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Abstract: Accurate metal price forecasting is the precondition for optimal and sustainable mine
production planning. This paper combined two methods for time series analysis. The developed
model represents the combination of the Grey System Theory and a Stochastic differential equation.
More precisely, we added stochastic term to the first-order whitenization differential equation.
Solution of this equation represents the time response function which is capable of creating artificial
evolving paths of the metal price. The simulation process resulted in a distribution and adequate
expected value at every single point. Further, model efficiency was increased by adding residuals
modeled by the Singular Spectrum Analysis method. The model was tested on the monthly lead
metal price series. Mean absolute percentage error is 4.37% and the model can be classified as a
high-performance model.

Keywords: metal price; uncertainties; forecasting; stochastic grey; Singular Spectrum Analysis

1. Introduction

Many economic factors influence metal price, but the most important are supply and demand,
interest and exchange rates, and country economic growth. Creation of an economic model for metal
price is quite a hard and time-consuming task. Each of the price drivers is governed by their volatile
law. To avoid such a hard task, we used metal price as the final indicator of joint action of these
drivers. There is no doubt that metal price has a crucial influence on the wealth of any mining company.
Globally, metal price is also very important for some developing countries. Their gross domestic
product is significantly based on the metal mining industry. Disturbances in this sector can increase
the economic uncertainties in developing countries. Hence, the metal mining industry, i.e., metal price,
plays a key role in the sustainable development of those countries. Metal price is a driver that has
a significant impact on mine production planning and is highly uncertain. Accordingly, we can call
metal price a critical uncertainty. The benefit of developing a price forecasting model is to evaluate
resilience and vulnerability of the production plan. The main goal of metal price forecasting is to
enable creation of a stable and sustainable plan of mine production.

The following overview is related to the relevant literature about metal price forecasting.
Barczak [1] made a comparison between Grey model GM (1,1), Holt’s exponential smoothing model and
Autoregressive Moving−Average (ARMA) model. All these models have been used to build short-time
forecasts for daily time resolution. He concluded that the ARMA model is not suitable to forecast
gold price; the Grey model requires more information and adaptive models can be treated as an initial
assessment. Askari and Askari [2] applied the original GM (1,1) and Fourier series modified GM (1,1)
to forecast gold price. Also, they compared these models with the Autoregressive Integrated Moving
Average (ARIMA) method. Results of the comparison demonstrate that the Fourier series modified GM
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(1,1) model has better performances both for fitting and forecasting phases. Chang et al. [3] presented a
revised model to solve the problem of a small data set. They combined the Adaptive Grey Model AGM
(1,1) with the Adaptive Grey Model with rolling framework (AGMRF) to mitigate the drawbacks of
AGM (1,1). Performance of the AGMRF model was tested using aluminum price. Results of their study
were compared with the following methods: GM (1,1), AGM (1,1), Linear Regression (LR) and Back
Propagation Neural Network (BPNN), and showed that the developed model can effectively solve the
limited sample size data. Faghih et al. [4] applied the Grey model GM (1,1) to forecast the palladium
price. The study showed that the model is accurate for two years of forecasts. Sous et al. [5] made a
combination of Markov chain and Grey model GM (1,1) to forecast the gold price. The error of the GM
(1,1) model and original data of gold price were used to construct the transition probabilities of Markov
chain. The result reveals that Markov Chain Grey model is more effective than the original GM (1,1).
Shan et al. [6] created the optimal unbiased Grey Model to simulate the aluminum price. They optimized
the background model parameters. Comparative analysis was made with the GM (1,1) model and
the results showed that unbiased Grey Model is more effective than GM (1,1) model. Wang et al. [7]
compared Grey model GM (1,1) with Verhulst analysis and concluded that GM (1,1) is more suitable
for forecasting the silver price. Li et al. [8] developed a new model, namely, group method of data
handling (GMDH), to predict the price of iron ore. Four techniques, autoregressive integrated moving
average (ARIMA), support vector regression (SVR), artificial neural network (ANN), and classification
and regression tree (CART), were used for comparison purposes, and results showed that performance
prediction of the GMDH model is significantly better than other predictive models. Alipour et al. [9]
made a comparison between three forecasting models based on the Autoregressive Integrated Moving
Average (ARIMA), Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH),
and Stochastic differential equation (SDE) methods, respectively. These methods were used to forecast
copper price on monthly time resolution. The study showed that the Stochastic differential equation
method provides superior results to the ARIMA and TGARCH methods. Shafiee and Topal [10]
developed a novel model to forecast mineral commodity price. It is composed of mean reversion,
diffusion, and jump component. The model is capable of calculating each component individually
to predict future mineral commodity prices. A model developed by Achireko and Ansong [11] is
composed of three steps: multivariate, normally distributed random variable generator, the method of
multilayer feed-forward neural networks, and multiple regression analysis. The first step generates
the input data. The second step estimates the linear regression parameters by an orthogonal projection
model. In the third step, the gold price is forecasted by the estimated regression. Cortez et al. [12]
applied Chaos theory and machine learning techniques to better represent the market behavior of
mineral commodities and metal price forecasting. Information obtained by Chaos theory was used as
inputs for forecasting metal prices by a machine learning model.

This study aimed to improve forecast accuracy of the traditional Grey Model GM (n, m). In the
Grey System Theory, GM (n, m) denotes a Grey model, where n is the order of the differential equation
and m is the number of variables. Forecasting metal price models based on the Grey System Theory
belongs to the group of nonlinear models. However, these models are effective for small-sample time
series analysis and short-term forecasts. Also, the accuracy of prediction of Grey models may not be
satisfactory for noisy and highly fluctuating data. Taking into account these limitations, we proposed
the novel model to increase the accuracy of the traditional GM (1,1). Improvement has been achieved
by merging the Grey System Theory and the Stochastic Differential Equation (SDE) method, and the
model is called the Stochastic Grey Differential Equation (SGDE) model. Merging these two methods
represents the first stage of the forecast improvement. The second stage is using Singular Spectrum
Analysis (SSA) to modify residuals errors of the SGDE model and it is called the SGDE+SSA model.
This analysis can filter out noisy terms and then enable the SGDE model to achieve better performance.
The forecasting ability of the developed model was tested on the real case. This study used the monthly
historical data of lead price, from January 2013 to December 2019, to verify the effectiveness of the
SGDE+SSA model. There are a total of 84 observations available. To compare the effectiveness of
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our model with Autoregressive Integrated Moving Average (ARIMA), the Threshold Generalized
Autoregressive Conditional Heteroskedasticity (TGARCH), and Stochastic Differential Equation (SDE)
models, results from the numerical example [9] were used. By adding the stochastic term and SSA,
the traditional GM (1,1) model becomes capable of dealing with high fluctuation metal price sequence,
and doing long-term forecasts as well. Despite the Grey modeling tendency to smooth time series,
the developed approach has no ability to deal with stochastic time series that involves extreme jumps
and diffusion.

2. Forecasting Model

2.1. Stochastic Grey Modeling

Let us consider a primitive time series of metal price X(t) =
{
x(t)

}
, t = 1, 2, . . . , T. which is obtained

by monitoring over the specific time period. Applying the Accumulated Generation Operation (AGO)
on the primitive series, the following monotonically increasing series is obtained [13–16]:

X(1)(t) =
{
x(1)(1), x(1)(2), . . . , x(1)(t)

}
, (1)

where elements of the new series are calculated as follows:

x(1)(t) =
∑t

i=1x(i), t = 1, 2, . . . , T, (2)

The sequence of mean value of adjacent values of accumulated series is denoted as:

Z(1)(t) =
{
z(1)(2), z(1)(3), . . . , z(1)(t)

}
, (3)

where elements are generated in the following way:

z(1)(t) =
1
2

(
x(1)(t) + x(1)(t− 1)

)
, t = 2, 3, . . . , T, (4)

A grey differential equation modeling the sequence of mean value is:

x(t) + az(1)(t) = b, (5)

Equation
dx(1)(t)

dt
+ ax(1)(t) = b, (6)

is the whitened equation of the grey differential equation.
Parameters a and b are defined by the Least-squares method as follows:

[a, b]T =
(
BTB

)−1
BTY, (7)

where

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(t) 1

, Y =


x(2)
x(3)

...
x(t)

, (8)

The solution of Equation (6) or time response function is:

x̂(1)(t + 1) =
[
x(1) −

b
a

]
e−at +

b
a

, (9)
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The reconstructed (predicted) value of primitive metal price data is given below:

x̂(t + 1) = x̂(1)(t + 1) − x̂(1)(t), t = 1, 2, . . . , T, (10)

The universe of monitored data X(t) is a collection of observations x(t); each one has been recorded
at time t where time is discrete. For t ≥ 2, each element of the universe can be expressed as follows:

x(t) = x(t− 1) + w(t), t = 2, 3, . . . , T, (11)

where
w (t)—stochastic component or “white noise.”
White noise represents the time derivative of the Wiener process or Brownian motion.
It means that x(t) is caused by x (t−1) only. Equation (11) represents the first-order stochastic

model of X(t). Accordingly, the AGO series can be represented as stochastic time series and Equation
(6) becomes the stochastic grey differential equation (SGDE) of the following form:

dx(1)(t)
dt

+ ax(1)(t) = b + kσdW(t), (12)

Finally, we obtain a SGDE of the AGO series: dx(1)(t) =
(
b− ax(1)(t)

)
dt + kσdW(t)

x(1)(0) = x(1)
, (13)

where

k—coefficient which depends on time resolution of monitoring;
σ—standard deviation of AGO series;
W(t)—an increment to a standard Brownian motion.

The value of coefficient k is defined as follows:

k =


1; annual time resolution

1
√

12
≈ 0.2887; monthly time resolution

1
√

250
≈ 0.0632; daily time resolution

, (14)

The average number of monitoring (trading) days per year is 250.
The solution of the stochastic grey differential equation is based on the application of Ito’s lemma

and Ito isometry. For t ∈ [0, T], the common form of stochastic differential equation (SDE) is [17–21]:

dX(t) = α(t, X(t))dt + β(t, X(t))dW(t), (15)

with initial condition X(0) = x(0) and x (0) is constant. In our case; dX(t) = dx(1)(t), α(t, X(t)) =(
b− ax(1)(t)

)
and β(t, X(t)) = kσ are components of SGDE respectively.

For a function F(t) ≡ f (t, X(t)), which is at least one differentiable in t and at least twice
differentiable in x(t), we have the following expression known as Ito’s lemma:

dF(t) ≡ d f (t, X(t)) =
(
∂ f (t,X(t))

∂t + α(t, X(t)) ∂ f (t,X(t))
∂x + 1

2β(t, X(t))2 ∂2 f (t,X(t))
∂x2

)
dt

+β(t, X(t)) ∂ f (t,X(t))
∂x dW(t)

, (16)



Sustainability 2020, 12, 6533 5 of 21

Equation (13) represents the SDE of Grey modeling. For our problem, we apply the function
F(1)(t) ≡ f (t, X(t)) = x(1)eat which has the following partial derivatives:

∂F(1)

∂t
= ax(1)eat;

∂F(1)

∂x
= eat;

∂2F(1)

∂x2 = 0, (17)

If we substitute obtained partial derivatives into expression of Ito’s lemma, we get:

dF(1)(t) ≡ d f (t, X(t)) =
[
ax(1)eat +

(
b− ax(1)

)
eat +

1
2
·0·(kσ)2

]
dt + kσeatdW, (18)

dF(1)(t) ≡ d f (t, X(t)) = beatdt + kσeatdW, (19)

The solution of the previous SDE is represented by the integral equation:

F(1)(T) − F(1)(0) = b
∫ T

0
eatdt + kσ

∫ T

0
eatdW, (20)

x(1)eaT
− x(1)ea·0 = b

T∫
0

eatdt + kσ

T∫
0

eatdW, (21)

x(1) = x(1)e−aT + be−aT

T∫
0

eatdt + kσ

T∫
0

e−a(T−t)dW, (22)

x(1) = x(1)e−aT +
b
a

(
1− e−aT

)
+ kσ

T∫
0

e−a(T−t)dW, (23)

where the last integral represents stochastic integral. The stochastic integral
∫ T

0 f (t, X(t))dW(t) has the
centered Gaussian distribution [22]∫ T

0
f (t, X(t))dW(t) � N

(
0,

∫ T

0

∣∣∣ f (t, X(t))
∣∣∣2dt

)
, (24)

with mean

E
[∫ T

0
f (t, X(t))dW(t)

]
= 0, (25)

and variance given by the Ito isometry

Var
[∫ T

0
f (t, X(t))dW(t)

]
= E

(∫ T

0
f (t, X(t))dW(t)

)2 = ∫ T

0

∣∣∣ f (t, X(t))
∣∣∣2dt, (26)

Applying Ito isometry in Equation (23), we obtain the final discrete time equation of the
reconstructed AGO series: x̂(1)(t) = x̂(1)(t− 1)e−a∆t + b

a

(
1− e−a∆t

)
+ kσ

√
1−e−2a∆t

2a N(0, 1), t = 1, 2, . . . , T
x̂(1)(0) = x(1)

, (27)

where N (0,1) is the normally distributed random variable with mean 0 and standard deviation 1 and
∆t = 1 (year, month, or day). Equation (27) represents an evolutionary time model which is capable of
creating the given number of artificial scenarios (see Figure 1).
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Figure 1. Seven simulated scenarios of Accumulated Generation Operation (AGO) series on monthly
time resolution.

Simulating x̂(1)(t) by Equation (27), we obtain the space of simulation which can be represented
by the following simulation matrix:

X̂(1) =
[
x̂(1)s,t

]
S×T

=


x̂(1)1,1 x̂(1)1,2 · · · x̂(1)1,T

x̂(1)2,1 x̂(1)2,2 · · · x̂(1)2,T
...

...
. . .

...

x̂(1)S,1 x̂(1)S,2 · · · x̂(1)S,T


, (28)

where S denotes the total number of simulations and T the period of monitoring. Each row of the
previous matrix represents one artificial AGO path, while each column represents the set of artificial
AGO values at time points. Obviously, for t ≥ 2, the model generates the sequence of probability
density functions (see Figure 2) and sequence of expected values of X̂:

X̂(1) =
[
x̂(1)s,t

]
S×T

=



x̂(1)1,1 x̂(1)1,2 · · · x̂(1)1,T

x̂(1)2,1 x̂(1)2,2 · · · x̂(1)2,T
...

...
. . .

...

x̂(1)S,1 x̂(1)S,2 · · · x̂(1)S,T
↓ ↓ · · · ↓

x(1) pd f (1)1 , E
[
x̂(1)(2)

]
· · · pd f (1)T , E

[
x̂(1)(T)

]


, (29)

The Inverse Accumulated Generating Operation (IAGO) is used to reconstruct a primitive time
series of metal price: E[x̂(t + 1)] = E

[
x̂(1)(t + 1)

]
− E

[
x̂(1)(t)

]
, t = 1, 2, . . . , T − 1

E[x̂(1)] = x(1)
, (30)

For simplicity, reconstructed (predicted) series is expressed as follows:

X̂(t) =
{
x(1), x̂(2), . . . , x̂(t)

}
, t = 1, 2, . . . , T, (31)
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Accuracy of the developed model is estimated by the mean absolute percentage error (MAPE).
MAPE is used as a measure describing the degree of deviation of predicted values from monitored
values:

MAPE =
1
T
∑T

t=1

∣∣∣x̂(t) − x(t)
∣∣∣

x(t)
× 100%, (32)

If we want to see what possible metal price scenarios beyond point T are, then we should continue
simulating Equation (27) from T to T + h, where h represents the number of steps ahead. In this way,
we end the prediction phase and start the forecasting phase.

=
x
(1)

(t) =
=
x
(1)

(t− 1)e−a∆t + b
a

(
1− e−a∆t

)
+ kσ

√
1−e−2a∆t

2a N(0, 1)
t = T + 1, T + 2, . . . , T + h

, (33)
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Applying the same approach, as we have done in the prediction phase, we obtain the forecasted
series as follows:

=
X(t) =

{=
x(T + 1),

=
x(T + 2), . . . ,

=
x(T + h)

}
, (34)

Results of the developed model can be represented as:

↔

X(t) =


{
x(1), x̂(2), . . . , x̂(T)

}
, prediction phase{=

x(T + 1),
=
x(T + 2), . . . ,

=
x(T + h)

}
, forecasting phase

, (35)

2.2. Improvement of the Model by Residual Error Correction

To increase efficiency and versatility of the SGDE prediction model, it is necessary to correct
reconstructed values with respect to the real situations. Assume that monitored and reconstructed
value of the metal price at time point t is x(t) and x̂(t), respectively. The residual error is calculated
according to the following expression:

ε(t) = x̂(t) − x(t), t = 1, 2, . . . , T, (36)

If the residual error is known, then the predicted value of the metal price can be defined as:

xpre(t) = x̂(t) + ε(t), t = 1, 2, . . . , T, (37)

Thus, it is necessary to establish the residual error prediction model. Such model enables us to
define the final predicted value as:

x̌(t) = x̂(t) + ε̂(t), t = 1, 2, . . . , T, (38)

where
ε̂(t)reconstructed (predicted) residual error obtained by model.
Theory of the Singular Spectrum Analysis (SSA) [23–26] is used as the base for creation of the

residual error model. The SSA technique is composed of the two following phases: decomposition and
reconstruction. The objective of the first phase is to decompose the original residual error series into
a sum of series, i.e., into a sum of components. This phase is followed by the second one, with the
objective to reconstruct the original series. The reconstructed series will be composed of the defined
number of components.

Suppose ε(t), t = 1, 2, . . . , T is the residual error time series obtained by Equation (36). Let L
be an integer such that 2 ≤ L ≤ T, and it is called the window length. A mapping that transforms
residual error series into multidimensional matrix [M1, M2, . . . , MK] with the following vectors M j =(
ε j, . . . , ε j+L−1

)T
∈ RL, where K = T − L + 1, is called embedding. The result of embedding is the

trajectory matrix:

M = [M1, M2, . . . , Mk] =
[
εi, j

]L,K

i, j=1
=



ε1 ε2 ε3 · · · εK

ε2 ε3 ε4 · · · εK+1

ε3 ε4 ε5 · · · εK+2
...

...
...

. . .
...

εL εL+1 εL+2 · · · εT


, (39)

This matrix has the unique characteristic where all elements along the anti-diagonals are equal. It
is also known as the Hankel matrix.
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Let us create the lag-covariance matrix of the following form, S = MMT
∈ RL×L. Eigenvalues and

corresponding eigenvectors of the matrix S must be arranged in decreasing order:

(λ1 ≥ 0, U1) > (λ2 ≥ 0, U2) > . . . > (λL ≥ 0, UL), (40)

Note: decreasing order is created only with respect to eigenvalues. The trajectory matrix M can be
represented as the following sum of matrices:

M̂ =
∑r

i=1UiUT
i M = M̂1 + M̂2 + . . .+ M̂r, (41)

where r = max(i, such that λi > 0 ), i.e., r is the rank of matrix M. Equation (41) represents the singular
value decomposition of matrix M. The sum of matrices can be divided into several subsets. Within
each disjointed subset, we are summing matrices and this procedure is called the grouping phase. It is
usual to divide the set of matrices

{
M̂1 + M̂2 + . . .+ M̂r

}
into two subsets (g = 2).

M̂ =
∑p

i=1M̂i +
∑r

j=p+1M̂ j = I1 + I2, g = 1, 2, (42)

Subset I1 is associated with the signal component, while I2 with the noisy component. Obviously,
selecting the value of p is important. One approach of selecting the appropriate value of p is based
on the plot of the logarithms of eigenvalues. The point where there is a significant drop of logarithm
value is adopted as the appropriate value of p [25]. Another approach is related to the ratio i/

∑r
i=1 λi

as the contribution of the eigenvalue to the singular value decomposition of matrix M. Eigenvalues
with small contribution can be excluded from the decomposition. The value of p can be interpreted as
a point where contributions are separated into significant and insignificant.

Each reconstructed matrix of the decomposition M̂1, M̂2, . . . , M̂r is transformed into a new residual
error series, of length T, by making the anti-diagonal averaging over the matrix elements. This procedure
is known as Hankelization of the reconstructed matrix. For example, the reconstructed matrix M̂1 is
transformed into reconstructed one-dimension residual error time series:

M̂1
[
ε̂i, j

]L,K

i, j=1
=



ε̂1,1 ε̂1,2 ε̂1,3 · · · ε̂1,K
ε̂2,1 ε̂2,2 ε̂2,3 · · · ε̂2,K+1

ε̂3,1 ε̂3,2 ε̂3,3 · · · ε̂2,K+2
...

...
...

. . .
...

ε̂L,1 ε̂L+1,2 ε̂L+2,3 · · · ε̂L,T


→ ε̂1,t = (ε̂1,1, ε̂1,2, ε̂1,3, . . . , ε̂1,T), (43)

where
ε̂1,1 = ε̂1,1 ε̂1,2 =

ε̂1,2+ε̂2,1
2 ε̂1,3 =

ε̂1,3+ε̂2,2+ε̂3,1
3 . . . ε̂1,T = ε̂L,T , (44)

Accordingly, the original residual error time series is reconstructed by the sum of p vectors:

→

ε̂ (t) =
∑p

i=1

→

ε̂ i,t =
→

ε̂ 1,t +
→

ε̂ 2,t + . . .+
→

ε̂ p,t, ∀t ∈ [1, T], (45)
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that is, the space of reconstruction is represented as follows:

t 1 2 · · · T
ε̂1,t ε̂1,1 ε̂1,2 · · · ε̂1,T
ε̂2,t ε̂2,1 ε̂2,2 · · · ε̂2,T

...
...

...
. . .

...
ε̂p,t ε̂p,1 ε̂p,2 · · · ε̂p,T

↓ ↓ ↓ ↓ ↓

ε̂(t)
∑p

i=1 ε̂i,1
∑p

i=1 ε̂i,2 · · ·
∑p

i=1 ε̂i,T
↓ ↓ ↓ ↓ ↓

ε̂(t) ε̂(1) ε̂(2) · · · ε̂(T)



, (46)

The reconstructed series ε̂(t) =
{
ε̂(1), ε̂(2), . . . , ε̂(T)

}
will be used to forecast the future values of

residual error.
Forecasting is based on the linear recurrent equation. Calculation of the linear vector of coefficients

is performed in the following way:

R = (βL−1, βL−2, . . . , β1)
T =

1
1− v2

∑p
i=1αiU

(L−1)
i , (47)

where
U(L−1)

i vector composed of the first L−1 values of the eigenvectors Ui
αi—vector composed of the last value of the eigenvectors Ui, i = 1, 2, . . . , p
v2verticality coefficient; it must satisfy the following condition, v2 < 1
Verticality coefficient is calculated as follows:

v2 =
∑p

i=1α
2
i = α2

1 + α2
2 + . . .+ α2

p, (48)

The h−step ahead forecasting of the residual error is based on the following equation:{=
ε(t)

}T
= RTεh , t = T + 1, T + 2, . . . , T + h, (49)

where
εh (t) =

{
ε̂(T − L + h + 1), . . . , ε̂(T + h− 1)

}T, (50)

Outcomes of the residual error model can be represented as:

↔
ε (t) =


{
ε̂(1), ε̂(2), . . . , ε̂(T)

}{=
ε(T + 1),

=
ε(T + 2), . . . ,

=
ε(T + h)

} , (51)

Finally, outcomes of the improved model are as follows:

X̌(t) =
↔

X(t) +
↔
ε (t) =

{
x(1) + ε̂(1), x̂(2) + ε̂(2), . . . , x̂(T) + ε̂(T)

}
=
x(T + 1) +

{=
ε(T + 1),

=
x(T + 2) +

=
ε(T + 2), . . . ,

=
x(T + h) +

=
ε(T + h)

} , (52)

Accuracy of the combined model is also tested by MAPE (see Equation (32)).

3. Numerical Example

The data used in this paper, for the purpose of testing the model, include monthly values of lead
metal price. The period of monitoring ranged from January 2013 to December 2018; see Table 1 [27].
This set of prices is divided into two subsets. The first subset ranging from January 2013 to December
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2017 (60 months) was used as the training subset, and within this range, we checked the accuracy of
the developed model by comparing the predicted and monitored prices. The second subset ranging
from January 2018 to December 2019 (24 months) was used as the validity subset, and within this
period, we made a comparison between the forecasted and actual prices.

Table 1. Monitored data of the metal price.

Date Price $/t Date Price $/t Date Price $/t Date Price $/t

Jan-2013 2334 Jan-2015 1843 Jan-2017 2243 Jan-2019 1997
Feb-2013 2366 Feb-2015 1796 Feb-2017 2312 Feb-2019 2063
Mar-2013 2169 Mar-2015 1792 Mar-2017 2281 Mar-2019 2046
Apr-2013 2027 Apr-2015 2005 Apr-2017 2221 Apr-2019 1939
May-2013 2033 May-2015 1992 May-2017 2125 May-2019 1815
Jun-2013 2100 Jun-2015 1830 Jun-2017 2133 Jun-2019 1900
Jul-2013 2048 Jul-2015 1763 Jul-2017 2270 Jul-2019 1976

Aug-2013 2174 Aug-2015 1704 Aug-2017 2348 Aug-2019 2045
Sep-2013 2085 Sep-2015 1684 Sep-2017 2374 Sep-2019 2072
Oct-2013 2115 Oct-2015 1720 Oct-2017 2498 Oct-2019 2184
Nov-2013 2090 Nov-2015 1618 Nov-2017 2461 Nov-2019 2021
Dec-2013 2137 Dec-2015 1707 Dec-2017 2510 Dec-2019 1901
Jan-2014 2143 Jan-2016 1646 Jan-2018 2584
Feb-2014 2108 Feb-2016 1766 Feb-2018 2581
Mar-2014 2053 Mar-2016 1802 Mar-2018 2390
Apr-2014 2087 Apr-2016 1732 Apr-2018 2352
May-2014 2097 May-2016 1708 May-2018 2361
Jun-2014 2107 Jun-2016 1713 Jun-2018 2436
Jul-2014 2193 Jul-2016 1835 Jul-2018 2207

Aug-2014 2237 Aug-2016 1836 Aug−2018 2054
Sep-2014 2117 Sep-2016 1948 Sep−2018 2023
Oct-2014 2034 Oct-2016 2024 Oct−2018 1988
Nov-2014 2030 Nov-2016 2181 Nov−2018 1937
Dec-2014 1938 Dec-2016 2210 Dec−2018 1972

Despite the randomness in the price series, there are always some kinds of governing laws. It is
obvious that our metal prices series is too complex and cannot be considered as a regular one. Having
applied AGO on the monitored series, we created a precondition of establishing the characteristics of
the series. The outcomes are represented in Table 2 and Figure 3.

Table 2. Monitored and AGO data of the metal price.

Jan-2013 Feb-2013 Mar-2013 Oct-2017 Nov-2017 Dec2017

Original
value ($) 2334 2366 2169 2498 2461 2510

AGO ($) 2334 4700 6869 117,481 119,942 122,452
z(1)(t) ($) − 3517 5784.5 116,232.2 118,711.5 121,197
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Figure 3. Monitored and corresponding AGO series of the lead metal price: (a) monitored; (b) corresponding.

The following matrices are used to define parameters a and b:

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(t) 1

 =

−3517 1
−5784.5 1

...
...

−121197 1

, Y =


x(2)
x(3)

...
x(t)

 =


2366
2169

...
2510

, (53)

According to Equation (7), we obtained a value of a = −0.0009282 and b = 1978.47. The grey
differential equation of the AGO series is defined as:

dx(1)(t)
dt

− 0.0009282x(1)(t) = 1978.47, (54)

The solution of the previous equation is the time response function of the following form:

x̂(1)(t + 1) =
[
x(1) +

1978.47
0.0009282

]
e0.0009282t

−
1978.47

0.0009282
, (55)

By adding the stochastic term, the previous differential equation becomes the stochastic grey
differential equation of the AGO series as follows: dx(1)(t) =

(
1978.47 + 0.0009282x(1)(t)

)
dt + 0.2887·34290.32·dW(t)

x(1)(0) = x(1) = 2334
, (56)

The corresponding solution of the SGDE is:
x̂(1)(t) = 1.000929·x̂(1)(t− 1) + 1979.39 + 9903.36·N(0, 1)
x̂(1)(0) = x(1) = 2334
∆t = 1
t = 1, 2, . . . , 60

, (57)

We performed 6000 simulations of Equation (57), and the expected AGO outcomes are represented
in Table 3.
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Table 3. Reconstructed values of the AGO series.

Date AGO Date AGO Date AGO Date AGO Date AGO

Jan-2013 2334 Jan-2014 26,059 Jan-2015 50,183 Jan-2016 74,732 Jan-2017 99,065
Feb-2013 4332 Feb-2014 28,061 Feb-2015 52,306 Feb-2016 76,678 Feb-2017 101,112
Mar-2013 6383 Mar-2014 29,955 Mar-2015 54,239 Mar-2016 78,685 Mar-2017 103,027
Apr-2013 8371 Apr-2014 32,034 Apr-2015 56,548 Apr-2016 80,722 Apr-2017 105,270
May-2013 10,246 May-2014 34,148 May-2015 58,473 May-2016 82,651 May-2017 107,197
Jun-2013 12,252 Jun-2014 36,236 Jun-2015 60,425 Jun-2016 84,754 Jun-2017 109,265
Jul-2013 14,297 Jul-2014 38,247 Jul-2015 62,413 Jul-2016 86,880 Jul-2017 111,335
Aug-2013 16,308 Aug-2014 40,377 Aug-2015 64,611 Aug-2016 89,108 Aug-2017 113,331
Sep-2013 18,467 Sep-2014 42,628 Sep-2015 66,556 Sep-2016 91,044 Sep-2017 115,381
Oct-2013 20,289 Oct-2014 44,629 Oct-2015 68,819 Oct-2016 93,047 Oct-2017 117,481
Nov-2013 22,263 Nov-2014 46,423 Nov-2015 70,700 Nov-2016 94,852 Nov-2017 119,720
Dec-2013 24,129 Dec-2014 48,235 Dec-2015 72,796 Dec-2016 97,180 Dec-2017 121,623

Applying Equation (10) on the reconstructed AGO series, we obtained the predicted series of
metal prices (see Table 4 and Figure 4).

Table 4. Predicted values of the metal price obtained by the Stochastic Grey Differential Equation
(SGDE) model.

Date Price $/t Date Price $/t Date Price $/t Date Price $/t Date Price $/t

Jan-2013 2334 Jan-2014 1930 Jan-2015 1948 Jan-2016 1936 Jan-2017 1885
Feb-2013 1998 Feb-2014 2002 Feb-2015 2123 Feb-2016 1946 Feb-2017 2046
Mar-2013 2051 Mar-2014 1894 Mar-2015 1933 Mar-2016 2008 Mar-2017 1916
Apr-2013 1988 Apr-2014 2079 Apr-2015 2309 Apr-2016 2037 Apr2017 2243
May-2013 1876 May-2014 2114 May-2015 1925 May-2016 1928 May-2017 1926
Jun-2013 2006 Jun-2014 2088 Jun-2015 1951 Jun-2016 2103 Jun-2017 2068
Jul-2013 2045 Jul-2014 2011 Jul-2015 1988 Jul-2016 2126 Jul-2017 2070
Aug-2013 2011 Aug-2014 2130 Aug-2015 2198 Aug-2016 2227 Aug-2017 1996
Sep-2013 2159 Sep-2014 2251 Sep-2015 1945 Sep-2016 1936 Sep-2017 2050
Oct-2013 1823 Oct-2014 2001 Oct-2015 2263 Oct-2016 2003 Oct-2017 2100
Nov-2013 1974 Nov-2014 1793 Nov-2015 1881 Nov-2016 1806 Nov-2017 2240
Dec-2013 1865 Dec-2014 1812 Dec-2015 2096 Dec-2016 2328 Dec-2017 1903
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Jan-2013 0 Jan-2014 212.82 Jan-2015 −105.29 Jan-2016 −290.01 Jan-2017 357.39 
Feb-2013 367.80 Feb-2014 106.43 Feb-2015 −327.16 Feb-2016 −179.88 Feb-2017 265.03 
Mar-2013 117.99 Mar-2014 159.30 Mar-2015 −140.29 Mar-2016 −205.51 Mar-2017 365.16 
Apr-2013 39.81 Apr-2014 8.10 Apr-2015 −303.38 Apr-2016 −304.85 Apr-2017 −22.18 

May-
2013 

157.21 May-2014 −17.18 
May-
2015 

66.35 
May-
2016 

−220.61 
May-
2017 

198.63 

Jun-2013 94.13 Jun-2014 18.52 Jun-2015 −121.90 Jun-2016 −−390.18 Jun-2017 64.66 
Jul-2013 2.69 Jul-2014 182.20 Jul-2015 −225.45 Jul-2016 −291.71 Jul-2017 200.08 

Aug-
2013 

163.54 Aug-2014 107.07 
Aug-
2015 

−494.10 
Aug-
2016 

−391.72 
Aug-
2017 

352.42 

Sep-2013 −74.15 Sep-2014 −133.66 Sep-2015 −260.77 Sep-2016 11.28 Sep-2017 324.36 
Oct-2013 292.91 Oct−2014 33.12 Oct-2015 −542.59 Oct-2016 21.84 Oct-2017 398.30 

Nov-
2013 

115.52 Nov−2014 236.83 
Nov-
2015 

−263.04 
Nov-
2016 

375.05 
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2017 

221.93 
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Modeling the residual error series uses window length of L = 10, T = 59, and K = 50. The residual 
error matrix (trajectory matrix) is as follows: 

𝑀 = ൣ𝜀௜,௝൧௜,௝ୀଵଵ଴×ହ଴ = ⎣⎢⎢⎢
⎡367.80 117.99 39.81 ⋯ 365.16117.99 39.81 157.21 ⋯ −22.1839.81 157.21 94.13 ⋯ 198.63⋮ ⋮ ⋮ ⋱ ⋮115.51 271.25 212.82 ⋯ 606.78⎦⎥⎥⎥

⎤
, (58)

Eigenvalues and corresponding eigenvectors of the matrix 𝑆 = 𝑀𝑀୘ ∈ 𝑅ଵ଴×ଵ଴  are shown in 
Table 6. 
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Figure 4. Monitored and predicted values of the lead metal price.

Residual errors of the SGDE model are represented in Table 5.
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Table 5. Residual errors of the SGDE model.

Date Error Date Error Date Error Date Error Date Error

Jan-2013 0 Jan-2014 212.82 Jan-2015 −105.29 Jan-2016 −290.01 Jan-2017 357.39
Feb-2013 367.80 Feb-2014 106.43 Feb-2015 −327.16 Feb-2016 −179.88 Feb-2017 265.03
Mar-2013 117.99 Mar-2014 159.30 Mar-2015 −140.29 Mar-2016 −205.51 Mar-2017 365.16
Apr-2013 39.81 Apr-2014 8.10 Apr-2015 −303.38 Apr-2016 −304.85 Apr-2017 −22.18
May-2013 157.21 May-2014 −17.18 May-2015 66.35 May-2016 −220.61 May-2017 198.63
Jun-2013 94.13 Jun-2014 18.52 Jun-2015 −121.90 Jun-2016 −390.18 Jun-2017 64.66
Jul-2013 2.69 Jul-2014 182.20 Jul-2015 −225.45 Jul-2016 −291.71 Jul-2017 200.08
Aug-2013 163.54 Aug-2014 107.07 Aug-2015 −494.10 Aug-2016 −391.72 Aug-2017 352.42
Sep-2013 −74.15 Sep-2014 −133.66 Sep-2015 −260.77 Sep-2016 11.28 Sep-2017 324.36
Oct-2013 292.91 Oct−2014 33.12 Oct-2015 −542.59 Oct-2016 21.84 Oct-2017 398.30
Nov-2013 115.52 Nov−2014 236.83 Nov-2015 −263.04 Nov-2016 375.05 Nov-2017 221.93
Dec-2013 271.25 Dec−2014 125.73 Dec-2015 −389.28 Dec-2016 −118.10 Dec-2017 606.78

Modeling the residual error series uses window length of L = 10, T = 59, and K = 50. The residual
error matrix (trajectory matrix) is as follows:

M =
[
εi, j

]10×50

i, j=1
=



367.80 117.99 39.81 · · · 365.16
117.99 39.81 157.21 · · · −22.18
39.81 157.21 94.13 · · · 198.63

...
...

...
. . .

...
115.51 271.25 212.82 · · · 606.78


, (58)

Eigenvalues and corresponding eigenvectors of the matrix S = MMT
∈ R10×10 are shown in Table 6.

Table 6. Decreasing order of eigenvalues and corresponding eigenvectors.

λ1 λ2 λ3 λ4 λ5

Eigenvalue 16852400.60 3998636.19 2460060.01 1802229.97 1332471.93
log 7.227 6.602 6.391 6.256 6.125

Contribution 0.56197 0.13334 0.08203 0.06010 0.04443

Eigenvector U1 U2 U3 U4 U5

1 −0.2696 −0.4300 0.2286 0.4210 0.2918
2 −0.2767 −0.3702 −0.3707 0.2938 0.2496
3 −0.3009 −0.3767 0.2005 0.0958 −0.2846
4 −0.3086 −0.2016 −0.4298 −0.1969 −0.4163
5 −0.3197 −0.1666 0.2992 −0.4384 −0.3432
6 −0.3336 0.0749 −0.3571 −0.4185 0.2514
7 −0.3397 0.1139 0.3876 −0.3197 0.4439
8 −0.3442 0.3538 −0.2147 0.0509 0.2956
9 −0.3317 0.3311 0.3865 0.2241 −0.1589
10 −0.3280 0.4630 −0.1502 0.4075 −0.3280

λ6 λ7 λ8 λ9 λ10

Eigenvalue 1169850.94 841474.95 679539.923 451182.92 400094.859
log 6.068 5.925 5.832 5.654 5.602

Contribution 0.03901 0.02806 0.02266 0.01505 0.01334
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Table 6. Cont.

Eigenvector U6 U7 U8 U9 U10

1 0.4615 −0.0659 0.4139 0.1834 −0.0744
2 −0.2947 −0.3348 −0.3930 −0.2625 0.2796
3 −0.2062 0.6338 −0.2718 −0.1146 −0.3254
4 −0.2387 −0.1172 0.3348 0.5331 0.0157
5 0.2606 −0.1656 0.0905 −0.4260 0.4307
6 0.3713 −0.0910 −0.1588 −0.1483 −0.5691
7 −0.1663 0.0637 −0.2896 0.5020 0.2334
8 −0.2252 0.4277 0.4966 −0.3136 0.2041
9 −0.3645 −0.4860 0.1112 −0.1246 −0.3981
10 0.4286 0.0960 −0.3347 0.1753 0.2148

The point p, which divides residual error series into the signal and noisy subset, was selected
according to the logarithm eigenvalues plot and contribution of eigenvalues (see Figure 5 and Table 6).
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Figure 5. Logarithm of eigenvalues.

The value of p was selected with respect to the contribution of eigenvalues and is p = 6.
Corresponding vectors U1, U2, . . . , U6 were included in the reconstruction phase of the residual error
series. It indicates that the reconstructed trajectory matrix will be expressed as the sum of six
reconstructed matrices, M̂ =

∑6
i=1 UiUT

i M = M̂1 + M̂2 + . . .+ M̂6. Applying the Hankelization on each
reconstructed matrix, we obtained the following six reconstructed series of residual errors (see Figure 6).
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Figure 6. Reconstructed series of residual errors: (a) Series1; (b) Series2; (c) Series3; (d) Series4;
(e) Series5; (f) Series6.

The reconstructed residual error series was obtained by summing up these six series and the result
is represented by Figure 7.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 19 
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Figure 7. Reconstructed residual error time series.
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The final predicted metal price series was obtained by adding the reconstructed residuals to the
predicted lead metal prices. The results of the model are represented in Table 7 and Figure 8.

Table 7. Predicted values of the metal price obtained by the SGDE+SSA model.

Date Price $/t Date Price $/t Date Price $/t Date Price $/t Date Price $/t

Jan-2013 2334 Jan-2014 2066 Jan-2015 1936 Jan-2016 1684 Jan-2017 2190
Feb-2013 2197 Feb-2014 2159 Feb-2015 1969 Feb-2016 1597 Feb-2017 2159
Mar-2013 2101 Mar-2014 1996 Mar-2015 1860 Mar-2016 1779 Mar-2017 2215
Apr-2013 2126 Apr-2014 2169 Apr-2015 2077 Apr-2016 1690 Apr-2017 2359
May-2013 1907 May-2014 2180 May-2015 1815 May-2016 1712 May-2017 2206
Jun-2013 2150 Jun-2014 2146 Jun-2015 1650 Jun-2016 1757 Jun-2017 2203
Jul-2013 2088 Jul-2014 2084 Jul-2015 1798 Jul-2016 1974 Jul-2017 2353
Aug-2013 2182 Aug-2014 2179 Aug-2015 1808 Aug-2016 1963 Aug-2017 2206
Sep-2013 2242 Sep-2014 2316 Sep-2015 1688 Sep-2016 1955 Sep-2017 2374
Oct-2013 2020 Oct-2014 2024 Oct-2015 1841 Oct-2016 1907 Oct-2017 2402
Nov-2013 2094 Nov-2014 1849 Nov-2015 1607 Nov-2016 2014 Nov-2017 2598
Dec-2013 2067 Dec-2014 1774 Dec-2015 1704 Dec-2016 2363 Dec-2017 2312

Note: SGDE+SSA—Stochastic Grey Differential Equation and Singular Spectrum Analysis.
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Figure 8. Predicted lead metal price time series.

The data ranging from January 2018 to December 2019 were collected to estimate the forecasting
capability of the SGDE+SSA model. Actual and forecasted metal prices and residual errors are
represented in Table 8 and by Figure 9.
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Figure 9. Forecasted series of metal prices and corresponding residual errors: (a) monitored and
forecasted metal price; (b) residual errors.
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Table 8. Forecasted metal prices.

Date Price $/t Forecasted Price $/t Error Error % |Error|%

Jan-2018 2584 2107 −478 −18.48 18.48
Feb-2018 2581 2338 −243 −9.42 9.42
Mar-2018 2390 2235 −155 −6.49 6.49
Apr-2018 2352 2479 127 5.38 5.38
May-2018 2361 2504 143 6.04 6.04
Jun-2018 2436 2400 −36 −1.48 1.48
Jul-2018 2207 2679 472 21.40 21.40

Aug-2018 2054 2437 383 18.66 18.66
Sep-2018 2023 2490 467 23.11 23.11
Oct-2018 1988 2197 209 10.53 10.53
Nov-2018 1937 2501 563 29.09 29.09
Dec-2018 1972 2606 634 32.15 32.15
Jan-2019 1997 1989 −8 −0.41 0.41
Feb-2019 2063 2210 147 7.14 7.14
Mar-2019 2046 2032 −14 −0.68 0.68
Apr-2019 1939 2263 324 16.69 16.69
May-2019 1815 2240 425 23.42 23.42
Jun-2019 1900 2123 223 11.76 11.76
Jul-2019 1976 2373 397 20.10 20.10

Aug-2019 2045 2120 75 3.67 3.67
Sep-2019 2072 2156 84 4.07 4.07
Oct-2019 2184 1857 −327 −14.99 14.99
Nov-2019 2021 2142 121 6.00 6.00
Dec-2019 1901 2258 357 18.80 18.80

Accuracy of the developed methods used for modeling the lead metal price series is represented
in Table 9.

Table 9. SGDE and SGDE+SSA model accuracy.

Model Phase MAPE

SGDE+SSA
Prediction (Jan-2013 to Dec-2017) 4.37%
Forecasting (Jan-2018 to Dec-2019) 12.92%

Note: MAPE—Mean Average Percentage Error.

Alipour et al. [9] made a comparison between the linear prediction method ARIMA, nonlinear
TGARCH, and stochastic SDE. We used their results to check the effectiveness of our model (Table 10).

The comparative analysis of testing period performance of the ARIMA, TGARCH, SDE,
and SGDE+SSA techniques, using MAPE criterion, has been accomplished and is shown in Table 10.
According to the table, for the ARIMA, TGARCH, SDE, and SGDE+SSA models, the MAPE values are
20.90%, 54.36%, 15.61%, and 2.04%, respectively. The results indicate that the prediction capability
of the SGDE+SSA model is higher in comparison with ARIMA, TGARCH, and SDE. It can be seen
that the SDE model is superior over the linear and nonlinear models. It indicates that our approach of
merging nonlinear and stochastic techniques is a well-stated hypothesis.
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Table 10. The comparison between ARIMA, TGARCH, SDE, and SGDE+SSA.

Time Price ($/t) ARIMA (2,1,3)
($/t)

TGARCH (1,1)
($/t) SDE ($/t) SGDE+SSA

($/t)

Jan.2015 5830.54 6305.05 8227.29 5862.61 5830.54
Feb.2015 5729.27 6319.53 8247.58 5862.49 5651.84

March 2015 5939.67 6334.01 8267.89 5858.46 5919.15
April.2015 6042.09 6348.48 8288.19 5870.12 6197.98
May 2015 6294.78 6362.96 8308.50 5892.55 6188.28
June 2015 5833.01 6377.43 8328.80 5919.63 5738.34
July 2015 5456.75 6391.91 8349.11 5948.18 5555.65

Aug. 2015 5127.30 6406.38 8369.41 5984.84 5247.37
Sept. 2015 5217.25 6420.86 8389.72 6014.61 5159.78
Oct. 2015 5216.09 6435.34 8410.01 6039.24 5022.23
Nov. 2015 4799.90 6449.81 8430.33 6055.98 4952.51
Dec. 2015 4638.83 6464.29 8450.62 6091.78 4551.01
Jan. 2016 4471.79 6478.76 8470.93 6117.63 4595.83
Feb. 2016 4598.62 6493.24 8491.23 6110.95 4627.92

March 2016 4953.80 6507.72 8511.54 6129.23 4850.03
April.2016 4872.74 6522.19 8531.84 6170.89 4876.21
May 2016 4694.54 6536.67 8552.15 6206.12 4708.76
June 2016 4641.97 6551.14 8572.45 6218.98 4629.30
July 2016 4864.90 6565.62 8592.76 6243.33 4867.50

Aug. 2016 4751.67 6580.10 8613.05 6263.15 4637.87
Sept. 2016 4722.20 6594.57 8633.36 6291.74 4847.93
Oct. 2016 4731.26 6609.05 8653.66 6313.25 4925.22
Nov. 2016 5450.93 6623.52 8673.97 6336.70 5260.36
Dec. 2016 5660.35 6638.00 8694.27 6341.77 5592.02
Jan. 2017 5754.56 6652.48 8714.58 6362.59 5886.36
Feb. 2017 5940.91 6666.95 8734.88 6361.37 5863.69

March 2017 5824.63 6681.43 8755.19 6373.59 5742.58
April.2017 5683.90 6695.90 8775.49 6382.08 5818.67
May 2017 5599.56 6710.38 8795.80 6400.39 5463.98
June 2017 5719.76 6724.86 8816.10 6412.17 5778.85
July 2017 5699.48 6739.33 8836.40 6406.76 5976.38

Aug. 2017 5978.60 6753.81 8856.70 6395.39 5839.70
Sept. 2017 6478.35 6768.28 8877.01 6443.90 6125.46
MAPE (%) 20.90 54.36 15.61 2.04

Notes: TGARCH—Threshold Generalized Autoregressive Conditional Heteroskedasticity; ARIMA—Autoregressive
Integrated Moving Average.

4. Conclusions

Strategic planning is very important in the mining industry (business) to make a profitable and
sustainable production plan. The main source of uncertainty is metal price, which has a significant
influence on planning. The aim of this paper was to understand and describe the behavior of metal
price. The proposed approach used Stochastic Grey modelling to roughly predict the next price from
a set of recent data, and then used the Singular Spectrum Analysis to fit residual error. Through
simulation results, this paper offers an effective novel model to deal with the high fluctuation sequence,
such as metal price series. It offers a better accuracy prediction than traditional Grey modelling.
This study is important for metal mining companies, because they can forecast the metal price behavior.
The developed model enables companies to reduce the metal price risks and to increase the efficiency
of their operations. Comparative analysis has shown that the developed model can be applied to
forecast any mineral commodity. Also, it can be applied for any time series analysis and to forecast
future values of many economic commodities having high fluctuation.

Future research will be directed to the creation of stochastic-grey differential equation, which will
be capable of incorporating jumps into metal price forecasts. The length of observed time series data
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plays a key role in modelling. A small sample of data can increase the accuracy of the prediction, but it
is nonsufficient for capturing the real behavior. Also, this issue can be the subject of further research.
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