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Abstract: Modelling of comfort with the use of neural networks in modern times has become 

extremely popular. In recent years, scientists have been using these methods because of their 

satisfactory accuracy. The article proposes a method of modelling feedforward neural networks, 

thanks to which it is possible to obtain the most efficient network with one hidden layer in terms of 

a given quality criterion. The article also presents the methodology for modelling a PMV index, on 

the basis of which it can be demonstrated whether the network will work properly not only on paper 

but in reality as well. The objective of this work is to develop a performance model allowing the 

effective improvement of all electrical and mechanical devices affecting the energy efficiency and 

indoor environment in smart buildings. To achieve this, several attributes of indoor environment 

are included, namely: air leakage as a connection to the outdoor environment, but also as 

uncontrolled component of energy, ventilation as delivery and distribution of fresh air in the 

building space, individual ventilation on demand indoor air quality (IAQ) in the dwelling or as a 

personal IAQ control, source control of pollutants in the building, thermal comfort, temperature, air 

movement and humidity control (humidity modifiers, i.e., buffers different from the air 

conditioning radiation from cold and hot surfaces bringing forward a question about the strategy 

of the process control. One may either develop a series of control models to be synthesized later or 

one can use one over-arching characteristic and use its components for operating the control system. 

The paper addresses the second strategy and uses the concept of PMV for a criterion of broadly 

defined thermal comfort (including ventilation and air quality). 

Keywords: PMV index; feedforward neural network; intelligent construction; intelligent building; 

thermal comfort modelling 

 

1. Introduction 

A team of collaborating authors in the US and Poland address the issue of energy efficiency of 

modern buildings. The scope of work includes preheating of ventilation air [1–4], multi-criterial 

analysis [5,6], the development of an integrated approach, called Environmental Quality 

Management [7–9] in the context of building physics [10,11], fuzzy logic [12] or artificial neural 

networks [13,14]. The greater focus on neural networks (NNs) is justified by the observation that 

currently used energy and hygrothermal models are parametric and may not be suitable for 

application in real-time building of automatic controls [14,15]. This statement is even more justified 

when considering their application to thermal comfort evaluation. 

The evaluation of thermal comfort is so important because the indoor environments have 

become humans’ dominant habitat. The research [16] proves that more than 90% of our time is spent 

indoors. The productivity, health and well-being of building occupants depend on four indoor 
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environmental quality aspects (IEQ) [17]: acoustics, indoor air quality, visual comfort [18,19], thermal 

comfort. Studies have shown that thermal comfort is the dominant aspect of IEQ and that it is related 

to occupant productivity [20]. 

Nowadays, the concept of comfort is determined by statistical evaluation of the degree of 

satisfaction with a specific factor, e.g., the thermal environment [21–23]. This concept depends on the 

individual psychological and physiological condition of a given person in the specified environment 

[24–26]. One’s psychological and physiological state depends on many factors [27] such as 

environmental or individual factors [27]. Environmental factors include, among others, measurable 

quantities such as: air temperature, air velocity, relative air humidity, radiation temperature, 

asymmetry of temperature distribution in a room [27]. The individual factors are metabolism, thermal 

insulation of clothing [27]. 

The concept described above is extremely important in the construction industry [28]. This 

industry consumes approximately 40% of energy [29,30] and as space heating or cooling uses about 

50% of it, therefore a large amount of energy depends on how efficient the energy management 

system in a building is. It was estimated that efficient energy management systems in buildings can 

save up to 8% of the energy consumption [31]. 

In view of the indicated facts, in research environments, the subject of reducing energy 

consumption correlated with comfort issues is very popular [1–3,5–10,32–34]. It is worth mentioning, 

for example, the research presented in [34], which showed reduction in energy consumption when 

taking into account thermal comfort in controlling air conditioning temperature. 

It should also be noted that studies of comfort are not limited to energy consumption, since they 

also have to reduce incidence rates and increase efficiency [4,11,35–37]. 

1.1. The Novelty and Purpose of the Work 

The article deals with the present research gap identified by research societies and described in 

detail in [22]. The main novelty in the paper proposed by the author is a method (Sections 2.4.3 and 

2.6), which will find and examine the most important properties of structures of a feedforward neural 

network with one hidden layer in such a way that the PMV index is the best in terms of the selected 

evaluation criterion. In relation to the selected criterion, this method also identifies the best neural 

network among all examined. 

The description of such a method for NNs with one hidden layer is the main purpose of the 

work. The presented method, with appropriate data preparation (Section 2.5.1), allows to fill the 

research gap noticed during the review of the world literature. What is worth noting in the 

publications dealing with the topic of filling the aforementioned research gap with the use of NNs 

[12,22,26,30,38–41] is that there is a tendency in which the results of a specific NN are presented. 

These articles do not mention whether a robustness study (Section 3.1) as well as an overfitting and 

underfitting study (Section 3.2) of the NN structure were performed. In the article, the author 

presents such a study and wishes to point out that when modelling comfort issues, omitting 

information about robustness studies or overfitting and underfitting studies may lead to incorrect 

conclusions. Hence, a broader description of these issues is included in Section 2.6. 

The article presents the identification algorithm of the best neural network, which gives the 

author of the network information on how to find the optimal number of neurons for a specific 

network layer when modelling the PMV index. This algorithm is used for networks with one hidden 

layer, however, in the future it will be used for deep neural network (DNN) analyses as it is done for 

deep belief network (DBN) [42]. The author of the work, during the review of the world literature on 

the discussed issue, noticed that the identification of the structure was not commonly performed. In 

the author’s opinion, this should be done especially for NNs with one hidden layer [22,40,41] (see 

Section 4—Chance of choosing the wrong structure). 

The research presented in the article is the first part of a broader look at the analyzed issue. The 

advantage of this part is the possibility of interpreting the influence of the network input arguments 

on the PMV index describing the individual thermal comfort thanks to the special form of the 

equation (Appendix D) recognized by the presented method (Sections 2.4.3. and 2.6). This advantage 
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derives from the fact that the models formulated using NNs with one hidden layer are much simpler 

than those based on DNN. 

Another novelty is the presentation of problems that one should expect when modelling a PMV 

index if feedforward neural networks with one hidden layer are used for this purpose (Figure 1). The 

article also explains when this approach can be used. It is extremely important that the person who 

models a PMV index using NN does not make any basic mistakes, which at a later stage of the 

research will result in, for example, the lack of applicability of the designed network due to its 

sensitivity to changes of input data values (Section 2.6). 

 

Figure 1. The course of Relative Errors made by the network for the best possible structure (Equation 

(5)) of feedforward type with one hidden layer. Results obtained for the case without learning data 

selection. 

1.2. The Structure of the Paper 

The article consists of five sections. 

In Section 1, the general research issues and the novelty and purpose of the work are described. 

Section 2 includes the research methodology and the data used. 

In Section 3, the results of the research that allowed to identify the best NN were presented 

according to the methodology from Section 2. 

In Section 4, the obtained results are discussed and compared with those obtained in other 

studies. The implications of the study results were also discussed. 

In Section 5, the six most important conclusions of the presented research are included, along 

with a description of the future research program. 

2. Materials and Methods 

2.1. Personalized Thermal Comfort Models 

Predicted mean vote (PMV) [43] and the comfort zone as defined by the American Society of 

Heating, Refrigerating and Air Conditioning Engineers (ASHRAE55) [44] are the most popular 

methods of assessing thermal comfort. The first of these was presented by Fanger, P.O. [44] and then 

incorporated in the ISO7730 standard [22]. 

In addition, at the moment it is worth highlighting two main standards of adaptive models. The 

first is the already mentioned ASHRAE55 adaptive model [45], and the second is the European 
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Standards 15,251 (EN15251) adaptive model [46]. It should be noted that the above-mentioned 

models are used quite widely in international standards, however, the need to improve their 

forecasting efficiency is noticeable [21], especially in the case of individual comfort [47,48]. 

This is because these models are not very flexible in terms of the comfort characteristics of 

individual people and cannot be updated according to them [21]. In addition, it is worth mentioning 

that they cannot currently be reformulated [49]. An important reason for this is that the main two 

models [45,46] are designed to predict the average level of comfort for a particular large 

representative group. As a consequence, they contradict the analysis of comfort issues taking into 

account the individual aspects of the user living in a given area and working in a specific 

environment. Instead, they aim at showing some significant generalizations. 

The Present Research Gap, Literature Review 

There is a wide variety of conducted studies on thermal comfort and building energy 

consumption with the use of artificial intelligence (AI). For example, in [50] an ANN and EnergyPlus 

were used to collect data of the Administration Building of Sao Paulo University to predict building 

energy consumption. In [51], an artificial neural network (ANN) was designed to simulate energy 

consumption according to different exterior wall materials. AI to predict building energy 

consumption is also presented in [52–55]. In [56], an ANN energy consumption prediction model for 

HVAC systems in office buildings was developed, but the model has fewer input parameters. In fact, 

a general description of how AI techniques may help for energy efficient HVAC system design was 

described in [57]. From the point of view of the use of AI for individual thermal comfort, it may be 

beneficial to familiarize oneself with [38,58,59], where neural networks are used to evaluate the issue 

and regulation in a building. In addition, AI techniques are currently associated with IoT [60] in the 

thermal comfort controlling system for buildings. A fully comprehensive literature review for 

artificial intelligence for efficient thermal comfort systems from April 2020 was conducted in [61]. 

In light of the above, there is a gap in comfort studies (described in more detail in [22]), which 

consists of the lack of flexibility of the models describing it. Therefore, there is a need to propose a 

comfort modelling method that will be adapted to specific data received in a specific region of the 

world for a specific group of people. Thanks to this, one can talk about a kind of individual approach 

to the topic, while taking into account a set of features representing a given community. The 

described gap was noticed some time ago, thanks to which there is currently a flood of publications 

on this subject [1–3,5,7,10–12,22,27–35,45–47]. It is worth quoting the work in [22], in which it is stated 

that the establishment of an individual thermal comfort evaluation is essential to achieving 

personalized thermal environment management. 

Thanks to scientists from all over the world, the issue of comfort has been gradually developing. 

It may be interesting that the researchers are searching for solutions on the topic described above by 

using machine learning and deep learning [12,22,26,30,38–40]. In most cases, this trend is based on 

PMV index modelling with the use of feedforward neural networks. 

For example, in one of the latest publications of this type [22] (2019), a system based on the 

Building Information Model (BIM) and artificial neural networks (ANN) is used to improve energy 

saving efficiency under the premise of increasing human comfort. This system consists of, among 

others, an ANN predictive model considering the PMV index. 

Another position of this type is [26], where the authors use “Artificial Neural Network (ANN) 

due to its ability to approximate any nonlinear mapping.” In this position, the authors model the 

PMV index and state that “using ANN to train, we can get the input-output mapping of HVAC 

control system (…); we can propose a practical approach to identify thermal comfort of a building” 

[26]. 

Depending on the research team dealing with the described subject, neural networks of different 

levels of complexity are proposed. For example, in [38] a neural network (NN) thermal comfort 

evaluation model is proposed with only four environment variables as the input values. In this work, 

the model was based on the backward propagation algorithm, which ignores the differences of 

individual thermal sensation. On the other hand, [41] presents the use of six different algorithms, 
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including those correlated with NN (CTree, GPC, GBM, kSVM, RF, and regLR) used to develop 

personal comfort models. This position already includes environment data and the behavior of users 

of the Personal Comfort System (PCS) act as input variables. It is also worth mentioning that the 

authors of this work use boxplots to present certain features such as prediction accuracy or variable 

combinations, which is a very good solution. 

The use of boxplots as a tool for visualizing and assessing the accuracy of calculations correlated 

with comfort modelling using ANN can also be seen in [40]. The author of the publication proposes 

a complex ANN model for predicting thermal comfort, taking into account three variables of current 

climatic conditions, four indoor environmental variables, and two individual variables, building 

types, as well as a body variable. The essence of this paper is the fact that it demonstrates the high 

potential of using ANN in evaluating individual thermal comfort. 

It is important to note that so far a quite popular network architecture in terms of applicability 

to the described issue has been the classic one [42], consisting of at most one hidden layer and one 

output layer [22,40,41]. However, recently, an approach using deep learning with different levels of 

network structure complexity has been used [26,30,38]. In view of the above, it is worth looking at 

these works, knowing at the same time that it is time to propose some tools that will help for better 

modelling of already used structures. 

2.2. Classic PMV Thermal Comfort Evaluation Model 

Studies on thermal comfort carried out over the last fifty years or more show that many factors 

influence it. Although the knowledge about these factors is currently recognized to a satisfactory 

degree [62–65], the formulation of a mathematical model involving all of them is an issue that has not 

yet been solved. 

The first studies conducted on such a model have already yielded reliable results. These studies 

were conducted by Fanger, P.O. [43], who proposed an equation to estimate the average vote of a 

large group of persons on the thermal sensation scale. In this equation, Fanger proposed that the 

PMV index be described using six factors: air temperature, air velocity, clothing insulation, humidity, 

mean radiant temperature and metabolic rate. 

2.3. Deep Learning or Classic Network Structure 

In the world literature, there is a noticeable trend, in which along with modelling of the comfort 

index with the use of NN, a special case of a neural network with a specific structure [22,26,30,38–

40,42] is presented. Usually, the authors of these works propose a network that functions properly 

under certain physical conditions. However, these conditions may not be met for another social group 

or building type. Therefore, the proposed networks are suitable for a fairly narrow group of cases in 

which they work with satisfactory performance. The important thing here is that the authors of the 

works dealing with the topic of comfort modelling use various learning techniques and methods to 

achieve the intended goal. Two dominant paths can be distinguished: the first using classic NN 

structures with one hidden layer [22,40,41] and the other using deep learning [26,30,38]. 

At this point, however, the question arises: why and in which case is it worth using the classic 

structure of a neural network with one hidden layer, and when to model the issue using deep learning 

methods? The answer to this question is quite clear and it results from the very functioning of neural 

networks. 

While using classic neural networks with one hidden layer, one usually employs mapping 

methods that find the relationship between the network’s input arguments (“inputs”) and its 

reference output value (“target”). In this case, the network learning process is designed to find, for 

example, a function mapping that will best combine the mentioned input arguments with the output 

value. 

This means that if the authors use neural networks with one hidden layer, then it is necessary 

for them to prepare and properly process the data. In this case, it is the author of the network model’s 

responsibility to properly select the learning data. During such selection, the author of the network 

should independently choose the learning data so that they fully characterize the most important 
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features of the studied social group, taking into account the nature of the building and other 

conditions. In order for authors to do this, they are expected to have expert knowledge, without 

which it becomes practically impossible. Lack of this knowledge means that despite the application 

of network structure optimization, the models will be burdened with unacceptable errors, which is 

shown in Figure 1. In addition, poorly selected data in this case distort the process of mapping the 

phenomenon. 

In view of the above, if the authors of the network use a classic structure with one hidden layer, 

then the correctness of the modelled features depends on their expert knowledge, since such a 

structure cannot identify them. 

Unlike classic neural networks with one hidden layer, deep learning methods introduce more 

hidden layers to the network structure. The consequence of this is the extension of some kind of 

network awareness of learning data. This is due to the introduction of additional hidden layers that 

allow identification of common features occurring between the input arguments of the network. This 

identification occurs in the network learning process. Thanks to these identified features, the initial 

value is estimated. 

The main difference between classic feedforward networks with one hidden layer and networks 

using deep learning is that the latter are able to identify the characteristics of the data assigned to the 

learning process, while the former cannot. In addition, due to the greater complexity of the networks’ 

structure and their expanded capabilities, when using deep learning methods, much greater expert 

knowledge in the field of modelling is required from the network designer. During the modelling 

process, the designer focuses on choosing structure, teaching technique and network validation 

methods so that the characteristics of the learning data are detected in the best possible way. Unlike 

the classic structures of neural networks with one hidden layer, using “deep” structures does not 

require expert knowledge related to the modelled object. This does not mean, however, that the 

knowledge is superfluous, because some awareness of phenomena correlated to the modelled object 

is necessary when choosing the number of hidden layers and the number of neurons in a given layer. 

This selection is extremely important, as it is responsible for the number of identified features and 

the quality of modelling. 

In conclusion, in order to use feedforward neural networks with one hidden layer, expert 

knowledge associated with the modelled object and correlated phenomena is obligatory. It is used to 

properly select data so that they characterize the features of the object. On the other hand, while using 

“deep” networks, this expert knowledge is not required. Nevertheless, certain awareness of the 

functioning of the modelled object is necessary. This is due to the ability to identify the features of 

the object by using more hidden layers. Therefore, expert knowledge in this case is shifted towards 

issues related to neural networks, and not the modelled object itself or the phenomena correlated 

with it. 

2.4. Data Processing, Network Structure, General Equation, Structure Identification Method 

Proper preparation of training data is crucial for modelling using a neural network with one 

hidden layer. Due to their diverse specificity, this chapter will not describe how to select them. This 

is because each case for modelling the PMV index for a specific group of people can have completely 

different features. As already mentioned, the identification of these features requires expert 

knowledge, preferably combined with knowledge in the field of feature engineering [40]. 

However, there are some data processing techniques that, as confirmed by studies [66–71], 

increase the mapping quality of feedforward neural network with one hidden layer. These techniques 

include normalization methods, for example the “mapminmax” method that has satisfactory 

convergence necessary for the PMV index modelling. It should be noted that the use of the 

“mapminmax” method is not mandatory and that the effectiveness of normalization depends on the 

specific case of selected learning data. 
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2.4.1. Data Processing—The Mapminmax Method 

Data normalization in artificial intelligence methods is mainly used to process data so that the 

influence of the value of the input arguments matrix of the � network is at the same maximum level 

[40]. Thanks to this procedure, the individual arguments of the input matrix �� can be treated as 

equivalent in terms of their impact on the output value of the network �. The use of such a technique 

involves the pre- and postprocessing of data, because if the data are transformed into another form, 

after being processed by the network, they must be reduced to values corresponding to the originals. 

The introduction of pre- and postprocessing is usually a deliberate procedure, because, as research 

shows [66–68,72], it allows obtaining better convergence of the results of the network (outputs) with 

the data obtained from the measurements (targets). However, one should bear in mind that it 

depends on the choice of activation function. If a sigmoid function is chosen as the activation function 

[42], then it is recommended to introduce normalization and denormalization of data. On the other 

hand, in case of selecting the ReLU function as the activation function, this is not required. It should 

be noted that the ReLU function is commonly used in “deep” networks rather than in those with one 

hidden layer described in the article. 

Therefore, for modelling the PMV index, the author recommends using the “mapminmax” 

normalization method. The research results presented below take into account the use of this method. 

The mapminmax function is a linear transformation into the interval of given boundaries [70]: 

���� =  
������ − ������

������ − ������
∙ (���′��� − ���′���) + ���′��� (1) 

where ������ —original value, ���� —transformed value, ������  and ������ —original interval 

boundaries, ���′���, ���′���—desired range boundaries, here from −1 to 1. 

2.4.2. The Network Structure and its General Equation 

The structure of the feedforward neural network with one hidden layer is shown in Figure 2. In 

this figure, the blocks of pre- and postprocessing data are shown in green. In turn, the particular 

layers of the network were drawn against a yellow background. These layers were marked according 

to the recommendations in item [73]. Namely, the hidden layer is marked with the index {1}, while 

the output layer is marked with the index {2}. Activation functions were marked with the “activ” 

subscript. The network weights are designated as W����_��, where neur_id represents designation of 

a neuron. A similar procedure was used for bias b����_��. 

 

Figure 2. The general structure of a feedforward neural network with one hidden layer. All symbols 

are explained in the text. 
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The structure from Figure 2 represents Equation (2) in the general form: 

��� = denorm��������� ��{�}
�����

��{�}

∙ ��{�}
�����

��{�} ∙ norm���������(�) + �{�}�� + b�
{�}

�� 
(2) 

where: 

norm���������—data preprocessing operation, 

denorm���������—data postprocessing operation, 

�—input data vector, 

�{�}—matrix of weights of input arguments for the hidden layer, 

�{�}—column vector of biases for the hidden layer, 

�{�}—number of neurons in a hidden layer, 

�{�}
�����

(���{�})—hidden layer activation function, 

���{�}—argument of the hidden layer transfer function, described as: 

���{�} = �{�} ∙ � + �{�} (3) 

�{�}—vector of weights of input arguments for the output layer, 

b�{�}—bias for the output layer, 

�{�}
�����

(���{�} )—output layer activation function, 

���{�}—argument of the output layer transfer function, described as: 

���{�} = �{�} ∙ �{�} + b�
{�}

 (4) 

���—output value of the NN. 

The matrices and vectors of Equation (2) are as follows: 
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2.4.3. The Method Identifying Structures with the Best Number of Neurons in a Hidden Layer and 

the Best Neural Network 

The complexity of the structure of a neural network with one hidden layer in the analyzed case 

depends on the number of neurons in the hidden layer. The parameter that characterizes this 

complexity is the value of �{�}. It determines the size of the matrices �{�} , �{�} and �{�} and it 

characterizes the modelled phenomenon together with the data assigned to the learning process. 

The essence of proper selection of �{�} is that its value is neither too small nor too high. It turns 

out that incorrect selection of the value of �{�} leads to undesirable phenomena such as overfitting 

or underfitting [70], and others [42]. 
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Therefore, it is recommended to choose the number �{�}  so that it meets a certain assumed 

criterion of the quality of the mapping. For this purpose, the author recommends the use of the 

algorithm shown in Figure 3. After completing the procedure presented in this figure, it is necessary 

to assess whether the selected structure is characterized by repeatability of the obtained results and 

whether the impact of overfitting or underfitting is negligible. An example of such assessment will 

be presented in further sections of the article. 

In the algorithm, the range of �{�} from 1 to 50 was selected due to the specificity of the data for 

NN. This range was chosen in order to show that above a certain number of neurons in the hidden 

layer, the network is not suitable for use. 

 

Figure 3. The algorithm for identification of the best possible value of �{�} in the feedforward neural 

network with one hidden layer model. On the left side: the parent procedure P1; on the right side: the 

nested procedure P2. 

The algorithm shown in Figure 3 aims to identify the best possible complexity of the neural 

network structure in terms of the chosen evaluation criterion. This algorithm also enables indication 

of the best network obtained for this criterion. It consists of two procedures: P1 and P2. It consists, in 

crude terms, in training all possible structures of the feedforward two-layer neural network in 

sequence, performing their validation and testing the correctness of their functioning. The 
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aforementioned identification of the best possible dimension of the matrix was associated with 

checking fifty different network structures differing in number of neurons �{�} in the hidden layer. 

In the algorithm, this number increases by 1 in the range of 1 to 50. Due to the fact that in the first 

iteration of the network learning process, the initial values of weights and bias in neurons are 

assigned randomly, calculations for each of the examined structures with a specific number of 

neurons in the hidden layer are repeated several times. In the algorithm, each such calculation is 

indexed as �������ℎ and numbered consecutively from 1 to 10. The described repetitions of the 

learning process of the same structures indexed �������ℎ are necessary, because thanks to them the 

probability of obtaining a minimum global performance function increases [66,74]. On the other 

hand, lack of such a procedure may lead to stopping of the learning process in the place of a minimum 

local performance function occurrence, which would lead to erroneous conclusions regarding the 

usefulness of a particular network structure. Repeating the complete learning process several times, 

including network training, validation and testing, has another advantage. This procedure enables 

the study of robustness of the considered neural network structures (Sections 2.6.1 and 3.1). The 

author recommends that this test be carried out on the basis of specially created boxplots [75], as 

shown in the case of [39] and as it will be shown in Section 3.1. 

As already indicated, the described algorithm identifies the best possible structure in terms of a 

certain quality criterion. This identification takes place in the block: Are the currently obtained results 

better than “The best results so far”? 

This criterion should be selected depending on what is expected from the designed neural 

network. Usually, expectations come down to the choice between two criteria: 

1. When the network designer wants to achieve the best possible quality of function mapping to 

the data assigned to the learning process and to independent data that may occur when the network 

is used. In this case, it is recommended to select the criterion of the minimum value of Maximum 

Absolute Relative Error [76] calculated for the network testing stage (2) obtained for the given 

�������ℎ (Equation (5)): 

�������� = min�(����������)�{�},��������� (5) 

where: 

��������—main criterion for choosing the best neural network structure, 

�{�}—number of neurons in the hidden layer, 

����������—Maximum Absolute Relative Error obtained for the testing stage: 

���������� = ��� ��
������ − ��������

������
�� (6) 

where: 

������—target for the network in testing stage, 

��������—output for the network in testing stage. 

2. When the network designer cares mostly about the speed of the network, and then about the 

quality of its function mapping to the data assigned to the learning process and independent data, 

this may occur when the network is used. In this case, the decisive factor is the minimum network 

complexity that ensures satisfactory results in terms of compliance of the network results (outputs) 

with its target results (targets). This factor is dominant because the speed of network operation 

depends mainly on three conditions: computing performance of the calculating machine, precision 

of significant numbers depending on the data format, and the computational complexity depending 

on the size of the network structure. Due to the fact that the network designer usually has no influence 

on the first two conditions, the speed of the network is determined by the size of the hidden layer. 

The requirements given in point 2 can be met if one chooses the following identification criterion: 

�������� = min �(����������)
����

{�}
,��������

� (7) 

where: 

��������—main criterion for choosing the best neural network structure, 
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����
{�}

—the smallest number of neurons in the hidden layer, 

����������—maximum absolute relative error obtained for the testing stage. 

The criteria listed above are examples and may change depending on the modelled 

phenomenon. The decision to propose a minimum value of Maximum Absolute Relative Error (2) 

results from the specifics of this indicator. The indicator for the absolute value of the network output 

(|����||) guarantees that each of them will be in the range of Absolute Relative Error from zero to 

maximum absolute Relative Error [77,78]. Consequently, it gives information about the absolute 

value of the maximum possible error of the mathematical model [79–81] represented by the already 

taught neural network. This criterion only includes data for the testing stage. This is a deliberate 

procedure, because if the taught neural network commits a Minimum Relative Error in a value for 

data that have never been taken into account at the stage of network training and its validation, then 

its results should be the least different from the actual values. It should also be noted that the results 

obtained from the testing stage assess the likelihood of occurrence of the phenomenon of 

“overfitting”, which becomes smaller the smaller the difference in network response (��������� ) 

relative to the target values of ������. 

Analyzing the criteria (14) and (16), one can see that in the mathematical description the main 

difference between them is the replacement of �{�} by ����
{�}

. This procedure has significant effects in 

the form of transferring the main emphasis of calculations from aiming at achieving the best quality 

function mapping to the speed of the neural network. 

It is worth noting that meeting the criteria (14) or (16) initially identifies the best network 

structure. However, the final assessment of the applicability of the network structure should only 

take into account those structures that: 

I. show robustness to changes of initial values of weights and bias in network neurons, 

II. are characterized by negligible impact of overfitting or underfitting. 

Condition I concerns the network’s robustness to the initial values of weights and bias and it is 

introduced because of the desire to indicate the features of the mathematical model of the neural 

network that ensure the highest possible repeatability of the results of the presented research issue 

[14,78]. 

Condition II shows whether the network has memorized the data assigned to the learning 

process or whether it is not too simple. 

The check of both these conditions will be presented later in the article with the participation of 

measurement data. Here, however, it should be emphasized that from a mathematical point of view, 

meeting the criteria (14) or (16) is a necessary condition. However, the fulfilment of Condition I and 

II is a necessary and sufficient condition leading to full network applicability. 

2.5. Data for NN and Chosen Learning Specification 

This subsection presents a description of chosen examples of learning data and the selection of 

parameters characterizing the size and structure of feedforward networks with one hidden layer. The 

subsection is the final part of the paper that describes the theoretical stage of PMV index modelling 

and begins the practical stage, in which the assessment of modelling quality and the possibility of 

using the taught neural network is presented. The calculations were made using the MATLAB 

environment version 9.8.0.1417392 (R2020a), update 4, license number: 214849, with Deep Learning 

Toolbox, Version 14.0, (R2020a). 
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2.5.1. Data for NN 

Measurement data titled “Langevin Data Legend” by Jared Langevin (jared.langevin@lbl.gov) 

from Drexel University, Department of Civil, Architectural, Environmental Engineering was used to 

model the PMV index. The source of the data was [82]. The choice of data for the example was related 

to the fact that on their basis a case study on tracking human-building interaction described in [23] 

had already been prepared. The research object was a medium-size office with an area of 

approximately 58,000 square feet with a variable air volume (VAV) system, operable windows and 

adjustable thermostats, located in Philadelphia, PA (Center City). The building was described in 

detail in [23], which also contains a description of the measurements, their results and analyses. In 

[23], there are also graphs and histograms describing data distributions and their specificity. The data 

used for the NN was collected in the period between July 2012–July 2013. These data were registered 

at fifteen-minute intervals on local thermal conditions, related behaviors, and comfort of twenty-four 

occupants. The summary of the data was created on 20 July 2015 and contains a total of 840,984 

measurement samples along with the results of their analyses. The data cover a total of seven 

categories of results: 

a. general, 

b. environment, 

c. personal characteristics, 

d. comfort/productivity/satisfaction, 

e. behaviour, 

f. personal values, 

g. model. 

The total number of parameters included in the aforementioned categories is 118, and their 

detailed descriptions can be found in [82]. From the 118 parameters mentioned above, those 

representative for PMV index modelling were selected. The choice of these parameters was associated 

with the specificity of data and the scientific experience of various researchers, which were described 

in [22,28,38]. Finally, for the needs of modelling, 20 parameters were selected, which are arguments 

for the PMV index model for the said building. These arguments were written in the � matrix 

(Equation (4)). The elements of this matrix, along with a description of the parameters, are given in 

Table 1. The data described also contained the PMV index for this building [23,82]. The values of this 

index were the reference output values of the ��  network (Table 2). 

Table 1. Elements of the input arguments matrix of the X network together with their description. 

Input 

Argument 
Category Name Type 

Units (if 

Applicable) 

Range of the 

Variable 

�� Environment Indoor ambient temp. Continuous °C [16.76, 25.79] 

�� Environment Indoor relative humidity Continuous % [14.25, 72.57] 

�� Environment Indoor air velocity Continuous m/s [0.026, 0.031] 

�� Environment 
Indoor mean radiant 

temp. 
Continuous °C [16.76, 25.79] 

�� Environment Indoor CO2 Continuous ppm [1.2, 876.7] 

�� Environment Outdoor ambient temp. Continuous °C [–11, 35] 

�� Environment 
Outdoor relative 

humidity 
Continuous % [21, 100] 

�� Environment Outdoor air velocity Continuous m/s [0, 12.5] 

�� 
Personal 

characteristics 
Clothing level Continuous CLO [0.22, 0.99] 

��� 
Personal 

characteristics 
Clothing level (+ chair) Continuous CLO [0.32, 1.09] 

��� 
Personal 

characteristics 
Gender Discrete -- 2 

��� 
Personal 

characteristics 
Age Discrete Years 32 

��� 
Personal 

characteristics 
Office type Discrete -- 3 
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��� 
Personal 

characteristics 
Floor number Discrete -- 1 

��� Behavior 
Current thermostat 

cooling setpoint 
Continuous °C [15.95, 24.13] 

��� Behavior 
Base thermostat cooling 

setpoint 
Continuous °C [23.88, 25.55] 

��� Behavior 
Current thermostat 

heating setpoint 
Continuous °C [22.50, 26.66] 

��� Behavior 
Base thermostat heating 

setpoint 
Continuous °C [15.55, 24.44] 

��� General Occupancy 1 Discrete -- [0, 1] 

��� General Occupancy 2 Discrete -- [0, 1] 

Table 2. Description of the output value of the neural network. 

Output Value Category Name Type Units (If Applicable) 

� MODEL  Predicted Mean Vote (PMV) Continuous Limited to [−3,3] 

The histogram of all input data and reference output values (targets) assigned to the learning 

process with the division into learning stages is shown in Appendix A—Figures A1 and A2. 

In order to make an exemplary PMV index model from the data from [82], a vector of the first 

30,000 sets of samples was taken. Then, it was checked that all the elements listed in Tables 1 and 2 

in these sets are complete and are different than “not a number” (NaN). Thanks to this, a vector of 

sample sets with a length of 11,309 was obtained, in which each element was complete and was not 

NaN. Afterwards, from the said vector of 11,309 sample sets, identification of samples generating 

possible model noises was performed. The number of such sets of samples equalled 663. As a result, 

a vector with a length of 10,646 sets of samples was selected to model the PMV index. This vector is 

divided into two matrices: 

 matrix � (inputs) with dimensions of 10,646 × 20, which is a series of input sets of samples 

assigned to the network learning process, 

 the matrix Y (targets) with dimensions of 10,646 × 1, which is a series of PMV index reference 

output values obtained from the data included in the matrix X. 

Matrices � (inputs) and � (targets) were used to teach 50 neural network structures (500 NNs) 

according to the algorithm shown in Figure 3. However, in order to do this, the elements of the sample 

sets (��, ��) were divided into 3 parts (training, validation, tests). The first part, with 60% of the data 

sets, was assigned to the network training stage (����, ����). The second and third part, with 20% of 

data sets each, were assigned respectively to the validation stage (�����, �����) and network tests 

stage (������, ������). Examplary effects of assigning the data sets to a specific learning stage are 

shown in Figure 4. 

The algorithm for assigning data sets was saved as a loop that resets the iteration step after the 

assignment of the data set to the testing stage. This algorithm assigned data sets as follows: the first 

three data sets from a series of sets were assigned to the network training stage, the fourth set was 

assigned to the validation stage, the fifth set was assigned to the testing stage. Then, the 

abovementioned loop iteration reset took place. The process of assigning data to a specific learning 

stage was completed after assigning all the prepared 10,646 data sets. 

Data prepared in this way (thanks to the invariable and manual assignment of data sets to 

specific learning stages) enabled limiting the randomness of neural network results for a given 

�������ℎ. 
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Figure 4. An example of original data (targets) distribution for training, validation and tests stage 

drawn for NN input arguments ��, ��. 

2.5.2. Chosen Learning Specification 

The specification presented in this chapter should be treated as selected for the data described 

in the previous chapter. The choice of such specification depends on the nature of the data assigned 

to the learning process. The author encourages specialists who model the PMV index using the 

method described in this article to select learning parameters based on the knowledge of the data 

assigned to the learning process. The learning parameters and activation functions presented below 

are characterized by satisfactory convergence of network results with reference data for the tested 

object. These parameters were selected on the basis of experiments carried out by the author. The 

chosen results on the basis of which the parameters were selected are presented in Appendix B. This 

selection can be made using the optimization of hyperparameters, e.g., Random Search, Grid Search, 

Bayesian optimization. The selected specification of learning and the networks are presented below 

in a way which enables further description of the selection and evaluation of the network for the 

method described in this article. 

The learning parameter values given for the network learning process are presented in Table 3. 

Table 3. Learning parameters for each �������ℎ. 

Learning Parameter Value 

performance function goal 0 

minimum performance gradient 10−10 

maximum validation failures 12 

maximum number of epochs to train 100000 

learning rate 0.01 

momentum 0.9 

The research was carried out using Levenberg-Marquardt training algorithm [83]. This 

algorithm was proposed because it has shown satisfactory performance in preliminary calculations. 

As a performance function the mean squared error (���) was chosen (8): 

��� =
∑ (�� − ����)��

���

�
=

∑ (��)��
���

�
 (8) 

where: 
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� —number of sets for each learning stage: training (����, ����) , validation (�����, �����) , tests 

(������, ������), 

��—target for the network-reference PMV index value, 

����—output of the network respective to the i-th target, which corresponds to estimated PMV index 

value. 

Implicitly, the Error was also defined Equation (9) as: 

�� = �� − ����  (9) 

As an activation function in the hidden layer, according to [42,66,74], a hyperbolic tangent 

sigmoid function (Equation (10)) was implemented. In the hidden layer, according to the 

recommendations from [74], a linear activation function-purelin (Equation (11)) was implemented. 

The selection of the activation function was made for the recommendations of the non-linear function 

analysis [66] because this type of phenomena include the modelled issue. 

The hyperbolic tangent sigmoid function was chosen because its output values, unlike the 

Sigmoid and ReLU functions, are in the range of positive and negative values. As a result, smaller 

network complexity in the hidden layer can be expected [42,66,74]. In addition, this function allows 

both continuous and discrete changes of input data to be taken into account [70], which is done in the 

present case. What is more, thanks to the choice of the linear activation function-purelin in the output 

layer, it is possible to evaluate the quality of the model fit (coefficient of determination ��), as well 

as regression analysis with the Pearson coefficient (�) [74]. 

�{�}
�����

����{�}� =
2

1 + ���∙���{�} − 1 (10) 

�{�}
�����

(���{�} ) = � ∙ ���{�} (11) 

where: 

� = 1-directional coefficient. 

2.6. Assessment of the Applicability of the Network Structure 

2.6.1. Robustness Study Methodology 

According to the algorithm described in Section 2.4.3, the research involved checking 50 

structures of neural networks differing in the number of neurons in the hidden layer. Each of these 

structures was trained, validated and tested ten times. Each such process is called �������ℎ. 

The repetition of the examination of a given network structure ten times is caused by the 

deliberate assignment of initial values of weights and bias at the training stage in a random manner 

because such a procedure allows robustness analysis of the network structure. This procedure is 

particularly important from the point of view of work stability and repeatability of the use of the 

neural network (see Condition I, Section 2.4.3). This is due to the fact that if a given network structure 

changes the initial conditions in weights and bias values, it shows similar results of network quality 

indicators, e.g., ����  (Mean Absolute Relative Error), �  (Pearson’s coefficient) [83] and others; 

then it can be stated that such a structure is insensitive or not very sensitive to the initial conditions. 

This study is similar to a system stability examination, which, in crude terms, is to check whether a 

change in the initial state of its work has an impact on its results. Therefore, if the network structure 

shows a satisfactory insensitivity to changes in initial values of weights and bias, then it can be 

considered stable in terms of the studied issue [70]. A similar situation occurs in the case of 

repeatability of the use of the neural network structure, because if it shows satisfactory insensitivity, 

and its quality indicators (e.g., ����, �, ��� or other) along with its results are satisfactory in 

terms of the correctness of the whole system operation, then this repeatability occurs. 

The examination of robustness of neural network structures, according to position [70], is carried 

out for the network validation stage. As mentioned above, for the purposes of this study, analyses 

should be performed using certain indicators, e.g., � (Pearson’s correlation coefficient) [84,85], �� 
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(coefficient of determination) [74], ��� (Equation (8)), ��� (Equation (12)), ��� (Equation (13)), 

��� (Equation (14)), ������ (Equation (15)), ���� (Equation (16)). 

��� =
1

�
∙    �|�� − ����|

�

���

 (12) 

��� =   �|�� − ����|

�

���

 (13) 

��� =   �(|�� − ����|)�

�

���

 (14) 

������ = ��� ��
�������

��
�� or ������[%] = ������ ∙ 100% (15) 

���� =
1

�
 ∙ � �

�� − ����

��
�

�

���

=
1

�
 ∙ � �

��

��
�

�

���

 (16) 

The decisive factor in choosing indicators is usually the order of magnitude of reference output 

quantities assigned to the learning process (targets). However, there are sometimes cases [86] in 

which, in addition to the order of magnitude, the nature and variability of targets are taken into 

account. 

In general, the proposed rule of choosing indicators is to check the order of magnitude of targets 

and to use the following conditional function: 

�

������,   ��� or other if |��|��� ≤ 1

������, ���, ��� �� ���� or other if |��|��� ≤ 10

������, ���, ��� or other if |��|��� > 10

   (17) 

where: 

|��|���—maximum absolute target value obtained for all data assigned to the learning process. 

This principle is based on the following logic of choice: 

if the maximum absolute target value|��|��� is: 

 less than 1, then one should use the indicator that contains the Sum of Absolute Errors made by 

the network; 

 less than 10, then one should select the indicator that contains the average of the Sum of Absolute 

Errors made by the network. In this case, it is recommended to check how the structure behaves 

in terms of the selected indicator from the case |��|��� ≤ 1; 

 greater than 10, then one needs to choose an indicator that amplifies network Errors by using 

the exponentiation operation. 

It is worth noting that in Equation (17) ������ is considered in each case. This is because this 

indicator informs whether a given structure is characterized by local minima for data assigned to the 

learning process. 

Therefore, since the absolute values of the PMV index are less than or equal to 3, the case of 

|��|��� ≤ 10 should be used for robustness analysis. The results of this analysis for data from Section 

2.5.1. are presented in Section 3.1 

2.6.2. Methodology of Overfitting and Underfitting Study 

After performing the robustness analysis, one should conduct a compliance study of function 

mapping for data that were not considered in the network training or validation process. This study 

is carried out for the testing stage and it is aimed at checking whether a specific structure of the neural 

network, as well as a given �������ℎ , models the phenomenon in accordance with reality, or 

whether overfitting or underfitting take place [42]. The occurrence of overfitting means that the 

network memorizes data, thus losing its ability to correctly interpret the data, except for those 
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assigned to the network training stage. In turn, the occurrence of the underfitting phenomenon 

informs that the network model is too simplified for the analyzed issue. 

To verify whether there is overfitting or underfitting for a given structure or a specific �������ℎ, 

just like in the case of robustness study, one should check the order of magnitude of �� (targets). 

Then, based on this verification, indicators informing about the occurrence of these phenomena are 

selected. Generally, the proposed rule for selecting indicators is analogous to the robustness study 

(Equation (18)). Essentially, it differs only in the fact that ������ does not work in overfitting and 

underfitting analysis, and that these indicators are calculated with the use of data that are not 

involved in the training or network validation stages. 

�

��� or other if |��|��� ≤ 1

���, ��� or ���� and other if |��|��� ≤ 10

 ���, ��� or other if |��|��� > 10

 (18) 

Therefore, since the absolute values of the PMV index are less than or equal to 3, the case 

|��|��� ≤ 10 should be used for overfitting and underfitting. The results of this analysis for the data 

from Section 2.5.1 are presented in Section 3.2 

3. Results 

The results shown in this chapter include checking 500 neural networks. The purpose of this 

check was to find the best network structure with one hidden layer and to select the best network for 

modelling the PMV index. This goal was achieved for Criterion 1 (Equation (5)). An identical analysis 

can be performed for Criterion 2 (Equation (7)). This chapter presents the complete network 

assessment procedure for its applicability (see Section 2.4.3, Conditions I and II and Section 2.6). In 

Section 3.1, the assessment of Condition I is described, while the assessment of Condition II is covered 

by Section 3.2. 

3.1. Robustness Study of the Examined Neural Network Structures 

Figure 5 presents the ������ values (24) of the considered neural network structures for the 

studied issue. Due to the robustness test, this figure was presented in the form of a boxplot [75]. The 

number �{�} (the number of neurons in the hidden layer) was drawn on the abscissa axis, while 

������ values obtained from individual approaches were shown on the ordinate axis. 

 

Figure 5. Maximum Absolute Relative Error obtained for the neural network structure with a certain 

number of neurons in a hidden layer. Results obtained for the validation stage. 
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In Figure 5, it can be seen that the structures with �{�} ≤ 3 or �{�} ≥ 37 are characterized by 

their sensitivity to changes in the initial values of weights and bias, so they will not be suitable for 

use. 

Due to the high (compared to other) values of robustness assessment indicators obtained for 

structures with �{�} ≤ 3 and �{�} ≥ 37, these structures will be omitted in further analysis in order 

to present the results in a clearer manner. 

Figures 6 and 7 present the results of the ���  and ���  indicators, respectively. In these 

figures, similarly as before, the number �{�} was drawn on the abscissa axis. 

 

Figure 6. Sum of Absolute Errors (���) obtained for the neural network structure with a certain 

number of neurons in a hidden layer. Results obtained for the validation stage. 

 

Figure 7. Mean Absolute Error obtained for the neural network structure with a certain number of 

neurons in a hidden layer. Results obtained for the validation stage. 

Based on the results obtained from the boxplot (Figures 6 and 7), it can be stated that the 

structures for �{�} = 5, 10, 11, 16, 19, 21 − 23, 26, 36 show a satisfactory insensitivity to the influence 

of initial conditions assigned during the learning process. As can be seen, the indicated structures are 
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characterized by a narrow interquartile range (IQR) [87,88] compared to other IQR ranges presented 

in the figures. The remaining structures are sensitive to initial conditions and have too-wide IQR 

[87,88] or too-large discrepancies in the results with respect to the median [87,88]. It is especially 

visible for the structures with �{�} = 4, 6, 7, 8, 9, 15, 17, 18, 24, 27, 29 − 35 from Figure 6 and �{�} =

4, 7, 8, 9, 15, 17, 24, 27, 33 − 34 from Figure 7. 

3.2. Study of Overfitting and Underfitting of the Examined Neural Network Structures 

Figure 8 shows a boxplot illustrating the ���  results (22) obtained for the neural networks 

testing stage. These results were ranked according to the complexity of the network architecture from 

the one with 4 neurons in the hidden layer (�{�} = 4) to the one with the largest value analyzed (�{�} =

50) . Structures with �{�} ≤ 3  are not drawn in this figure due to the significant impact of the 

underfitting phenomenon for these structures. This means that these structures cannot be used for 

the analyzed data. Therefore, the analysis of the issue in question will be considered without these 

structures to allow for a clearer demonstration of results. As proof of this fact, in Appendix C there 

is a boxplot (Figure A5) illustrating the ��� results (22) obtained for the neural networks testing 

stage for the range 1 ≥ �{�} ≤ 50. 

 

Figure 8. Sum of Absolute Errors obtained for the neural network structure with a certain number of 

neurons in a hidden layer. Results obtained for the tests stage. 

Based on the results presented in Figure 8, it can be seen that the structures with �{�} ≥ 41 have 

a much wider IQR [87,88] than other IQR ranges. This means that the influence of the overfitting 

phenomenon for the above-mentioned structures is significant, so they cannot be used. The following 

figures for the present study were drawn without the involvement of these structures, in order to 

improve the visibility of the results. 

Figures 9 and 10 present, respectively, the ��� (Equation (13)) and ��� (Equation (12)) results 

obtained for the neural network testing stage without taking into account the structures with �{�} ≤

3 and �{�} ≥ 41. 

These figures show that the structures affected by overfitting are those with �{�} =

4, 6, 7, 8, 9, 15, 17, 18, 24, 27, 29, 30, 33, 34 or �{�} ≥ 37. Therefore, these structures will not be taken 

into account in the identification of the best possible structure according to the criterion described by 

Equation (5). 

A much broader IQR can be observed for the indicated structures [87,88] than other IQR ranges. 

There are also large discrepancies between the maximum and minimum values of ��� and ���, 
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exceeding the first and third quartile. It means that in such a case we are dealing with the 

phenomenon of overfitting. If the aforementioned maximum and minimum values were not so 

differentiated, it would characterize the phenomenon of underfitting. 

 

Figure 9. Sum of Absolute Errors obtained for the neural network structure for the range 3 > �{�} ≤

50. Results obtained for the tests stage. 

 

Figure 10. Mean Absolute Error obtained for the neural network structure for the range 3 > �{�} ≤

50. Results obtained for the tests stage. 

In conclusion, it is stated that structures characterized by the impact of overfitting and 

underfitting at a satisfactory level [87] are the ones with �{�} = 5, 10 − 14, 16, 19 −

23, 25, 26, 28, 31, 32, 35, 36. These structures will be taken into account in the identification of the best 

network structure according to the criterion described by Equation (5). 
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3.3. Identification of the Best Network Structure and the Best �������ℎ 

The results obtained for robustness study (Section 3.1) as well as overfitting and underfitting 

study (Section 3.2) lead to the conclusion that, among the examined structures, the ones with �{�} =

5, 10,11, 16, 19, 21 − 23, 26, 36  and their �������ℎ��  with sufficient accuracy (Section 3.2) and 

stability (Section 3.1) model the PMV index. 

This statement results from the conjunction of two points: 

1. the fact described in Section 3.1 that the structures with s{�} = 5, 10, 11, 16, 19, 21 − 23, 26, 36 are 

sufficiently insensitive to changes in the initial weights and bias of the neural networks for the 

network training stage; 

2. the fact described in Section 3.2 that the impact of underfitting or overfitting is acceptable or has 

negligible significance in the case of the structure for �{�} = 5, 10 − 14, 16, 19 −

23, 25, 26, 28, 31, 32, 35, 36. 

In view of the above, the identification of the best possible network structure and the best 

�������ℎ for the selection criterion described by Equation (5) was made for structures with �{�} =

5, 10, 11, 16, 19, 21 − 23, 26, 36. 

Figure 11 presents a boxplot of ����������  results (Equation (5)) obtained for the selected 

structures. It shows that the smallest values ���������� were obtained for the structure with �{�} =

5, therefore this structure was indicated as the best for the analyzed selection criterion. This result 

was also confirmed by its comparison with the results of the other networks in Figure 11. 

 

Figure 11. Maximum Absolute Relative Error obtained for the neural network structure with the 

following numbers of neurons in a hidden layer �{�} = 5, 10, 11, 16, 19, 21 − 23, 26, 36 . Results 

obtained for the tests stage. 

Table 4 shows the detailed values of ���������� obtained for structures with �{�} = 5. The 

best �������ℎ identified that meets the main criterion for selecting the best structure and network 

(Equation (5)) is marked in bold in the table. 
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Table 4. Maximum Absolute Relative Error obtained for the tests stage for neural network structures 

with �{�} = 5. 

 ���������� 

�{�} 5 

�������ℎ 1 0.106 

�������ℎ 2 0.029 

�������ℎ 3 0.025 

�������ℎ 4 0.043 

�������� � 0.018 

�������ℎ 6 0.070 

�������ℎ 7 0.047 

�������ℎ 8 0.024 

�������ℎ 9 0.031 

�������ℎ 10 0.072 

The values in Table 4 show that the network meeting the main selection criterion (Equation (5)) 

for the data assigned to the test stage in the worst case commits a Relative Error smaller than or equal 

to 1.8%. The result obtained thanks to the procedure presented in the article can be considered very 

good. However, one should bear in mind that the received ����������[%] ≤ 1.8 % does not apply 

to the full range of data assigned to the learning process. Therefore, when modelling the PMV index, 

one should check the results for the full range of data, as shown in the next section. 

3.3.1. The Best Identified Neural Network and PMV Index Mathematical Model 

The learning process of the identified best neural network (Equation (5)) is presented in Figures 

12 and 13. These figures show in sequence the calculated values of the network performance function 

for individual learning stages (Equation (8)) and the network learning parameters. They were drawn 

for the network learning epochs. 

 

Figure 12. Performance function values obtained during the learning process for the best analyzed 

neural network. 
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Figure 13. Gradient, momentum, validation check values obtained during the learning process for the 

best analyzed neural network. 

From Figure 12 one can deduce that the neural network obtained the best results for the 356th 

learning epoch. Therefore, the results obtained for this epoch are the end result of the learning process 

of the network. It can be seen in the figure that no significant improvement in the value of the 

performance function ��� (Equation (8)) is observed for the network training stage above the 150th 

epoch. However, it is noticeable in this scope for the stage of network validation and testing. This 

case suggests that overfitting or underfitting does not occur or is negligible. 

The “validation checks” chart in Figure 13 shows that the learning process was carried out 

without frequent occurrences of increases in the value of the network performance function ��� for 

the validation stage. As a result, usually a zero value is seen on the chart. The occurrence of non-zero 

values with an upward trend in this chart means that the data assigned to the learning process are 

characterized in the case of the analyzed structure by the local minima of network performance 

functions. Apparently, this is not the case for the best structure identified. This case is, among others, 

a consequence of the robustness test (Section 3.1). 

In Figure 13, it can be seen that during the learning process, the Gradient from around epoch 50 

was of the order of magnitude 10−5. This means that slight changes in weights and bias during the 

training stage improved the learning process for the validation stage. This phenomenon can be 

observed in Figure 12 as well. Figure 13 also shows changes in momentum (Mu) for each successive 

learning epoch. The figure shows that the value of momentum decreased with the increase of the 

learning epochs’ numbers, which means that the learning process was carried out correctly [66]. 

Figure 14 presents a histogram of Errors made by the network �� (Equation (9)), calculated for 

data assigned to a particular stage of the network learning process (training, validation, test). In this 

figure on the abscissa axis, the values of network Errors �� assigned for a given bin were presented. 

The ordinate axis indicates the number of instances �� covering the range of a given bin. This figure 

was created in accordance with the guidelines given in [74]. In the discussed figure, it can be seen 

that the data were assigned to a specific learning stage in a regular manner (Section 2.5.1). The figure 

shows that the vast majority of the data were characterized by Error around 0.0015. From the point 

of view of the quality of the modelled phenomenon, this figure is purely illustrative since the values 

of �� (Errors) are not related to ��  (targets). 
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Figure 14. Error histograms obtained during the learning process for the best analyzed neural 

network. 

Therefore, Figure 15 presents a histogram of Relative Errors �� calculated in accordance with 

Equation (19). The ordinate axis indicates the number of �� occurrences covering the range of a 

given bin. Figure 15 was drawn for 40 bins. 

�� =
�� − �����

��
 (19) 

 

Figure 15. Relative Error histograms with 40 bins obtained during the learning process for the best 

analyzed neural network. 

Looking at Figures 14 and 15, one can state that both are characterized by the Gaussian 

distribution. In the first case, this distribution is right-sided, while in the second case it is left-sided. 
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This situation may occur if the range of data assigned to the learning process includes both negative 

and positive numbers, i.e., it can occur in PMV index modelling. It is worth noting that on the basis 

of the results from Figure 15, similarly to Figure 14, it can be stated that the data for a particular 

learning stage have been assigned regularly (Section 2.5.1). From the results obtained in Figure 15, it 

can be stated that the obtained Relative Error for most of the data was around −0.001 and that it 

fluctuated within this number at the value of ±0.002. 

Figure 16 presents a chart illustrating for which of the data samples assigned to NN the Relative 

Error (Equation (19)) occurred. This figure shows that the occurrence nature of �� was stochastic. 

Particular attention in this figure should be given to two samples for which �� was obtained in the 

range 0.1 < �� < 0.15. This suggests that the neural network for the full range of data assigned to 

the learning process models the PMV index with ������ [%] < 15% . It proves that real 

measurement data were used to model the PMV index, for which situations in some cases the model 

needs more than 15 min (sampling time of the measurement data) to adjust. An example of such a 

situation may be the presence of more people in the building, e.g., large employee meetings or arrival 

of a school trip. It is worth noting that in each of these two cases after its occurrence, the PMV index 

model stabilizes with ������ [%] < 4%. The occurrence of two samples for which ������ [%] >

4% is marginal and represents 0.0188% of the data assigned to the learning process. Therefore, from 

the point of view of the described NN model for the PMV index, the impact of samples generating 

errors ������ [%] > 4%  can be neglected, and the model itself can be treated as one that is 

characterized by ������ [%] < 4% (precisely: ������ [%] < 3.73%). 

 

Figure 16. Relative Error in accordance with measured sample number obtained during the learning 

process for the best analyzed neural network. 

In addition to the analysis of Errors and Relative Errors when assessing the possibility of using 

a neural network, one ought to perform � (Pearson’s correlation coefficient) regression calculations 

[74], based on which the quality of model fit to the data assigned to the network learning process is 

assessed. An indicator of this quality is the coefficient of determination �� [74]. 

Figure 17 presents the results of � regression calculations obtained for the discussed network. 

It shows four charts: Training, Validation, Testing, All data. The first three mentioned relate to the 

results of calculations received for data assigned to a specific stage of network learning, while the 

fourth presents the results obtained for all data assigned to the learning process. The described charts 

were plotted in relation of ����  (output) to ��  (target). In this figure, it can be seen that � for all 
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stages of the learning process was almost equal to 1. It can also be noticed that at the training stage 

there were two samples to which the network did not adjust with the same accuracy as for the other 

samples. These two samples were highlighted in the description of Figure 16. 

Interpreting the results of � regression calculations [74], it can be stated that the output values 

of ���� are very strongly correlated with targets ��. In the case of the validation and testing stages, 

the correlation between these values is almost perfect [74]. 

Based on the results of � regression (Figure 17), the values of the coefficient of determination 

�� were calculated. These values are shown in Table 5. A conclusion can be drawn from them that 

the quality of the PMV index model fit to the data assigned to the learning process, as well as to all 

its stages, is at a very good level. It is noteworthy that in a situation where there is a perfect match 

quality (�� = 1), in the worst case shown in the table below, ��  values smaller than 0.00002 are 

missing. This is proof of well-conducted experiments, proper selection of network architecture and 

correct selection of the learning method. 

 

Figure 17. Correlation plots between a network’s outputs and targets for all learning stages separately 

and combined, obtained for the best analyzed neural network. 

Table 5. Coefficient of determination obtained for the best analyzed neural network. 

�� Value 

Training stage 0.99998 

Validation stage 0.99999 

Testing stage 0.99999 

All data 0.99998 

In order to present the results of the described mapping quality, Figure 18 shows an example of 

���� (outputs) network response on the background of ��  (targets) drawn for the arguments �� and 

�� (Table 1). In this figure, it can be seen that ����  (outputs) response values largely overlap with ��  
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(targets). It can also be noticed that the differences between ����  and ��  network responses are 

marginal, which confirms the results described in this section. 

 

Figure 18. An example of the outputs of the network ���� on the background of �� (targets) drawn 

for the input arguments �� and �� (see Table 1). 

The results described in this section relate to the identified PMV index mathematical model, 

described by Equation (20). This equation is a special form of Equation (2). The difference between 

them is that in Equation (20): 

 the dimensions of the matrix are specified; therefore, this information was noted in their 

subscripts; 

 the elements of the matrix are identified numerical values. 

� = ��������������� ��{�}
�����

��� × �
{�}

∙ ��{�}
�����

��� × ��
{�}

∙ �������������(�) + �� × �
{�}

�� + b�
{�}

�� 

(20) 

Details of Equation (20) are included in Appendix D (Equation (A1)). 

4. Discussion 

The research and procedures described in the article show the full process of modelling and 

testing of PMV index using feedforward neural networks with one hidden layer. The paper describes 

when neural networks with one hidden layer can be used to model PMV index, and when deep 

learning approach should be used. 

The article presents the procedure for identifying the best structure and the best neural network, 

which is the mathematical model of the PMV index in terms of the selected evaluation criterion 

(Section 2.4.3). It also indicates the situations determining the choice of this criterion. 

Afterwards, an example of a study on identifying the best structure and best network was 

presented along with its detailed description. This example was shown in the most general form 

possible so that it could take the form of a tutorial. For the example mentioned, data from the 

previously examined real object (Section 2.5.1) were used (see case studies in [23,82]). 

The procedure for identifying the best possible network structure is divided into three parts 

(Sections 3.1–3.3). The first two parts: “robustness study…” (Section 3.1) and “overfitting and 

underfitting study…” (Section 3.2) were designed to check which structures are suitable for use. On 

the other hand, the third part (Section 3.3) describes the selection of the best structure and network 
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in terms of the best compatibility of matching the PMV index model to its real equivalent (Section 

2.4.3, Equation (5)). At the end of the modelling process, the best identified neural network was 

presented along with its results. 

The PMV modelling procedure presented in this article enables filling the gap identified by the 

scientific community in comfort studies related to energy consumption in buildings… [1–3,5,7,10–

13,22,27–32,34,35,45–47]. The neural networks used in it introduce flexibility to the formulation of 

models describing comfort. This flexibility results from the possibility of introducing input 

arguments of a mathematical model describing a specific comfort, adapted to specific data obtained 

in a given region of the world for a given group of people. Thanks to this approach, mathematical 

models using neural networks enable the improvement of individual comfort, resulting in energy 

savings in the construction sector. However, it should be noted that the savings in energy 

consumption for the solution described in the article are of primary importance for the buildings that 

already exist. This is due to the necessity of obtaining data for the networks which are assigned to the 

learning process. These data are the most reliable in the case of real objects, hence the proposed 

solution is directed precisely to such objects. It should be noted that it is also possible to model a PMV 

index with neural networks using metadata. In this case, PMV models using NN should have better 

consistency of results due to simplifying assumptions used in the models from which the metadata 

are derived. However, they will be less reliable than the models trained on data from a real object. 

The procedure for identifying the best PMV index model described in the article for the analyzed 

example covered the range of the number of neurons in the hidden layer 1 ≤ �{�} ≤ 50. This range 

was chosen to show that above a certain number of neurons in the layer, the network is not suitable 

for use. In the analyzed example, it took place for �{�} ≥ 37. 

The procedure is characterized by almost perfect quality of model fit (Setion 3.3.1). This results 

from the interpretation of the value of determination coefficient �� = 0.99998 [74], as well as from 

the value obtained for all data assigned to the learning process ��� = 0.0000017 (Equation (8)). It 

is also worth mentioning that the identified model can be treated as one characterized by 

������ [%] < 4% (precisely ������ [%] < 3.73%). 

These results for the identified network confirm the correct choice of learning parameters, 

performance function and transfer functions implemented in the structure. The values of these 

parameters and types of functions were selected based on the indications from [42,73]. When 

choosing these parameters and functions in case of PMV index, one should be aware that it depends 

on the specifics of the data for NN and it is impossible to clearly indicate them before examining 

them. This is due to the diverse functionality of buildings and external conditions. 

The described assessment of network applicability (Sections 2.6, 3.1 and 3.2) showed that it is 

necessary for modelling the PMV index with the use of NN. The research carried out in terms of 

robustness (Section 3.1) showed that the vast majority of the analyzed network structures are 

sensitive to changes in the initial weights and bias values assigned to the training stage. A similar 

effect was observed for the studies carried out in terms of overfitting and underfitting (Section 3.2). 

As a consequence of the aforementioned research, it turned out that among the 50 analyzed structures 

(500 networks), only 20% of them were suitable for application (Section 3.3). It means that without 

such an assessment of the analyzed data there was as much as an 80% chance of choosing the wrong 

structure. 

The results obtained for the best identified NN structure in comparison with those obtained in 

other studies [22,40,41] prove that this identification is needed. For example, in [22], satisfactory 

accuracy was obtained for 92.9% of data for NN modelling PMV index, while in the current study, 

this accuracy is above 99.9% (precisely 99.9812%). Moreover, the best regression results presented in 

[40] were R = 0.976, so the goodness of fit of the model was characterized at the value level of �� =

0.952. Comparing the �� = 0,99998 obtained from the best structure identification method (Sections 

2.4.3. and 2.6), it means that, thanks to the method proposed in the article, we are able to describe 

individual thermal comfort more precisely than before. However, this statement is only true for NNs 

with one hidden layer. The same statement can be drawn for [41], where the differences in the �� 
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value between the presented model and the NN obtained in this article were much greater. Therefore, 

the use of identification compared to similar studies [22,40,41] gave better results in each case. 

The above comparative results are relevant for countries’ energy policies, energy saving 

strategies and sustainability in real estate. The fact is that the accuracy of the simulation of the 

building’s thermal performance has a significant impact on energy costs, energy consumption and 

greenhouse gas emissions [89]. After all, it was found that “to overcome these issues, an appropriate 

thermal comfort model is needed to determine and measure the accurate and precise value of thermal 

performance” [89]. As the results obtained in the article show, such an appropriate thermal comfort 

model can be achieved thanks to the proposed method (Sections 2.4.3 and 2.6). Nowadays, thanks to 

the use of the appropriate thermal comfort model to predict a building’s energy consumption, the 

time that is essential for cooling or heating can be decreased by almost 20% [89]. In view of the above, 

increasing the accuracy of the model to that presented in the article will improve this result even 

more. Other applications of the PMV model formulated thanks to NN that affect energy consumption 

are shown in [22,28,38,90,91]. 

5. Conclusions and Future Research Program 

The main results of the research can be summarized as follows: 

1. The method presented in the article enables filling the gap identified by the scientific community 

in comfort studies related to energy consumption in buildings. 

2. There are two approaches to filling the identified gap in the case of NNs with one hidden layer 

(Section 2.4.3): the first for the best quality fit of the model (Equation (5)), and the second one 

takes into account the quality of the fit with the minimum complexity of the NN model (Equation 

(7)). 

3. When designing the PMV index using NNs with one hidden layer, it is necessary to perform a 

robustness study (Section 3.1.) along with an overfitting and underfitting study (Section 3.2). 

Otherwise, there is a high likelihood (in the analyzed case about 80%) that NN will not be usable. 

4. NNs with one hidden layer enable PMV index modelling with almost perfect quality of model 

fit as long as the best structure identification method is used (Sections 2.4.3 and 2.6). 

5. The use of the identification method (Sections 2.4.3 and 2.6) compared to similar studies with 

NNs with one hidden layer gave better results in each case. 

6. The method presented in the article (Sections 2.4.3 and 2.6) makes it possible to formulate the 

equation (Equations (20) and (A1)) characterizing individual thermal comfort for the object 

under study in terms of its basic functionality. 

As for the future research program: 

The research presented in the article is to constitute a thematically coherent series of papers 

presenting how to characterize indoor environment in smart buildings. In the first part of the cycle, 

the PMV index modelling method was presented along with a description for identifying the best 

neural network with one hidden layer. The objective of this article from the point of view of the 

complete cycle is to show that in the case of use of the building for its intended purpose, using NN 

with one hidden layer, one can get almost perfect quality of the model fit for the PMV index. 

Therefore, for such use of the building, it is sufficient to apply classic NNs with one hidden layer. 

The advantage of this approach is that the model obtained from the presented method (Sections 2.4.3 

and 2.6) does not take into account random cases of using the building, such as repairs, renovation 

of rooms, etc. The model is characterized by individual thermal comfort for the object under study in 

terms of its basic functionality. Additionally, thanks to the identified equation (Appendix D) derived 

from the method of identifying the best network structure, it is possible to interpret the impact of 

network input arguments on the PMV index describing individual thermal comfort. This 

interpretation is based on the assessment of the weight and bias values of this equation (Appendix 

D). This advantage derives from the fact that the models formulated using NN with one hidden layer 

are much simpler than those designed using DNN. 
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On the other hand, the disadvantage of this method is the need to properly select data for the 

network. 

In the next parts of the publication cycle, the second approach using DNN for the described topic 

will be presented, as well as a comparative analysis of the use of NNs and DNNs. 
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Appendix A. The Histogram of All Input Data and Reference Output Values (Targets) Assigned 

to the Learning Process with the Division into Learning Stages 

 

Figure A1. The histogram of all input data values assigned to the learning process with the division 

into learning stages. 

 

Figure A2. The histogram of all reference output values (targets) assigned to the learning process with 

the division into learning stages. 
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Appendix B. Results of the Selection of Network Learning Parameters 

Figures A3 and A4 were created for the network with s{�} = 5, that is, for the structure of the 

network identified as the best. 

Figure A3 shows the results for the implemented performance function (���) calculated for all 

data assigned to the NN learning process in the learning rate function (Table 3). The best result: 

��� = 0.0000017 was obtained for the learning rate = 0.01. 

 

Figure A3. The learning rate selection results for the NN learning process obtained for the range from 

0.005 to 0.5. The best learning rate was obtained for the value 0.01. 

Figure A4 shows the results for the implemented performance function (���) computed for all 

data assigned to the NN learning process as a function of momentum (Table 3). The best result: 

��� = 0.0000017 was obtained for the momentum of 0.9. 

 

Figure A4. The results of the momentum selection for the NN learning process obtained for the range 

from 0.1 to 3. The best momentum was obtained for the value of 0.9. 

  

1.40E-06

1.60E-06

1.80E-06

2.00E-06

2.20E-06

2.40E-06

0 0.1 0.2 0.3 0.4 0.5 0.6

MSE

Learning rate

MSE

1.40E-06

1.50E-06

1.60E-06

1.70E-06

1.80E-06

1.90E-06

2.00E-06

2.10E-06

0.1 0.6 1.1 1.6 2.1 2.6 3.1

MSE

Momentum



Sustainability 2020, 12, 6749 32 of 37 

Appendix C 

 

Figure A5. Sum of Absolute Errors obtained for the neural network structure with a certain number 

of neurons in a hidden layer. Results obtained for the tests stage. 

Appendix D 

Equation (20) with values rounded to the fourth decimal place presents: 

� = ��������������� ��{�}
�����

��� × �
{�}

∙ ��{�}
�����

��� × ��
{�}

∙ �������������(�) + �� × �
{�}

�� + b�
{�}

�� 

(A1) 

where 

�� × ��
{�}

=

⎣
⎢
⎢
⎢
⎡
−0.6626 −0.1349 −0.0214 0.1159 −0.0008 −0.0035 −0.0022
−0.1387 −0.048 −0.8994 0.3612 −0.0012 −0.0016 −0.0014
0.5778 −0.0758 0.5964 −0.2213 −0.001 −0.0008 −0.0005

−0.6094 −0.1102 −0.0815 0.1577 −0.0003 0.0005 0.0005
0.9378 0.4218 −0.1802 0.4559 0.0114 0.0157 0.0210

 

0.0006 0.5462 −0.4027 0 0 0 0 0
0.0010 0.4512 −0.0613 0 0 0 0 0
0.0035 0.4847 0.1238 0 0 0 0 −0.0003
0.0011 −0.4844 0.2714 0 0 0 0 −0.0001

−0.0082 0.3584 0.4755 0 0 0 0 −0.0018

 

0.0358 −0.0008 0.0125 −0.0006 −0.0078
−0.0429 −0.0008 0.8470 −0.0007 −0.0037
−0.1601 −0.0017 −0.2521 −0.0015 −0.0059
0.0433 −0.0004 0.0031 −0.0003 0.0009

−0.1551 0.0073 −0.0834 0.0096 0.0555 ⎦
⎥
⎥
⎥
⎤

 

�� × �
{�}

=

⎣
⎢
⎢
⎢
⎡
1.4125
0.8917
1.206

0.0269
0.9763⎦

⎥
⎥
⎥
⎤

 

�� × �
{�}

= [−1.5541 1.6641 0.9461 −1.3792 0.0773] 

b�
{�}

= −0.8980 

(A2) 
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