
urban areas or whether the higher density of educational institutions is decisive in leading to a more
educated population. The number of WOCBA is also positively correlated with population change.
This corresponds to findings from [56], according to which women between 20 and 30 years were
found to be the largest group of internal migrants within Uganda, Kenya and Tanzania. This trend
could possibly be transferable to Rwanda and Burundi. High shares of both WOCBA and educated
people are found where the share of people living on less than USD 2 per day is low. This could point to
the factor that poverty increases with increasing distance to city centers (e.g., people living in informal
settlements along the urban outskirts) [57].
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Of special interest for us was the link between the hazard indicator EIR and its correlations with
the vulnerability system, which could probably enhance the understanding of its entry points into
the vulnerability system. In Cluster #1, the EIR is positively correlated with the immunity indicator,
which is plausible, as immunity develops under continuous exposure [58]. However, immunity is
negatively correlated to the distance to urban centers, while the EIR is positively correlated to the
distance to the next hospital. Assuming that hospital density decreases with increasing distance to
urban centers, these correlations would logically contradict each other. However, under the assumption
that the higher level of education, better building materials and better access to resources limit the
spread of malaria, the link between immunity and urban centers seems to be the more reasonable one.

3.4.2. Cluster 2: The Rural Cluster

Cluster #2 (Figure 7): The rural cluster covers northern Kenya and the northern part of Kenya’s
coastline. It was labeled the rural cluster, since the average distances to urban centers, roads and
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hospitals are generally high and the population density is low in comparison with those in the two
other clusters. The CLD exhibits some unexpected relationships. This can probably be traced back to
the relatively small sample of 26 geons—however, this cluster had the highest average cluster width,
which technically indicates a high homogeneity of the cluster. The first contradictory link here is the
positive correlation between the EIR and education. Other studies rather found the opposite to be the
case [59,60]. The same applies to the positive correlation between poverty and education—usually,
better education would lead to less poverty or vice versa. However, the higher the education level,
the fewer the children that do not sleep under bednets, which corresponds to findings from the
literature [59]. The negative correlation between low bednet usage and the EIR indicates that, despite
very low overall bednet usage, children living in areas with high EIRs are more likely to sleep under
bednets than children in areas where the EIR is lower.
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Similar to in Cluster #1, population change tended to happen in close proximity to urban
centers and infrastructure and is accompanied by an increased conflict density. An interesting link,
which would require further research, is that triangle immunity forms with population change and
conflict density. The missing correlation between immunity and the EIR could be caused by inflows of
non-immune migrants or by a lack of reliability of the data.

3.4.3. Cluster 3: The Rural–Urban Gap

Cluster #3 (Figure 8): The urban–rural gap cluster covers those parts of Tanzania that are not part
of the urban cluster. This is the southern part of the country including the coastline (except for the
region north of and including Dar es Salaam and the islands) and the western, landward-directed part
between Lake Tanganyika and Lake Victoria. With a sample size of 42 geons, it constitutes the biggest
cluster. The cluster size leads to the lowest homogeneity values among the three clusters.

The three accessibility indicators are all strongly positively correlated to poverty, meaning that
poverty significantly increases with increasing distance to urban centers and infrastructure. This steep
gradient was the reason for the name urban–rural gap. Furthermore, the accessibility indicators are all
negatively correlated to WOCBA. This again coincides with findings from [56], where women between
the ages of 20 and 30 were the most mobile group among internal migrants in Tanzania. Being the most
mobile gender and age group, WOCBA can therefore be considered the most likely to try to escape
rural poverty.
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Cluster #3 is the only cluster that reveals a clear and logic entry point of the hazard into the
vulnerability system, and that is the negative correlation between the EIR and education and its
validation in form of the positive correlation between the EIR and immunity and the negative
correlation between immunity and education.

4. Discussion

The intended use of the herein-presented workflow is to give insight into statistical relationships
between indicator data throughout space by clustering spatial entities with similar “expression patterns”
and displaying their internal relationships as CLDs.

The differing internal structures among the obtained CLDs suggest that the relationships between
the variables vary across space and can therefore not be represented in a single CLD. In other words,
causal structures that constitute the malaria system are heterogeneous in space. This has important
implications for the construction of models of social vulnerability to malaria. There is a need for
a new type of structurally disaggregated model that is capable of representing spatially heterogeneous
causal structures.

For instance, vulnerability in Cluster #1 is governed by urban structures and population change,
whereas vulnerability in Cluster #2 revealed some rather contradictory correlations that require
further investigation, and Cluster #3 shows education as the main entry point of malaria into the
vulnerability system.

4.1. Limitations and Uncertainties

The expectation was to discover more correlations where an underlying causal relationship could
be assumed, especially hoping to find feedback loops and statistically significant and probable causal
links between the vulnerability systems and the hazard indicator EIR, to identify the entry point of
the hazard into the vulnerability systems. However, we were also aware that not all the relevant
elements of the vulnerability system are covered by the indicator data—such as housing and access to
treatment [17], drug resistance and vector control activities [27], and access to transportation [61]—or
even more intangible factors like personal beliefs, behaviors and social networks. Additionally, in some
instances, only proxy data were available, e.g., the stunting of children under the age of 5 indicator,
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which functioned as a proxy for malnutrition in young children [14]. However, the relationship
between malaria and malnutrition is not fully understood, ranging from malnutrition as increasing
susceptibility [62,63] to decreasing [64,65] susceptibility to no clear link [66]. Another factor that has
potentially impaired the results is the limited reliability of the data. The assessed nations lack reliable
census data. Therefore, all the used datasets were either modeled, interpolated or otherwise modified
in order to be able to work with what is available. While this approach is valid in this case of a general
lack of “ground-truth” data, the results should be considered to show a general tendency rather than
an exact reflection of reality.

Finally, the ecological determinants of malaria persistence were not covered in this exercise.
The EIR indicator and the immunity indicator, accordingly, are the only indicators that indirectly reflect
the ecological and climatic dimensions, clearly making the 13 vulnerability indicators the dominant
factors in the clustering process. This ultimately led to big parts of Uganda, Burundi and Rwanda
forming a cluster due to their similar vulnerability structures, while Plasmodium falciparum endemicity
in large parts of Uganda is over 40%, while being below 5% in most of Burundi and Rwanda [67]. It is
therefore not surprising that the entry point of malaria into the vulnerability system of this cluster
could not clearly be worked out, as it only plays a significant role in parts of the cluster.

4.2. Validation

According to [26], an intrinsic shortcoming of vulnerability assessments is that vulnerability
cannot be validated, since it is a potential state. They therefore highlight the importance of the validity
of the process. Process validity can be established by keeping the choices and sources regarding
the conceptual framework, data, indicators, sub-indices and aggregation functions as transparent as
possible [68]. By keeping the processes transparent, criticisms of the distortion of complex realities
through indicators to reflect preconceived ideas can be countered. The R script that was programmed
for this exercise was therefore made publicly available on Github [69] to ensure process transparency
and reproducibility, as well as the opportunity for reuse and improvement by the community.

5. Conclusions

In this work, a spatial geon dataset (n = 108) covering a total of five East African Nations, where each
spatial region is composed of an expression pattern of 14 variables—13 vulnerability indicators and
one hazard indicator—has been analyzed and clustered into groups of geons, which share a similar
systemic structure. The clusters were mapped, and descriptive statistics in tabular form gave an insight
into the distribution of values. The clustered data were then handed over to a function that calculated
Spearman’s correlations between the 14 respective variables. Those correlations that were significant
(p < 0.05) were in turn handed over to another function that generated CLDs from them. The differing
structures of the CLDs indicate that the assumption that one CLD alone cannot sufficiently capture the
diverse relationships among the variables throughout the study region is justified. The CLDs revealed
correlations, which were briefly described and interpreted.

As the demand for risk assessments increases, be it in climate change adaptation, disaster risk
reduction or the public health domain, existing methods have to be elaborated to be fit to capture the
realities of ever-increasing complexity. This article therefore attempted to utilize existing tools from
different domains by combining elements from traditional risk analysis with elements from spatial
analysis and system dynamics (and gene expression analysis). Additionally, the aim was to further
enhance the impact chain approach, applied in climate risk assessments, by exploring statistical and
spatial methods.

The herein-developed workflow can easily be implemented into the data exploration phase of a risk
and vulnerability assessment, independent of the research subject. The CLDs can be viewed as an interim
result, constituting a link between quantitative and qualitative phases, where possible causalities and
feedback mechanisms in the system might be illuminated. Furthermore, the CLDs—supported by
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Silhouette Plots, maps, descriptive statistics and correlation matrices—could also be used as a basis for
discussions in participatory settings.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Full Name

CLD Causal Loop Diagram
WHO World Health Organization
BBN Bayesian Belief Network

CIMM Cross-Impact Multiplication Method
EIR Entomological Inoculation Rate

IPCC AR5 Intergovernmental Panel on Climate
Change: Fifth Assessment Report

HF HEALTHY FUTURES
DIANA Divisive Analysis
AGNES Agglomerative Nesting

HIV Human immunodeficiency virus
WOCBA Women of childbearing age
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