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Abstract: Fuel reduction in forests is a high management priority in the western United States
and mechanical mastication treatments are implemented common to achieve that goal. However,
quantifying post-treatment fuel loading for use in fire behavior modeling to forecast treatment
effectiveness is difficult due to the high cost and labor requirements of field sampling methods
and high variability in resultant fuel loading within stands after treatment. We evaluated whether
pre-treatment LiDAR-derived stand forest characteristics at 20 m × 20 m resolution could be used to
predict post-treatment surface fuel loading following mastication. Plot-based destructive sampling
was performed immediately following mastication at three stands in the Nez Perce Clearwater
National Forest, Idaho, USA, to correlate post-treatment surface fuel loads and characteristics with
pre-treatment LiDAR-derived forest metrics, specifically trees per hectare (TPH) and stand density
index (SDI). Surface fuel loads measured in the stand post-treatment were consistent with those
reported in previous studies. A significant relationship was found between the pre-treatment SDI
and total resultant fuel loading (p = 0.0477), though not between TPH and fuel loading (p = 0.0527).
SDI may more accurately predict post-treatment fuel loads by accounting for both tree number per
unit area and stem size, while trees per hectare alone does not account for variations of tree size and
subsequent volume within a stand. Relatively large root-mean-square errors associated with the
random forest models for SDI (36%) and TPH (46%) suggest that increased sampling intensity and
modified methods that better account for fine spatial variability in fuels resulting from within-stand
conditions, treatment prescriptions and machine operators may be needed. Use of LiDAR to predict
fuel loading after mastication is a useful approach for managers to understand the efficacy of fuel
reduction treatments by providing information that may be helpful for determining areas where
treatments can be most beneficial.
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1. Introduction

Due to the variability of species, management objectives, spatial configuration of management
areas, regulatory restrictions, landowner funding availability, fuels characteristics, and other geographic
and vegetative factors, developing a one-size-fits-all approach for wide-scale fire management is
challenging [1–4]. However, forests with high fire risk must be actively managed [5]. Over the
previous century, forest management practices such as fire exclusion have resulted in historically
uncharacteristic stand attributes in many forests in the western United States, including dense,
small-diameter stands with increased surface fuel loads [5,6]. Fuel reduction in stands that have lacked
prior density management is a high priority in many areas of the western United States, especially on
federal lands. Understanding the unique challenges and selecting strategies to best suit the needs of
each management area, typically applied through one or more treatments applied at the stand level,
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is vital to long-term management success [2]. Properly designed and implemented fuel treatments
have been found to increase fire resilience and resistance while simultaneously changing the behavior
of wildfires that impact treated areas [5,7–9].

Given the variability of management factors, including forest composition, topography,
climatic conditions, and management history, not all silvicultural and fuel reduction treatments
are feasibly implemented. In its most basic form, creating fire resilient stands generally involves
three objectives: reducing surface fuels, reducing ladder fuels, and reducing crown density [5].
The complexity of planning fuel treatments for influencing the behavior of large fires must also account
for spatial configuration and density of treatments when determining how to effectively and efficiently
treat landscapes [4]. Fuel treatment programs have been implemented across the Western United States
and include prescribed burning and mechanical treatments such as regeneration harvest, precommercial
and commercial thinning, and mastication. The risk of fire escape, smoke restrictions, and poor public
perception may limit the feasibility of large-scale prescribed burning efforts [10]. The need to meet
particular site and climatic conditions to successfully implement prescribed burning often results in
limited availability of windows in prescription, unlike mechanized treatments, that are less dependent
on these factors [2]. To mimic the changes to forest structure created by fire, mechanical treatments
are widely used to reduce crown fire risk, particularly in the Wildland Urban Interface (WUI) [10].
Mechanical treatments modify the vertical distribution of fuels and reduce overall canopy fuels to
levels that are less susceptible to crown fires and rapid fire spread, without the risks associated with
prescribed burning.

In many cases, stands that are at risk for severe fire are overstocked and may have high levels
or mortality, which reduces the merchantable stand volume component and reduces the profitability
of commercial timber harvest in the context of salvage harvesting. Alternative mechanical fuel
treatment options, including mastication and chipping, are used in these instances when revenue
from timber harvest may not be a core management objective, but fuel loads nevertheless need to be
reduced. In these operations, which occur commonly on federal lands, fuels generated are left on
site, unlike final harvest and commercial thinning treatments, where harvested materials are most
commonly removed, treated at the landing, or treated in piles within the unit. The size of mechanical
fuel treatments is dependent on the overall management objectives of the area. Mastication may target
relatively small, high fire risk areas possessing dangerous fuel loads, where harvesting is not feasible.
Alternatively, larger mastication operations may be used to reduce canopy density and ladder fuels
while simultaneously reducing competition, removing undesirable trees, and preparing the stand for
future harvest. Mastication entails the grinding, shredding, chunking, or by other means reducing the
size of both standing and downed materials via boom-mounted mulching attachments of excavators,
skid-steers, or other machines [11–13]. The risk of active crown fires is reduced by altering the vertical
distribution and continuity of forest fuels and compacting them on the forest floor as irregularly
shaped chips, though dead surface fuel loads are increased in the process [10,14]. Changes in physical
properties of woody material resulting from mastication can influence fire behavior, including the
rate of spread, flame length, and intensity [14]. According to Agee and Skinner [5], reducing surface
fuels, increasing live crown height, retaining large, fire resistant trees, and decreasing crown bulk
density are all important factors in producing fire-resistant stands. Altering the amount and condition
of ladder fuels similarly influences fire intensity and burn severity [12]. When implemented correctly,
mechanized fuel treatments address all points, excluding the reduction of surface fuel.

Despite the widespread use of mastication treatments [15] and past research, the spatial variability
of masticated fuel beds has not been previously studied [10,11]. Studies have found surface fuel
loadings in mulched treatments to range from 16 to 65 Mg ha−1, with woody fuels concentrated in
the 1-h and 10-h time-lag classes, which have average diameters < 2.54 cm [10,14,16–18]. Relative to
untreated stands, mulched fuel beds with fuels concentrated in these classes have reduced rate of
spread and flame lengths, but increased smoldering and flaming duration [10]. Quantifying masticated
fuel loads is challenging, however, given the wide variability in masticated fuel physical structures
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and site, ecosystem, and regional fuel characteristics [15]. In masticated stands, fuel loads are also
highly variable, leading to challenges when predicting and modeling loading and fire behavior.
Fuel loads rely heavily on multiple factors, including vegetation type, pretreatment stand conditions,
machinery and mastication attachment, operator and the treatment objectives, and desired conditions
post-treatment [10,14–17]. As a result, the spatial heterogeneity of fuels within and across masticated
stands remains unclear [15]. Several studies have successfully used fuel depth and/or fuel coverage
in mulched areas to estimate surface fuel loads [10,14,17,18]. These techniques provide total surface
fuel estimates more easily and accurately than planar transect sampling, but still require visiting the
site following treatments. While less labor-intensive than past methods, the widespread assessment
of surface fuel loading following mastication still requires in-person site visitation and assessment,
which can be time-intensive and is only possible post-treatment. Efficient and effective methods to
map post-treatment fuel loadings using pre-treatment conditions across stand, site, forest, and broader
extents could provide valuable information to landowners when developing fuel management programs
and evaluating their potential cost-effectiveness.

Fuel mapping is a difficult and often infeasible process across broad spatial and temporal scales
due to high fuel variability, and costs and time constraints associated with field sampling [19–22].
Given the additional variability of masticated fuel loads, prediction models will likely need to
focus on relatively small geographic extents and account for various forest characteristics. Micro-site
predictions may better address site and forest variability and result in more accurate models. To better
understand fuel loads resulting from treatments, it is important to first determine what forest conditions
existed prior to mastication. On large landscape and regional scales, it is infeasible to perform a
forest inventory to determine pre-treatment conditions due to labor and cost restrictions. Therefore,
remotely sensed data, specifically LiDAR, has been repeatedly shown to provide large-scale forest
metric predictions and enable the future extrapolation of models [23]. LiDAR has been used in part or
entirely for assessing forest fuels characteristics including canopy [24–26], surface fuel loading [27–31],
ladder fuels [32,33] and parameters including overall loading, spatial distribution, composition,
vertical and horizontal arrangement, bulk density, and hazard ratings [34–38]. The authors were
unable to find any relevant studies for LiDAR applications in masticated surface fuel loadings.
Additionally, no models have currently been developed to predict post-mastication surface fuel loads
from pre-treatment LiDAR-derived stand conditions.

In this study, we evaluate whether pre-treatment LiDAR-derived forest metrics can be used
to predict surface fuel loads and associated fuel characteristics following mastication treatments.
Masticated fuels were assessed across varying pre-treatment stand conditions to determine if
relationships exist between the masticated fuel loads and LiDAR-derived forest metrics prior
to treatment. Additionally, relationships between pre-treatment metrics and additional fuel bed
characteristics including depth, size class distribution, and bulk density were assessed. Masticated fuels
were sorted and quantified based on time-lag classes to determine if pre-treatment stand characteristics
impact these distributions within sample plots. If remotely sensed forest metrics relate directly to
mastication fuel characteristics, these models could be used to predict fuel loading and fuel bed
characteristics for areas of similar forest composition, prior to mastication treatments. This information
provides valuable insight to natural resources managers when selecting potential forest and fuel
treatment options, ensuring both the economic and ecological sustainability of mechanical fuel
treatments and other concurrent forest operations. Economically and ecologically unsustainable
fuel treatments are financially and operationally infeasible, unsuccessful in achieving the desired
operational, environmental and management results, and lead to the inefficient and ineffective use
of limited financial resources. Understanding the potential impacts of mastication treatments based
on existing forest conditions will help assess areas where this treatment option can be implemented
cost-effectively when—coupled with existing fire behavior models.
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2. Materials and Methods

2.1. Study Site

The study sites were located in three stands in the Nez Perce-Clearwater National Forest,
in north central Idaho, following fuel treatments to gather data pertaining to the resultant surface fuel
loads. These treatments were part of the larger Orogrande timber sale and consisted of approximately
38 hectares (95 acres) of mechanical fuel treatment. The management units were predominantly mixed
conifer forest type with slopes averaging 35% throughout the units. Mastication was successfully
implemented in the three stands as a management alternative to timber harvest. The three stands
treated for this study were originally planned for timber harvest. Harvesting was found to be
financially infeasible due to the low value of harvested products and long-haul distances to the mill.
The prescription developed for the project was intended to release remaining trees to increase timber
value for future harvest while simultaneously decreasing stand density and increasing canopy base
height to reduce the risk of crown fire using mastication. According to forest personnel, the management
approach used in this project was its first application on the Nez Perce-Clearwater National Forest.
The machine used to perform the mechanical fuel treatment was a Takeuchi TB290 compact excavator
with a Fecon Bull Hog mastication head (Figure 1). The machine weighs 8685 kg, is 2.2 m wide and
2.9 m long at the undercarriage, has a maximum reach of 7.4 m, and creates only 37.9 kPa of ground
pressure when equipped with 450-mm-wide rubber tracks.
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Figure 1. Mini-excavator with a horizontal shaft masticator head used in mastication treatments.

The treatment prescription for the stands included a target range for post-treatment stocking
level. For the units in this study, the operator was instructed to leave 40 to 80 trees per hectare after
treatment while removing only stems less than 18 cm (7 inches) in diameter. Further, all dead and
down material up to 30 cm (12 inches) were masticated [39]. Post-treatment surface fuel sampling
occurred in the masticated portions of three replicate stands: 117 (13 hectares), 120 (15 hectares),
and 147 (10 hectares), within the management boundary. Due to many downed trees in stand 147,
meeting the prescription specification for dead and downed material was not operationally feasible.
Therefore, the mastication intensity for downed trees was reduced after stand 147 was partially treated.
This prescription adjustment was used for treating the remainder of stand 147 and for the entirety of
stands 117 and 120 [39] (Figure 2).

2.2. LiDAR Processing and Sample Plot Selection

The Orogrande timber sale and the three stands (117, 120, 147) were within the extent of the
18,450-hectare (45,600-acre) Crooked River LiDAR acquisition flown in 2012 with a pulse density return
of ≥4 points per square meter (Figure 3). Field sampling inventory data from 91 20 × 20-m (1/10 acre)
plots were run through the USFS Forest Vegetation Simulator [40] to summarize stand composition
and structure. These forest inventory data were part of a previous sampling effort and were collected
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using field methods described in Falkowski et al. (2005) [22]. Random forest models [41,42] describing
trees per hectare, total volume (m3 ha−1), basal area (m2 ha−1), and stand density index (SDI) were
then developed using LiDAR metrics encompassing identical extents to the field sampling plots.
These methods are consistent with those described in Becker et al. [43]. All random forest development
and metric predictions were performed in the open source statistical analysis program, R, using the
randomForest package [42,44].
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Random forest ensemble learning algorithms were used because they provide excellent
classification results, speed of processing, ability to reduce bias, and correlation and reduce overfitting
compared to other classification and regression trees (CART) models, making them a widely used
machine learning solution [45–48]. Random forest produces multiple decision trees using bagging and
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randomly selected subsets of training samples and variables to provide a majority vote from which
a prediction is made. The default number of trees (ntree = 500) and the default number of variables
split at each node (mtry = square root of the total number of input variables) were used when building
random forest models for each forest characteristic. 177 LiDAR metrics were available to develop each
unique random forest algorithm, but only a subset of metrics were used in the final models, based on
importance, defined using rfUtilities [49]. Random forest models were built using 2/3 of the data and
validated using the remaining 1/3 of the data.

The entire Crooked River LiDAR acquisition was processed using the USDA LiDAR processing
software FUSION version 3.60 to create an identical post-processed data structure as the initial
91 sampled plots [50]. This enabled the random forest models to be applied directly to the whole area to
develop predicted metrics in 20 × 20-m pixels. Stand metrics derived from the LiDAR analysis included
trees per hectare (TPH), total cubic foot volume (m3 ha−1), total basal area (m2 ha−1), and stand density
index. SDI has been used in even-aged monocultures, and more recently in uneven-aged, mixed species
stands to assess stand density as a function of quadratic mean diameter and stem density [51–55].
This metric was selected in addition to TPH to provide a more descriptive indication of stand density.
The trees per hectare vector map was then stratified into four classes: 0–247; 248–494; 495–740; 741+.
These classes were used to select sample plots within the study stands. Trees per hectare classes
were used to stratify the selection of a broad distribution of relative stocking in sampled areas prior
to mastication.

2.3. Field Sampling Procedures

Twelve plots were sampled within each of the three stands, with three representing each of the
four levels of pre-treatment trees per hectare derived from the LiDAR data. The 20 × 20-m pixels chosen
for sampling were randomly selected from all available pixels of the trees per hectare class within the
stand boundaries. The resulting sampled pixels amounted to 36, with nine plots representing each of
the four classes of pre-treatment trees per hectare. Trees per hectare was selected as the stand metric by
which to select sample plots, due to the mastication treatment prescription being based on a goal trees
per hectare post-treatment. All mastication treatments and sampling of fuel loading occurred during
summer 2017.

Center points within the 20 × 20-m pixels were determined via ArcMap, and the resultant
coordinates were used to locate the field plot centers. A simple method of plot center relocation
was established to address situations where plot centers occur in areas that prohibited the sampling
of fuel loading including tree stumps, roadways, rock outcroppings, and exposed mineral soil due
to machinery movement. In these instances, plot centers were moved due north 3 m. If needed,
plots were moved due west from original plot centers 3 m if the movement due north did not resolve
the issue with the obstruction. A variation on destructive plot-based sampling was used to quantify
fuel characteristics and fuel loading following mastication treatments within the three stands at each of
the 36 plots [10,14,17].

Within each of the 36 sampled plots, fuel size classes were sampled in four quadrats. Once the
plot center was located via GPS coordinates, 5-m vectors extending directly north, south, east, and west
of the plot center were marked and established as the corner points for the quadrats. For instances
in which uncharacteristic site conditions occurred within the quadrats, the frame was reflected over
the transect. If this quadrat reflection did not resolve the issue and fuel collection within the quadrat
was still not possible, the quadrat was excluded from sampling overall. Situations that would permit
quadrat reflection over the transect or exclusion included buried logs, stumps, and rock outcroppings.
In addition to the collection of fuels within the 25-cm squared quadrats, the fuel depth of masticated
fuels was measured at two locations along the 5-m vectors (2.5 m and 5 m) and at the overall plot center
(Figure 4). To measure fuel depths, a cross-section of the forest floor was cleared using a trowel, and the
depths were manually recorded. For the depths of the woody/masticated material, any branch or piece
of woody debris above the measurement point was included in the depth measurement. Where site
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conditions prevented the measuring of fuel depths, the depth was measured 0.5 m from the original
measurement point moving away from the plot center along the transect. If the depth was still not
measurable at the second location, the measurement was omitted. Each of the 36 plots contained four
separate fuel collection quadrats and nine fuel depth measurements.
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It was assumed that when locating sample plots in the field, there may be instances where
mastication, though planned, does not occur. This was a result of inaccessibility, due to the steep or
very uneven terrain where the operator chose not to treat the area for safety reasons. In these instances,
three supplemental sample points for each classification level of trees per hectare were randomly
selected in each of the three stands. If an originally designated sample plot was found to be within
an un-masticated area, a randomly selected supplemental sample plot of the same TPH class was
selected for sampling instead. These supplemental plots were randomly generated from the remaining
available pixels not included in the initial stratification prior to field sampling, using the same method
used in the initial plot selection. Supplemental plots were used once in unit 117, four times in unit
120, and four times in unit 147. The final sampled plots across stands 117, 120, and 147 are shown in
Figure 6.
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density (TPH) prior to treatment.

2.4. Lab Measurements and Fuel Characterization

After field sampling was conducted, fuel collection bags were brought back to the lab to be
processed by drying and sorting. A total of 133 quadrats of fuel was brought from the field for
processing. If all plots had all quadrats collected, there would have been a total of 144. However,
some quadrats were excluded from sampling because they were located on rock outcroppings, stumps,
or other obstructions. One complete plot of quadrat fuel collections from stand 117, trees per hectare
class 1, was misplaced during sampling, which constituted four of the eleven missing quadrat samples.
Due to the omitted samples, stand 117 had two plots for trees per hectare class 1, resulting in 35 total
plots rather than 36. Each collection sample was oven-dried at 105 degrees Celsius for 48 h, or until
the sample weight stabilized, and was then weighted to the nearest gram. All fuels were then sorted,
by quadrat, into five time-lag fuel classes: duff/litter and woody/masticated (1-h [<0.64 cm], 10-h
[0.64–2.54 cm], 100-h [2.54–7.62 cm] and 1000-h [>7.62 cm]) [56] (Figure 7). Sorted fuels were then
individually weighed to the nearest gram to determine the proportion of overall mass that each fuel
class represented. These proportions for each quadrat were averaged with corresponding plot quadrats
to determine the fuel composition proportions by mass for the entire plot. For each of the 35 sample
plots, the fuel bed volume was calculated by multiplying the average of the fuel depths at the nine
measured locations within each plot by the dimensions of the collection frame. We then determined
the bulk density of the fuels in each plot by dividing the average oven-dried weight of the fuel classes
in the four collection quadrats by the corresponding volume. Plot level values were calculated using
the averages of each quadrat within the plot for fuel loading (Mg ha−1) for the whole stand and by fuel
class, fuel depth (cm), and bulk density (kg m−3).
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To assess the correlation between pre-treatment LiDAR-derived forest metrics and post-treatment
fuel conditions, all statistical analyses were performed using the R statistical programming environment.
Pearson correlation coefficients were calculated to evaluate the strength of association between
predictors. Additionally, linear mixed effects models were used to model the relationship between fuel
loading following mastication treatments and the trees per hectare, stand density index, and basal area
of plots prior to mastication, using the nlme R package [57]. The general equation for mixed effect
models is described as:

yi = Xiβ+ Ziui + εi
ui ∼ N(0, D)

εi ∼ N(0, Ri)

where β are fixed effects, u are random effects, X is the model matrix for fixed effects, Z is the
model matrix for random effects, ε is the vector of errors, R is the variance-covariance matrix of
within-individual measurements, and D is the variance-covariance matrix of random effects [58].
In linear mixed effects, models evaluating predictors, stand, and TPH class were treated as random
effects, with the TPH class nested within the stand. Random intercepts were used when fitting models.
Due to the inconsistency of the mastication treatment in stand 147, two different mixed effects models
were fit for each of the LiDAR predictors. One model contained all three stands, while the second
model contained only stand 117 and 120. This was in order to avoid potential influential data artifacts
associated with the treatment change in stand 147.

3. Results

Parameter estimates for the random forest models used in the pretreatment derivation of forest
characteristics from LiDAR metrics for 20× 20-m pixels are shown in Table 1. In this study, an acceptable
maximum root-mean-square error (RMSE) of 50% of the prediction means was used based on values
derived in previous studies [59,60]. The RMSE was within the acceptable range for the density (TPH),
basal area (m2 ha−1), and stand density index models. For the random forest model predicting stand
volume (m3 ha−1), an RMSE of 166.93 was about 54% of the predicted mean and just outside of the desired
range. Predicted volume was therefore excluded from use in subsequent analyses. Model accuracies
for forest metrics were 71.5%, 77.4%, 74.3%, and 79% for trees per hectare, basal area, volume, and stand
density index, respectively, which are comparable to those obtained by Falkowski et al. [61] and
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Hudak et al. [60]. These pretreatment maps of predicted stand characteristics provided the basis for
study plot selection and the subsequent regression modeling of post-treatment fuel loading.

Table 1. Random forest model quality assessment for pre-treatment forest metrics.

Random Forest Prediction Mean RMSE R-Squared Accuracy (%)

Stand Density (TPH) 468.00 217.36 0.55 71.5
Basal Area (m2 ha−1) 30.56 12.95 0.63 77.4

Total Volume (m3 ha−1) 307.99 165.35 0.57 76.3
Stand Density Index (SDI) 299.17 110.296 0.45 79.0

Table 2 shows the summary data of the stands for the fuel collection as averages of the sampled plots
and quadrats within each stand. Surface fuel loadings range from 9.3–83.4 Mg ha−1, 1.8–34.5 Mg ha−1,
5.4–80.5 Mg ha−1, 0–48.1 Mg ha−1, and 0–8.2 Mg ha−1 for litter/duff, to 1-h, 10-h, 100-h and 1000-h
fuel classes, respectively, across all plots and stands. Fuel depths ranged from 6.4–26.3 cm and bulk
densities ranged from 22.2 to 154.2 kg m−3. Across all plots, there was a significant (p = 0.029) moderate
positive (0.369) correlation between trees per hectare and fuel loading (Mg m−1), found by performing
a Pearson’s correlation test. Additionally, there was a positive (0.3577) and significant (p = 0.0349)
correlation between SDI and fuel loading. No significant relationship was found between pre-treatment
TPH and bulk density of resulting fuels (kg m−3); SDI and bulk density of resulting fuels; basal area
(m2 h−1) and loading or bulk density; nor between pre-treatment total volume (m3 ha−1) and fuel
loading or bulk density (Table 3). Based on the results of the correlation tests, the linear mixed effects
model was fitted to evaluate the relationship of pre-treatment TPH and the resulting fuel loads as well
as SDI and the resulting fuel loads.

Table 2. Stand-level summary data representing stand averages and standard errors for pre-treatment
trees per hectare and post-treatment destructive plot-based surface fuel characteristics for stands 117,
120, and 147.

Stand
Pre-TPH
Avg. (SE)

Fuel Loading (Mg ha−1) Avg. (SE)
Fuel Depth (cm)

Avg. (SE)

Bulk Density
(kg m−3)
Avg. (SE)

Litter/
Duff

1-h 10-h 100-h 1000-h Total

117
530 43.4 6.7 30.3 13.2 0.0 93.7 15.6 59.0
(77) (6.7) (1.2) (4.3) (3.7) (0.0) (13.1) (1.5) (5.8)

120
515 31.9 5.5 25.3 13.4 0.7 76.8 16.1 48.2
(77) (3.3) (1.0) (3.2) (2.6) (0.7) (8.8) (1.2) (4.4)

147
516 32.9 9.1 34.3 22.8 0.0 99.2 18.4 59.2
(93) (3.6) (2.5) (5.9) (3.6) (0.0) (10.4) (1.5) (10.6)

Table 3. Pearson’s correlation assessments for pre-treatment forest characteristics and surface fuel
characteristics following mastication treatments, where T is the t-test statistic and DF is the degrees
of freedom.

Correlation T DF p-Value Coefficient

Density (TPH)/Loading (Mg ha−1) 2.2812 33 0.0291 0.3691
Density (TPH)/Bulk Density (kg m−3) 1.566 33 0.1269 0.2630
Volume (m3 ha−1)/Loading (Mg ha−1) 1.8018 33 0.0807 0.2993
Volume (m3 ha−1)/Bulk Density (kg m−3) 1.1251 33 0.2687 0.1922
Basal Area (m2 h−1)/Loading (Mg ha−1) 1.9676 33 0.0576 0.3240
Basal Area (m2 h−1)/Bulk Density (kg m−3) 1.3492 33 0.1865 0.2286
Stand Density Index/Loading (Mg ha−1) 2.2004 33 0.0349 0.3577
Stand Density Index/Bulk Density (kg m−3) 1.8702 33 0.0704 0.3096
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The linear mixed effects models predicting the total fuel loading of all time-lag classes from
pre-treatment TPH showed no significant relationship between the two factors (test statistic = 0.05318,
df = 22, p-value = 0.0527) when accounting for all three stands. In the reduced model, pre-treatment
trees per hectare and fuel loading were significant (p-value = 0.0066) (Table 4). The linear mixed
effects models predicting the total fuel loading of all time-lag classes from pre-treatment SDI showed
significant relationships between the two factors for all three units (p = 0.0477) and when assessing
stand 117 and 120 alone (p = 0.0337) (Table 4). Figure 8 shows the associated relationships between
SDI and the resulting fuel load for all three units. The black line represents the regression line of the
complete data set and the individual regression line for each stand.

Table 4. Mixed effects model summary assessing pre-treatment trees per hectare (TPH) and stand
density index (SDI) impact on fuel loading (Mg ha−1) post-mastication. The influence of stand 147 on
the overall significance of the factors is shown.

Stand 117, 120, 147

Predictor Estimate Std. Error DF p-Value
TPH 0.05318 0.025974 22 0.0527
SDI 0.16736 0.079809 22 0.0477

Stand 117, 120

Predictor Estimate Std. Error DF p-Value
TPH 0.09524 0.029924 14 0.0066
SDI 0.227069 0.09647 14 0.0337
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Additional linear mixed effects models were developed to further assess the impact of pre-treatment
TPH and SDI on resulting fuels loads for each of the 5 time-lag fuel classes (litter/duff, 1-h, 10-h, 100-h,
1000-h). Only the litter/duff fuel class loading was found to be significantly correlated to pre-treatment
trees per hectare for all three stands (Table 5). The litter/duff fuel class is generally independent of the
mastication process, as most fuels in this class were present before treatment. However, when assessing
stands 117 and 120, litter/duff (p = 0.0242), 1-h (p = 0.0232), and 100-h (p = 0.0059) were found to be
significant. When assessing the relationship between SDI and the resulting fuel loading across all five
time-lag cases, the model containing all three units showed that both litter/duff (p = 0.0042) and 100-h
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(p = 0.0293) were significant, while the model describing units 117 and 120 showed that only 100-h
(p = 0.0476) was significant. The data for the SDI model are shown in Figure 9.

Table 5. Mixed effects model summary assessing pre-treatment trees per hectare (TPH) and stand
density index (SDI) impact on fuel loading (Mg ha−1) sorted by time-lag fuel class post-mastication.
The influence of stand 147 on the overall significance of the predictors for each of the time-lag classes
is shown.

Stand 117, 120, 147

Fuel Class Predictor Estimate Std. Error DF p-Value
Litter/Duff TPH 0.0033284 0.0010120 22 0.0034

1-h TPH 0.0000789 0.0003873 22 0.8405
10-h TPH 0.0000719 0.0009999 22 0.9433
100-h TPH 0.0015591 0.0008138 22 0.0685

1000-h TPH −0.0000106 0.0000901 22 0.9072
Litter/Duff SDI 0.096484 0.030246 22 0.0042

1-h SDI 0.001137 0.012228 22 0.9267
10-h SDI 0.004637 0.031801 22 0.8854
100-h SDI 0.0562922 0.024141 22 0.0293

1000-h SDI −0.0007695 0.002888 22 0.7924

Stand 117, 120

Fuel Class Predictor Estimate Std. Error DF p-Value
Litter/Duff TPH 0.0038925 0.0015411 14 0.0242

1-h TPH 0.0008194 0.0003215 14 0.0232
10-h TPH 0.0021593 0.0010591 14 0.0608
100-h TPH 0.0025606 0.0007890 14 0.0059

1000-h TPH −0.0000245 0.0001527 14 0.8747
Litter/Duff SDI 0.095805 0.046646 14 0.0592

1-h SDI 0.019364 0.010368 14 0.0829
10-h SDI 0.058114 0.034173 14 0.1111
100-h SDI 0.057603 0.026532 14 0.0476

1000-h SDI −0.002020 0.004787 14 0.6794
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Our second research objective explored whether the in-plot distribution of masticated fuels
among the five time-lag fuel classes was impacted by the stand density of the plot prior to treatment.
Mixed effects models were developed to assess these questions, with results being found in Table 6. 10-h
fuels in the sampled plots were the only fuel class found to change significantly as the pre-treatment
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TPH changed (test statistic = −0.01581, p = 0.0178, df = 22). SDI was shown to have a significant
relationship with post-mastication fuel loading for both the 10-h (p = 0.0302) and 100-h (p = 0.0406)
fuel classes (Table 6).

Table 6. Mixed effects model summary assessing pre-treatment stand density (TPH) and stand density
index (SDI) impact on the percentage of total fuel load (Mg ha−1) by time-lag fuel class.

Stand Density (TPH)

Fuel Class Estimate Std. Error DF p-Value
Litter/Duff 0.00560 0.009796 22 0.5736

1-h −0.00190 0.0021351 22 0.3825
10-h −0.01581 0.006169 22 0.0178
100-h 0.01161 0.006380 22 0.0823

1000-h −0.0001 0.000850 22 0.9072

Stand Density Index (SDI)

Fuel Class Estimate Std. Error DF p-Value
Litter/Duff 0.00766 0.03098 22 0.8069

1-h −0.007688 0.006679 22 0.2620
10-h −0.04619 0.019931 22 0.0302
100-h 0.042089 0.019346 22 0.0406

1000-h −0.0007254 0.0027224 22 0.7924

The data distribution for the five time-lag classes as a percentage across the range of stand density
indices and fuel loading are shown in Figure 10. Woody and mulched fuels (1-h, 10-h, 100-h, and 1000-h)
were found to be between 30–85% of the overall fuel loads across all plots, which shows the variability
found within the stands. 1-h, 10-h, 100-h, and 1000-h fuels contained 6–27%, 36–94%, 0–57%, and 0–13%
of the woody and mulched fuels, respectively. On average, woody fuels made up about 58.2% of the
overall surface fuel loading across all sites, with 1-h, 10-h, 100-h, and 1000-h fuel classes averaging
7.5%, 33.2%, 17.3%, and 0.2% of the loading, respectively.
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4. Discussion

Total surface fuel loadings varied widely across our study plots (26.4 to 158.2 Mg ha−1),
with woody/masticated surface fuels representing a similarly wide range (7.7 to 127.5 Mg ha−1).
Across all stands and plots, total surface fuel loading averaged 89.8 Mg ha−1, and woody surface fuels
averaged 53.9 Mg ha−1. These total surface fuel loads were similar to those reported by Stephens
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and Moghaddas [16] in the Sierra Nevada Mountains (87.1 and 93.8 Mg ha−1), Reiner et al. [18]
in the Sierra Nevada (81.6 Mg ha−1), Kane et al. [14] at study sites in Northern California and
southwestern Oregon (83.6, 83.8 and 71.1 Mg ha−1), and Hood and Wu [17] in the Northern Rockies
(82.0–95.9 Mg ha−1), but were higher than those reported by Brewer et al. [62] in mixed conifer Idaho
stands (58.4 Mg ha−1) and lower than those reported by Battaglia et al. [10] in mixed conifer stands in
Colorado (110.4 Mg ha−1). This finding was not surprising, as masticated fuel beds and characteristics
have a wide variability across sites and regions. The attempt to develop the surface fuel prediction
model at a 20 × 20-m resolution in this study was meant to help address this site variability.

Based on results reported by previous mastication studies, the average total fuel depth of 16.7 cm
recorded in the mixed conifer stands we studied was significantly higher than those in Battaglia et al. [10],
but only slightly higher than those shown by Stephens and Moghaddas [16]: 14.6 and 14.7 cm. All fuel
sampling in this study occurred within a month of mastication treatment, so fuels were still green at the
time of collection and had not settled to the forest floor, whereas sampling of masticated fuels for other
studies occurred 2–6 years post-mastication [10,14]. These temporal changes in masticated fuel beds
make the generalization of loadings difficult, especially across broad geographic extents. For example,
a recently masticated stand may indicate greater fuel depths than a stand masticated several years ago,
due to the decomposition and deterioration of fuel structural integrity. The additional compaction of
fuel beds over time as they settle may affect subsequent fire behavior. Therefore, the development of
the model estimating surface fuel characteristics directly after masticating would provide a consistent
expectation of fuel loads, as was done in this study.

4.1. Relationship between Pre-Treatment Stand Characteristics and Fuel Loading

Through the analysis performed across the three stands we studied—117, 120, and 147—
no significant relationship was found between overall fuel loading following mastication and the
pre-treatment tree per hectare we derived from LiDAR. However, SDI was found to be a significant
predictor variable for post-mastication fuel loading when accounting for all management units and
time-lag classes jointly. Initially, we expected to see an increase in the fuel loading as the pre-treatment
TPH increased. It was believed that, given a consistent prescription implementation, greater TPH would
result in more fuel, as a greater number of standing trees were mulched to meet treatment objectives.
The contrary findings for absolute stand density may have resulted from the inconsistency in the initial
treatment of stand 147, which was then corrected. When excluding stand 147, increasing pre-treatment
TPH resulted in greater loading, as expected. However, even when including data from stand 147,
the p-value of 0.0526 was just outside the level of significance needed to reject the null. The significance
of both mixed effects models for SDI (p = 0.0477 and p = 0.0337) indicates fuel loading may be more
accurately predicted using a metric that accounts for both tree size and number, as opposed to simply
using trees per hectare where only the number of stems is accounted for.

Stand 147 was the first stand treated and was initially treated to prescription specifications. It was
found that once treatment began, the original degree to which large downed woody debris was to be
treated was operationally infeasible due to the increased treatment time. Further, stand 147 contained
a small pocket of lodgepole pine killed by beetle, with a significant portion of downed trees which
were, under the original treatment specs, to be masticated heavily. This resulted in a larger amount of
masticated fuels in plots with relatively low stand densities.

The decision to retain stand 147 in the analysis was made to maximize the data available for
assessment and provide a realistic portrayal of the large variability of mastication treatments. As a
relatively new treatment option being deployed over large areas, it is likely that similar inconsistency
in operational treatments may occur during implementation and administration of mechanical fuel
treatments, particularly as operators familiarize themselves with prescription requirements in new
treatment areas. However, when the treatment prescription and execution was consistent for the entire
stand, as seen in stands 117 and 120, a clear relationship between pre-treatment trees per hectare and fuel
loading was seen. Given the potential for variability of mastication treatments and the heterogeneity
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of stand conditions in practice, the predictive success of SDI in a “real-world” management scenario is
valuable for future modeling efforts.

Given the extent of our results, it remains unclear if a relationship exists between the fuel loading
following mastication treatments and the pre-treatment stand density based solely on TPH or stand
basal area, but SDI is a useful predictor. In mastication, the conservation of mass must be considered,
as materials are not removed from the stand after treatment but rearranged in different physical forms.
A larger masticated tree will understandably produce a larger amount of masticated material than a tree
of smaller size. For example, two stands may both have similar numbers of trees per unit area, but one
stand may have a larger average tree diameter than the other. If both stands are treated to the same
prescription and reduced to a defined tree per unit area, it would be expected that the stand with the
larger average stand diameter would produce heavier masticated fuel loadings. Accounting for both
stem number per unit area and tree size in a single pre-treatment stand metric, SDI addresses this issue.
Therefore, alternative approaches to modeling landscape scale fuel loading following mastication based
on pre-treatment stand conditions that incorporate both stem numbers and size may offer improved
prediction in future research and should be the focus of future study design and implementation.

When assessing the fuel loading for each time-lag class (litter/duff, 1-h, 10-h, 100-h, 1000-h),
the litter duff class showed a significant relationship for the TPH and SDI models (Table 5). This may
be a result of greater stand density, leading to higher amounts of organic material and litter on the
forest floor. In all, minimal 1000-h fuels were collected at the plots, limiting the available data for
the particular classes and making predictions difficult. This finding corroborates Kane et al.’s [11],
who found that the plot-based method of surface fuel sampling does not assess a large enough area to
effectively capture the presence of 1000-h fuels as well as planar intersect methods. This is a result of
1000-h fuels generally occurring less frequently than other fuel classes in fuel beds.

4.2. Relationship between Pre-Treatment Stand Density and Fuel Class Distribution

As shown above (Table 6), only the 10-h fuels expressed as a percentage of the overall surface fuel
loading were found to change as the TPH increased. It is unclear why the percentage of 10-h fuels
would decrease with increasing TPH, but this may be a result of changes in treatment implementation.
For example, the operator may spend less time masticating trees to maintain production in a denser
stand, resulting in an increase in the proportion of larger fuel classes. It would be expected that,
with one fuel class decreasing over increasing TPH, another fuel class would increase. This was seen
in the SDI model, where the significant decrease in 10-h fuels (coefficient = −0.04616, p = 0.0302)
was matched by a significant increase in 100-h fuels (coefficient = 0.042089, p = 0.0406). With increasing
stand density, it is possible the operator attempted to maintain the desired operational production by
decreasing the time spent masticating each tree. As a result, trees would be masticated less thoroughly,
and there would be a larger percentage of larger fuel particles. The 10-h fuel class accounted for the
highest fuel loads across all classes by a considerable amount in our study, which is consistent with
other studies [10,14]. Given the variability of the mastication as a whole, and the wide range of fuel
loadings across 1-h, 10-h, 100-h, and 1000-h fuel classes, our results show that the distribution of
surface fuels among time-lag fuel classes was not clearly modeled as a function of changes in TPH and
SDI alone, apart from the 10-h and 100-h classes, in the case of this study.

4.3. Study Limitations and Future Work

Mastication is a highly variable operation impacted by many factors, and it is understood that there
are some limitations to the scope of our research that should be addressed in future studies. One factor to
consider in future applications of this methodology is the pixel size at which the LiDAR metrics were
predicted. In the study development, it was believed that maximizing prediction resolution was
the best option. Mastication, however, is a variable process, resulting in a scattered distribution of
fuels on the forest floor. The directionality, travel distance, and particle size of comminuted materials
may be affected by the type of mastication head (disk vs. drum), equipment type (all surface vehicle
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vs. excavator carrier), equipment horsepower, boom or attachment height, local topography within
the stand, or other factors. While the sampling method developed by Hood and Wu [17] attempts
to address the variability in stand and site conditions by sampling across multiple quadrats within
the same plot, what was not accounted for in our study design was the possibility of fuels from
adjoining pixels being distributed inter-pixel. During the observation of the treatment, fuels were
clearly distributed more irregularly and further than anticipated. The 20 m × 20-m pixels used in the
plot selection may have been too small to limit the influence of surrounding pixels in the resulting fuels
found during sampling. For instance, a stand with a high stand density may have resulted in fuels
initially in the stand as standing trees being distributed to an adjacent stand of a lower stand density,
or to areas within the same stand that were not accounted for in our sampling design. During sampling,
it would then appear that the pixel with the lower stand density was responsible for creating greater
fuel loads than was possible. By decreasing the resolution and increasing the pixel size, this may
be avoided.

In the fuel collection process, future studies should incorporate a hybrid, plot-based, and planar
intersect method, as suggested by Kane et al. [14]. Doing so may help to ensure a more accurate
representation of the fuel classes, as 1-h and 10-h fuels are more accurately represented in plot-based
sampling [14], while planar intersect methods cover greater proportions of the overall masticated area,
properly representing the 100-h and 1000-h fuels that may be missed in plot-based approaches [11].
Supplemental planar intersect sampling was not performed in this study due to the small 20 m × 20-m
pixel size and the concern that sufficiently long intersect paths would extend too far to sample plot
edges and be impacted by the distribution of fuels from adjacent pixels. Increasing the pixel size
used in predicting the stand characteristics from the LiDAR, as described above, would enable an
easier implementation of supplemental planar intersect sampling. Additionally, due to the variability
of fuel distribution across the forest floor, plot-based sampling in future studies should use larger
sampling quadrats than the 25 × 25-cm ones used in this study. Alternatively, a larger number of
25 × 25-cm sampling quadrats may also provide a greater representation of overall fuel variability
within the sampling plot. The goal in using a smaller sampling quadrat in this study than those
described in previous studies [17,63] was to create an efficient and effective sampling procedure.
However, larger quadrats will provide a greater representation of overall surface fuel loadings and
should be studied.

5. Conclusions

The ability to quickly, efficiently, and effectively predict surface fuel loads resulting from mastication
treatments is a valuable tool, as increased implementation of this management technique occurs.
A variety of research and management questions regarding the longevity, fuel bed characteristics,
and fire behavior within masticated fuels exist and will increase in relevance as LiDAR data become
more widespread, along with the use of mastication to reduce fuels in stands where commercial thinning
may be infeasible or more difficult to implement administratively. Existing methods for predicting
surface fuel loads rely on intensive, time-consuming sampling following treatment. While existing
methods are effective for estimating fuel loading, methods based on remote sensing may help managers
to proactively plan and predict post-treatment fire behavior over large areas to optimize treatments in
ways that incorporate topography and stand adjacency.

The results from this study showed that pre-treatment stand density metrics that account only
for tree number per unit area, such as TPH, were not good predictors of resulting surface fuel
loads following mechanical fuel treatments with the sampling design and sample size we evaluated.
TPH prior to treatment was not directly related to the distribution of fuel time-lag classes within the
fuel bed, although the percentage of 10-h fuels could be predicted from pre-treatment conditions.
However, stand density index, which accounts for both the relative stem number and DBH of the stand,
effectively predicts post-treatment fuel loading across the whole study area. Further, SDI predicted that
as the density of a stand increases, a greater percentage of the overall fuel load consisted of 100-h fuels,
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while 10-h fuels decreased in percentage, likely a result of operational adjustments. Future modeling
efforts to predict post-mastication fuel loading should account for both the stem number and stem
size, as stand density alone may not provide the necessary predictive ability. Attempting to predict
resulting fuels from the number of trees per unit area alone does not account for variable volumes
of materials in trees of different diameters. Stand density measures, such as SDI, provide greater
insight into stand composition and overall stand biomass, which is significant when predicting fuel
load volumes resulting from the physical conversion of standing biomass to surface-based mulched
materials. Two stands with identical TPH may contain varying amounts of biomass as standing trees,
whereas it is expected that two stands with identical SDI would have the same amount of overall
biomass given similar forest types and species.

We believe that revisiting these methods, while taking into account the sampling considerations
mentioned in the discussion, is an important undertaking and could lead to the increased
implementation and effectiveness of mastication treatments. The rapid onset of LiDAR-derived models
to map individual-tree locations and stem characteristics, coupled with onboard GNSS mapping of
spatially, explicit, real-time equipment activities, offer the promise of improved high-resolution fuel
bed prediction in the immediate future. Further expanding the scope of the field sampling to multiple,
unique forest types, operators, and prescriptions would better capture the variability associated with
the masticated surface fuel loads. Future work should address these factors more closely, though the
determination of their impacts will likely require sampling at a higher intensity than that performed
in this study, or with a sampling design that directly accounts for the spatial resolution at which
comminuted material is scattered as a function of localized stand density, treatment prescription,
topography, equipment type and size, and the pattern of equipment movements.
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