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Abstract: One of the aims of compulsory education is for students to adequately handle basic maths,
owing to its importance in their future professional and personal lives. However, mechanical
knowledge of an algorithm may not be sufficient to train future citizens with critical and creative
thinking if it is not accompanied by a comprehensive understanding of the concept. In this regard,
existing research shows that a high percentage of students in primary education commit errors
when they attempt subtraction. However, little is known about whether adults perform the
same calculations correctly. In this context, 535 university students completed a questionnaire
composed of 20 subtractions. The results showed that only one quarter of respondents performed the
subtractions correctly. Analysis of error type showed that the most frequent mistakes corresponded
to the systematic errors made by primary-level students. This may indicate that the types of errors
committed during early learning persist over time, implying that subtraction may not have been
adequately taught. New educational approaches and initiatives are required to encourage the teaching
and learning of subtraction in a more reasoned and critical manner during early learning.
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1. Introduction

Current educational trends hold that it is necessary to offer an education in which students
can reason, face problems and difficulties and develop creativity and critical thinking. They need
classroom training to live and work as citizens in a world where they will not encounter exact paths or
solutions, or will have to make decisions that differ from the experts when they need to purchase life
insurance, organise holidays or decide which house to live in [1–3].

However, elementary education continues to be dominated by classes that favour rote learning [4]
which could be explained by the fact that most of the tasks that are conducted in the classroom come
from textbooks which are mostly automated tasks [5–7]. The significant lack of understanding of basic
maths is a circumstance that is accepted by the education community, while the continued use of
algorithmic calculations remains a priority aim in the majority of countries worldwide. For example,
subtraction tends to be considered, following rote learning, as a mechanical process that consists of
applying algorithmic steps in the appropriate order [8].

However, subtraction involves more than applying an algorithm. It is not merely a rote learning
and mechanical process, but rather includes a process of acquiring the algorithmic procedure and
interpreting that procedure, which has to take into account when and how the algorithm is applied and
what it means. The importance of the subject understanding the conceptual basis of the algorithmic
process of subtraction has been described as essential in many studies (see [8–16]).
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The evidence supporting the influence of numerical calculations beyond the school setting,
where mathematics occupies an important position in contemporary society both in defining profiles
associated with securing a certain employment position and opportunities for promotion at work [17],
and the relationship between mastery of arithmetic operations and the attainment of goals in different
fields [18], justify investigation of the state of development of basic maths among adults. For this reason,
given the social importance of processes associated with numerical skills [19], there is a need to examine
the results of subtraction operations performed by adults, focused on a very specific group of
them—university students. Some studies suggest that many adults do not display adequate skills
in situations related to the declarative knowledge underpinning mathematical procedures such as
addition and subtraction [20] and have far-from-adequate estimation skills [21].

The aim of this study is to generate knowledge that can be applied to the training of future
compulsory education professionals and currently practising teachers. The intention is to stress that
algorithmic learning of subtraction only makes sense when it is effectively achieved, in addition to
being located within a knowledge of the concept of subtraction that facilitates the understanding that
the algorithmic mechanism must be considered from a perspective of reasoning and critical thinking.
As such, the ultimate purpose of this study is to reconsider basic education, which in many cases
tends to remain mechanical and rote, and to construct it as rational, critical and creative. Teachers
have to construct arithmetic knowledge taking into account the rational conceptual understanding of
arithmetic principles (see [22]).

In this context, the aim of this study is to analyse the errors that university students make when
they perform subtractions. The results may help reflections to improve the learning of this and other
mathematical operations, and to develop methodological approaches for this purpose.

2. Theoretical Framework

Subtraction is part of the basic maths that is learned in early education. The acquisition of
subtraction knowledge takes place over several stages. First, from the initial years of infant education
(up to the age of 6 years), children perform subtractions intuitively in situations that arise in their
immediate environment. These are usually but not always simple calculations. Children’s proposed
solutions are not always correct. This learning can be facilitated in a natural manner, by using
specific materials from the immediate environment in different ways as, for example, when children
compare the candies they have between them or when they go up or down stairs (for more detail,
see [23]). Some authors refer to this as informal mathematics (see [24,25]). The development of this
informal mathematics is considered highly important as it forms the basis for more formal subsequent
learning [26,27].

The formal learning of subtraction is then developed during the primary education stages
(6–12 years), based mainly on knowledge of the algorithm, in terms of both its conceptual
framework—taking into account meanings related to the concepts of remove, lose, separate, take away,
take, borrow, count, add or balance—and its procedural framework—taking into account the system of
rules that permit the creation of a relationship between the conceptual level and the procedure in itself.
This formal learning is mainly directed at correctly applying the algorithm and studying the errors
made in implementing it (see [28–30]).

The study of errors has been the main focus of research related to learning subtraction. Brownell [31]
published the first theoretical studies to examine these errors, arguing that they were committed due to
certain routines that are learned during the initial process of teaching the algorithm, repeated without
understanding and applied to practical situations to consolidate the learning of the procedure.
These routines can only be useful if the structures underpinning the algorithmic content are visualised,
are easy to teach and can be turned into efficient execution routines [32].

Therefore, to analyse subtraction errors, Brown and Burton [33] followed Gagne [34] and Resnick [8]
in pursuing the hierarchical analysis tradition, and created a model for the discovery and diagnosis of
misconceptions arising among students with the aim of offering teachers a mechanism that would go
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beyond error identification and explain why the student was making the mistake. In order for this
automaticity to be possible, it was necessary to be able to represent the procedural skill via the required
sub-processes, both incorrect and correct, and a mixture of both. This procedural framework consisted
of two main parts: a conceptual one, representing the conceptual framework for the procedure, and an
operational one, which consisted of the methods for executing the procedure. It was also necessary to
take into account the relationships between the various error types. As many as 60 types of error were
categorised based on an analysis of subtractions performed by 1325 students in primary education.

Although these aspects were investigated in more detail in several studies (see [35,36]),
Lankford [37] and Ashlock [38] concluded that many erroneous results were due to failures in
the process of executing the subtraction algorithm rather than carelessness; in other words, errors
occurring during subtraction were more the result of using various incorrect strategies than of
incorrect use of number facts. On this basis and influenced by theories of information processing [39]
and cognitive psychology [40], Young and O’Shea [41] created a production system to analyse
subtraction errors. This was a collection of rules involving the application of actions that would allow
subtraction to be understood as a combination of several strategies [42,43]. The production system
consisted of processing each column by following rules, involving first comparing, deducting and
subtracting (rule 1), then calculating the difference (rule 2) and finally moving to the next column
(rule 3). This analysis led to the classification of erroneous responses in three error categories [41],
where some errors could not be categorised: number facts (in which correct borrowing had taken place
and the result differed from the correct one by a small amount, such as 9 − 3=7); algorithmic (Borrow
when < Take smaller, Always borrow, S > M→0, One→10, Add Column 2), or zero pattern (0 − N = N,
0 − N = 0, N − N = N).

At that time, it was considered that failures in procedural skills in multicolumn subtraction might
be fundamentally due to slips; that is, failures owing to the performance or carelessness of the student,
unstable over time, or to bugs, that is, failures in competencies that reflected skill-related errors or
disturbances to the correct procedure, stable over time, which also helped to describe the failure.
Progress appeared necessary, and would involve investigation of how students acquired these errors,
how long they persisted for and why they disappeared, in addition to analysis of whether—as had been
believed until that time—the only possible errors were systematic (procedural) and non-systematic
(unintentional carelessness). This gave rise to repair theory [44,45], which took previous studies into
account and was based on the idea that when a student reaches an impasse during the performance
of the subtraction procedure, as they cannot take another step forward, they will apply a repair—a
small but sufficient variation in the resolution of the subtraction to complete it, in order to overcome
the step, move forward and complete the result, normally with little success in terms of achieving
the correct response. For example, if a student has to borrow at zero and reaches an impasse
because they cannot decrement a zero, they might use the solution of simply not borrowing across
(403 − 56 = 357, error Stop Borrow At Zero). In fact, different repairs may be applied to the same
dead end. So, for example, when a student finds a column with a zero at the top and the corresponding
bottom is different from zero, if they make a repair instead of borrowing, two different errors may arise:
Diff 0 − N = N and Diff 0 − N = 0, which occur because the student does not know how to borrow
from zero. As such, a single impasse would generate two errors. Repair theory predicts that these
errors will belong to the same family, since they come from the same dead end. A total of 77 different
errors were categorised [46], later increasing to 121 [16], with a remaining approximately 10% that
could not be diagnosed.

Learning basic maths operations, mainly addition and subtraction, has essentially been included
among the aims of a large proportion of different kinds of mathematical education research over
the years, involving researchers from a wide range of countries and contexts (for more detail, see [47,48]).
Some of these studies focused on subtraction, and mainly on the errors and types of error committed
by primary-level students when applying the algorithm (see [49–52]).
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In this context, Cox [53] analysed the errors made by 744 elementary-level students in implementing
the subtraction algorithm. Thirteen per cent committed errors, and 23% of students were still committing
the same errors one year later. In a study by Bennett [54], involving 33 10-year-old students who
completed a total of 1549 subtractions, 22.2% were incorrectly performed. Brown and Burton [33]
collected data from 1325 students in the fourth, fifth and sixth grades in Nicaragua. The results
from 19,500 completed subtractions showed that almost 40% of students committed errors, with the
percentage increasing from fourth to sixth grade. Additionally, research by Young and O’Shea [41]
examined 1500 subtractions performed by students aged under 10 years, of which two thirds contained
errors. Studies by Cebulski and Bucher [55], VanLehn [16] and Sander [56] reported similar findings.
The results of a study by López and Sánchez [51], with 357 primary-level Spanish students performing
the subtractions used in a questionnaire administered by VanLehn [16], concluded that 26.61% of
students correctly answered the questionnaire, 23.47% of subtractions saw errors committed and the
systematic nature of the errors persisted over time. It was reported in all cases that the highest number
of errors occurred with subtractions that included a zero and due to failure to understand the place
value of figures in the base-ten system.

In another study, Fiori and Zuccheri [57] analysed the errors committed by 732 students aged from
9 to 12 years in Italy, using a questionnaire containing 19 subtractions that had been previously used
in Brazil, to assess whether the errors committed might be related to cultural factors, teaching methods
or the type of algorithm used. The results did not show significant differences, and although there was
recognition of the importance of the learning methodology used, it did not always have a decisive
influence on results, albeit in different cultural contexts. Fiori and Zuccheri [57] also noted that 16% of
students performed subtractions in which they obtained a solution with a higher number than the top,
reflecting an absence of number sense and critical thinking among students.

In short, despite having certain knowledge of studies that analysed the errors committed by
primary-level students when using the subtraction algorithm, and though there are works which
compared mental arithmetic in children and adults (e.g., [58]) as well as others which have compared
subtraction strategies among younger and older adults (e.g., [59]), no studies have been found involving
adults or university students that analyse the errors they commit when making subtractions, and no
studies have been found that consider subtraction as something more than an algorithmic process.

3. Materials and Methods

3.1. Sample

A convenience sample was taken [60,61] of university students from the University of Salamanca,
Spain, taken from different contexts. Specifically, students were selected from three centres and three
different undergraduate years in: primary teaching diploma (teaching), business sciences and small and
mid-size enterprise management (business) and statistics (statistics). In total, there were 535 students
aged from 18 to 47 years (Table 1). Of those students, 147 (27.5%) were male, 303 (56.6%) were female,
and 85 (15.9%) did not answer. In terms of studies completed prior to arriving at the university,
112 students had studied sciences and technology (20.9%), 285 had studied humanities and social
sciences (53.3%) and 138 had studied other subjects (25.8%).

Table 1. Sample of students who completed the tests, in numbers and percentages, organised by year.

Centre First Second Third Total

Teaching 185 (46.1%) 143 (35.7%) 73 (18.2%) 401 (100%)
Business 64 (56.6%) 0 (0.0%) 49 (43.4%) 113 (100%)
Statistics 7 (33.3%) 10 (47.6%) 4 (19.0%) 21 (100%)

Total 256 (47.9%) 153 (28.6%) 126 (23.6%) 535 (100%)
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3.2. Instrument

A questionnaire (Figure 1) was used containing 20 subtractions, of which 17 required borrowing
(validated by VanLehn [16]). The students completed the questionnaire on an anonymous basis and
also included details regarding sex (male/female/no response), age (in the following age intervals:
18–19/20–21/22–23/24–25/over 25 years), centre (teaching/business/statistics), year (1st/2nd/3rd),
studies prior to arriving at the university (science and technology/humanities and social sciences/others)
and time taken to complete the questionnaire (in minutes).
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Figure 1. Questionnaire (adapted from VanLehn [16] (p. 170)).

3.3. Preliminary Exploratory Test

Before collecting the data, an exploratory test was carried out with 34 university students on the
teaching diploma course. Data analysis showed a high percentage of errors. These data were not taken
into account in this study.

3.4. Procedure

The students independently and anonymously answered the 20-subtraction questionnaire, in
their normal classroom and in the presence of their normal professor and one of the authors of
this article, in order to check that the data were collected in an adequate way. There was no time limit,
although the time spent completing the questionnaire was recorded in each case. It was estimated that
the questionnaire would take between 2 and 5 min, and 10 min at most. All students consented to the
data they provided being taken into account for this research.

3.5. Data

The data were the students’ responses to the questionnaire. There were a total of 535 questionnaires
and 10,700 subtractions.
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3.6. Analysis System

First, each student’s right and wrong answers were analysed after they had completed
the questionnaire. The results were included in tables as absolute values and percentages, initially taking
into account the number of errors made and subsequently organised by sex, age, centre, course, previous
studies and time spent to complete the questionnaires, with comparisons performed to discover whether
there were significant differences (Levene’s test, one-way ANOVA, Student’s t-test, Tamhane’s T2-test).
The second analysis examined the type of error committed in the erroneous subtractions, in line with
the categorisation established by VanLehn [16] (See Table 2).

Table 2. Description of types of subtraction errors observed in this study (adapted from VanLehn [16]
(pp. 219–230)).

Error Name Description

E4 0 − N = N Except After Borrow The student thinks that 0 − N is N except when the
column has been borrowed from.

E5 1 − 1 = 0 After Borrow
If a column starts with 1 in both top and bottom and
is borrowed from, the student writes 0 as the answer
to that column.

E6 1 − 1 = 1 After Borrow
If a column starts with 1 at the top and bottom and is
borrowed from, the student writes 1 as the answer to
that column.

E7 Add Borrow Decrement Instead of decrementing, the student adds 1, carrying
to the next column if necessary.

E8 Add Borrow Decrement
without Carry

Instead of decrementing, the student adds one. If this
addition results in ten, the student does not carry but
simply writes both digits in the same space.

E9 Add Instead of Sub The student adds instead of subtracts.

E12 Always Borrow The student borrows in every column regardless of
whether it is necessary.

E19 Borrow across Top Smaller
Decrementing To

When decrementing a column in which the top is
smaller than the bottom, the student adds 10 to the
top digit, decrements the column being borrowed
into and borrows from the next column to the left.
Further, the student skips any column that has a zero
over a zero or blank in the borrowing process.

E20 Borrow across Zero

When borrowing across a zero, the student skips over
the zero to borrow from the next column. If this
requires them to borrow twice, they decrement the
same number both times.

E22 Borrow across Zero over Zero
Instead of borrowing across a zero that is over a zero,
the student does not change the zero but decrements
the next column to the left instead.

E28 Borrow from All Zero
When borrowing across one or more zeros, the
student changes all the zeros to nines, but does not
decrement the appropriate nonzero digit.

E29 Borrow from Bottom The student borrows from the bottom instead of
top row.

E32 Borrow from One Is Nine When borrowing from a 1, the student changes it to 9
instead of zero.

E33 Borrow from One Is Ten When borrowing from a 1, the student changes it to
10 instead of zero.

E34 Borrow from Zero
Instead of borrowing across a zero, the student
changes the zero to 9 but does not continue
borrowing from the column to the left.
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Table 2. Cont.

Error Name Description

E36 Borrow from Zero Is Ten
When borrowing across a zero, the student changes
the zero to 10 but does not decrement any digit to the
left.

E38 Borrow into One = Ten
When a borrow is caused by a column of the form 1 −
N, the student changes the 1 to 10 instead of adding
10 to it.

E39 Borrow No Decrement When borrowing, the student correctly adds 10 but
does not decrement any column to the left.

E40 Borrow No Decrement Except Last
The student omits decrementing unless the column
to be decremented is the leftmost column in the
subtraction.

E44 Borrow Only Once
The student does the first borrow correctly in a
problem. They subsequently only add 10 and omit
the decrement.

E45 Borrow Skip Equal When decrementing, the student skips over columns
where the top and bottom digits are the same.

E47 Borrow Treat One as Zero
When borrowing from a 1, the student treats the 1 as
if it were a 0. In other words, they change the 1 to 9
and decrement the number to the left of the 1.

E51 Borrowed from Don’t Borrow
When there are two consecutive borrows, the student
performs the first correctly but does not decrement
with the second (although they add 10 correctly).

E56 Decrement by One Plus Zeros
When there is a borrow across one or more zeros, the
student decrements the number to the left of the
zero(s) by an extra 1 for each zero borrowed across.

E61 Decrement on First Borrow The first column that requires a borrow is
decremented before the column subtract is done.

E65 Diff 0 − N = N In columns of the form 0 − N, the student does not
borrow but instead writes N as the answer.

E69 Diff N − N = N
Whenever there is a column with the same number
on the top and bottom, the student writes that
number as the answer.

E75 Don’t Decrement Zero over Blank The student does not borrow from a zero that is over
a blank.

E76 Don’t Decrement Zero over Zero The student does not borrow from a zero that is over
a zero.

E77 Don’t Decrement Zero Until
Bottom Blank

When borrowing across a zero, the student changes
the zero to 10 instead of 9, unless the zero is over a
blank, in which case they borrow correctly.

E79 Double Decrement One

When borrowing from a one, the student treats the
one as a zero (that is, they change the one to nine and
continue borrowing to the left) unless the one is over
a blank, in which case they do the correct thing.

E80 Forget Borrow over Blanks The student does not decrement a number that is
over a blank.

E81 Ignore Leftmost One over Blank When the leftmost column has a 1 over a blank, the
student ignores that column.

E85 N − 9 = N − 1 After Borrow
If a column is of the form N − 9 and has been
borrowed from, when the student does that column,
he subtracts one instead of nine.

E86 N − N After Borrow Causes
Borrow

The student borrows with columns of the form
N − N (after having borrowed).
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Table 2. Cont.

Error Name Description

E88 N − N = 1 After Borrow
If a column had the form N − N and was
borrowed from, the student writes one as the answer
to that column.

E89 N − N = 9 Plus Decrement

When a column has the same number in the top and
bottom, the student writes 9 as the answer and
decrements the next column to the left, even when no
borrowing is required.

E90 Once Borrow Always Borrow Once a student has borrowed, they continue
borrowing in every column.

E94 Smaller from Larger The student does not borrow, but in each column
subtracts the smaller digit from the larger one.

E95 Smaller from Larger Except Last

The student answers all columns by taking the
smaller digit from the larger one unless the column is
second to the last, in which case the student borrows
if necessary.

E100 Smaller from Larger With Borrow
When borrowing is required, the student correctly
decrements but subtracts the smaller digit from the
larger one.

E109 Top Instead of Borrow From
Double Zero

If a column requires borrowing from multiple zeros,
the student writes the top digit as the answer to that
column.

E115 Treat Top Zero as Ten In a 0 − N column, the student does not borrow, but
rather treats the 0 as if it were a 9.

E122 Calculation Number fact errors, such as 8 − 3 = 6.

E123 Not diagnosable

E3011 Decrement By 2 in Second Borrow
When two consecutive borrows are required, the
student performs the first correctly but introduces a
two-unit decrement in the second.

E3021
Units Column:
If T < B, Add Not Subtract and
Decrement

When T < B in the units column, the student adds
instead of subtracting and introduces a decrement of
one unit in the next column.

E3031
Units Column:
If T < B, Add Not Subtract and No
Decrement With Borrow

When T < B in the units column, the student adds
instead of subtracting and does not introduce a
decrement of one unit in the next column.

E3041
Units Column:
If T < B, Increase Units By 1 and
Decrement Borrow

When T < B in the units column, the student
increases the result by one and decrements the
borrow in the next column.

E3051 Units Column:
If T < B, Write Bottom

When T < B in the units column, the student writes
the bottom digit as the result.

E3061 N − 0 = N and Decrement N − 0 = N and the student introduces a decrement of
one unit in the next column.

E3071 N − 0 = 0 − N and Decrement

N − 0 = 0 −N and the student introduces a decrement
of one unit in the next column. If it is another
number instead of a zero, the student subtracts the
bottom from the top and decrements the borrow.

E3081 E40 + E69 Combination of errors 40 and 69 from VanLehn’s
glossary of errors.

1 New errors generated in this research.

An example of the analysis is as follows:
Analysis example (Figure 2):
The analysis example shows that subtractions S5, S7, S9, S10, S11, S12, S13, S14, S15, S16, S17,

S18, S19 and S20, numbered from left to right and from top to bottom, have a Smaller-From-Larger
error type, involving subtracting the smaller number from the larger one in each column. For example,
the student solves subtraction S11 as follows: 6591 − 2697 = 4106 (that is, 7 − 1 = 6, 9 − 9 = 0, 6 − 5 = 1
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and 6 − 2 = 4). The student solves subtraction S15 as follows: 9007 − 6880 = 3223, where in addition to
the Smaller-From-Larger error, the Treat-Top-Zero-As-Ten error is also present, consisting of treating the
0 at the top as a 10 (that is, 10 − 7 = 3, 10 − 8 = 2, 10 − 8 = 2 and 9 − 6 = 3). Additionally, in subtractions
S14, S16, S19 and S20, the student also commits the Smaller-From-Larger error. In subtraction S14,
they calculate 102 − 39 = 77 (9 − 2 = 7 and 10 − 3 = 7); they solve subtraction S16 as 4015 − 607 = 3412
(that is, 7 − 5 = 2, 1 − 0 = 1 and 40 − 6 = 34); and in subtraction S19, the student calculates 10,012 − 214
= 9802 (that is, 4 − 2 = 2, 1 − 1 = 0 and 100 − 2 = 98).
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For some subtractions, results even higher than the value of the top row are obtained (Figure 2:
S18 2044 > 2006), which might indicate an absence of critical thinking on the part of these students and
a need to include strategies to strengthen this aspect in the learning process for subtraction, and for
basic maths in general.

4. Results

This section contains the results of the analysis of student responses, carried out when they had
completed the 20-subtraction questionnaire.

4.1. Errors Commited by University Students

The errors committed by the 535 students in completing the 20 subtractions are set out below
(Table 3).

Table 3. Number of errors committed by students when completing the questionnaire, based on centre.

Total Errors Teaching Statistics Business Total

0 109 (27.2%) 2 (9.5%) 18 (15.9%) 129 (24.1%)
1 85 (21.2%) 8 (38.1%) 27 (23.9%) 120 (22.4%)
2 74 (18.5%) 2 (9.5%) 21 (18.6%) 97 (18.1%)
3 58 (14.5%) 4 (19.0%) 12 (10.6%) 74 (13.8%)
4 31 (7.7%) 2 (9.5%) 10 (8.8%) 43 (8.0%)

5 or more 44 (10.9%) 3 (14.4%) 25 (22.2%) 72 (13.6%)

Total 401 (100%) 21 (100%) 113 (100%) 535 (100%)
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Only 24.1% of the students correctly answered all 20 subtractions, meaning that 75.9% made at
least one error. Combining the students who correctly completed the entire questionnaire with those
who made a single error produces a percentage of 46.54%, meaning that over half of the students gave
wrong answers for at least two of the 20 subtractions.

There were no significant differences in these results based on: age; year, although in the third year
there was an increase in correct questionnaires that might be due to future primary teachers having
just completed their work placements at primary education centres and, very probably, having had
to deal with the execution of algorithms; and studies prior to arriving at the university. There were
significant differences based on: sex, insofar as the men committed more errors compared to the women
(Student’s t-test: t(448) = 1.98, * p = 0.04)), in addition, the percentage of women who did not commit
any errors was higher than the percentage of men (27.1% > 19.0%) and a higher percentage of men than
women fell into the category of having committed five errors or more; centre, insofar as the teaching
diploma students committed fewer errors compared to the business and statistics students (Student’s
t-test: t(533) = −2.518, * p= 0.012); and time taken to complete the questionnaire, with a difference
between students who took fewer than five minutes and those who took more than five minutes
(Tamhane´s T2-test: >5 vs. (0,2], * p = 0.000; >5 vs. (2,3], * p = 0.000; >5 vs. (3,4], * p = 0.000 y >5 vs.
(4,5], * p = 0.004).

4.2. Type of Error Committed by University Students in the Erroneous Subtractions

Second, when analysing the type of error made in erroneous subtractions, the subtractions that
students most frequently got wrong were initially considered. The students made errors in 1258 of the
10,700 subtractions, representing 11.76% of the total. These errors were distributed by subtraction as
shown below (the subtractions in the questionnaire were numbered from left to right and from top
to bottom; Table 4).

Table 4. Number of errors made by students for each of the 20 subtractions in the questionnaire.

Subtraction Number of Errors Percentage of Questionnaires

S13 128 23.9% 1

S11 107 20.0%
S9 94 17.6%

S19 91 17.0%
S20 88 16.4%
S10 85 15.9%
S15 82 15.3%
S18 80 15.0%
S16 76 14.2%
S17 70 13.1%
S14 53 9.9%
S5 52 9.7%

S12 47 8.8%
S3 41 7.7%
S1 40 7.5%
S7 39 7.3%
S6 31 5.8%
S8 26 4.9%
S2 20 3.7%
S4 8 1.5%

Total erroneous subtractions: 1258
1 For example, subtraction 13 was incorrectly answered by 128 students out of the 535 who completed the
questionnaire, representing 23.9% of students.

The ten subtractions that generated the highest number of errors reveal various issues. One cause
that may have influenced student error is the structure of the subtractions in the questionnaire.
The 17 subtractions that involved borrowing included the top 10 in terms of error rate. In addition
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to this, the subtractions S13, S11, S19 and S17 could be described as containing a column where the
top and bottom include the same number (1 in some cases and 9 and 0 in others); in subtractions S19,
S20, S15 and S18, there are various consecutive zeros on the top, and in subtractions S13, S19 and S10,
there is a 1 on the top and a blank on the bottom, although the 1 is only affected by borrowing in S10.
Subtraction S9 does not fit any of these structures, but as with some of the others, it involves the numbers
1 and 9 (1 over 9). Examining these structural peculiarities in more detail below, the 10 subtractions
are organised in a chart that shows the relationship between the top and the bottom for all of them
(T = Top, B = Bottom, S = Subtraction, Figure 3).Sustainability 2020, 12, x FOR PEER REVIEW 11 of 21 
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Figure 3. Organisation of the 10 subtractions with the highest error rate based on their structure,
according to numbers included on the top and bottom. Note: T: 1, 9, 0, 00 and other, mean that the
top of the subtraction contains, in each case, 1, 9, 0, 00 or a value other than the foregoing. B: 1, 9, 0,
blank and other, mean that the bottom of the subtraction contains, in each case, 1, 9, 0, blank or a value
other than the foregoing. SX, subtraction number X. For example, subtraction 13 (S13, 1813 − 215)
could be described as containing a column where the top and bottom include a 1 (T = 1, B = 1), and as
containing a 1 on the top over a blank on the bottom (T = 1, B = Blank).

Figure 3 shows that, in terms of the bottom, the subtractions with the highest error rate had a
structure in which the bottom had fewer digits than the top (six of them). With regard to the top,
the subtractions with the highest error rate had a structure that included a 1 in the top (seven of them).

Taking into account the error types that occurred in each of the 10 subtractions with the highest
error rate produces the below table (only showing the seven highest-frequency errors, Table 5).
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Table 5. Types of errors committed in the 10 subtractions with the highest error rate (only showing the
seven highest-frequency errors in each case).

Subtraction
Number

Total Errors
(%)

Most Frequent
Error Types

Example of Error in
Each Subtraction

Number of Errors
of Each Type

Subtraction 13:
1813 − 215 = 1598

128 (23.9%)

E81 1813 − 215 = 598 a

1813 − 215 = 608 56 (25.11%)

E12 181 3 − 215 = 598 50 (22.42%)
E5 1813 − 215 = 1608 22 (9.83%)
E122 1813 − 215 = 1597 12 (5.38%)
E19 1813 − 215 = 1607 11 (4.93%)
E6 1813 − 215 = 1618 10 (4.48%)
E33 1813 − 215 = 1698 10 (4.48%)

Subtraction 11:
6591 − 2697 = 3894

107 (20.0%)

E40 6591 − 2697 = 3904 37 (15.16%)
E69 6591 − 2697 = 3994 33 (13.52%)
E122 6591 − 2697 = 3899 28 (11.47%)
E45 6591 − 2697 = 3804 13 (5.33%)
E89 6591 − 2697 = 3894 10 (4.1%)
E301 6591 − 2697 = 3794 10 (4.1%)
E7 6591 − 2697 = 4014 8 (3.28%)

Subtraction 9:
716 − 598 = 118

94
(17.6%)

E33 716 − 598 = 218 40 (30.1%)
E122 716 − 598 = 116 22 (16.54%)
E302 716 − 598 = 114 8 (6.01%)
E19 716 − 598 = 117 5 (3.76%)
E32 716 − 598 = 208 4 (3.01%)
E40 716 − 598 = 128 4 (3.01%)
E47 716 − 598 = 108 4 (3.01%)

Subtraction 19:
10012 − 214 = 9798

91
(17.0%)

E5 10012 − 214 = 9808 14 (7.33%)
E80 10,012 − 214 = 10,798 14 (7.33%)
E34 10,012 − 214 = 19,798 11 (5.76%)
E75 10,012 − 214 = 10,798 11 (5.76%)
E33 10,012 − 214 = 9898 10 (5.24%)
E28 10,012 − 214 = 19,798 9 (4.71%)
E122 10,012 − 214 = 9998 9 (4.71%)

Subtraction 20:
8001 − 43 = 7958

88
(16.4%)

E77 8001 − 43 = 7968 13 (8.67%)
E34 8001 − 43 = 8958 12 (8%)
E80 8001 − 43 = 8058 12 (8%)
E122 8001 − 43 = 7956 11 (7.33%)
E28 8001 − 43 = 8958 10 (6.67%)
E75 8001 − 43 = 8058 10 (6.67%)
E38 8001 − 43 = 7957 8 (5.33%)

Subtraction 10:
1564 − 887 = 677

85
(15.9%)

E122 1564 − 887 = 657 31 (21.68%)
E44 1564 − 887 = 777 17 (18.89%)
E51 1564 − 887 = 1777 13 (9.09%)
E9 1564 − 887 = 2 451 9 (6.29%)
E29 1564 − 887 = 897 8 (5.59%)
E81 1564 − 887 =787 8 (5.59%)
E80 1564 − 887 = 1677 7 (4.89%)

Subtraction 15:
9007 − 6880 = 2127

82
(15.3%)

E34 9007 − 6880 = 3127 30 (19.87%)
E28 9007 − 6880 = 3117 28 (18.54%)
E36 9007 − 6880 = 3227 13 (8.61%)
E39 9007 − 6880 = 3227 13 (8.61%)
E56 9007 − 6880 = 1127 8 (5.3%)
E307 9007 − 6880 = 2113 7 (4.63%)
E306 9007 − 6880 = 2117 7 (4.63%)

Subtraction 18:
2006 − 42 = 1964

80
(15.0%)

E12 2006 − 42 = 1954 33 (24.81%)
E56 2006 − 42 = 964 18 (13.53%)
E75 2006 − 42 = 2064 11 (8.27%)
E80 2006 − 42 = 2064 10 (7.52%)
E115 2006 − 42 = 2064 7 (5.26%)
E122 2006 − 42 = 1963 7 (5.26%)
E28 2006 − 42 = 2964 6 (4.51%)
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Table 5. Cont.

Subtraction
Number

Total Errors
(%)

Most Frequent
Error Types

Example of Error in Each
Subtraction

Number of Errors
of Each Type

Subtraction 16:
4015 − 607 = 3408

76
(14.2%)

E12 4015 − 607 = 3308 19 (12.5%)
E90 4015 − 607 = 3308 16 (10.53%)
E86 4015 − 607 = 4308 13 (8.55%)
E80 4015 − 607 = 4408 12 (7.89%)
E40 4015 − 607 = 3418 11 (7.24%)
E65 4015 − 607 = 4608 9 (5.92%)
E115 4015 − 607 = 4408 9 (5.92%)

Subtraction 17:
702 − 108 = 594

70
(13.1%)

E34 702 − 108 = 694 26 (23.21%)
E122 702 − 108 = 596 10 (8.93%)
E28 702 − 108 = 694 9 (8.03%)
E76 702 − 108 = 604 7 (6.25%)
E36 702 − 108 = 604 6 (5.36%)
E19 702 − 108 = 603 5 (4.46%)
E22 702 − 108 = 614 4 (3.57%)

Total 901
(71.6%)

Observation: in subtraction 11, errors 40 and 69 occurred together on the majority of occasions (31 times). a Example
of error. The most frequent error for subtraction 13 was E81 (Ignore Leftmost One Over Blank). It can be observed that,
regardless of whether the operation is started correctly (1813 − 215 = 598) or not (1813 − 215 = 608), in both cases,
the result is incomplete because the column leftmost, where a 1 appears over a blank, has been ignored.

Taking subtraction 13 (1813 − 215) as an example to help understand Table 5, the most frequent
errors for this subtraction were: E81 (56 times, Ignore Leftmost One Over Blank), E12 (50 times,
Always Borrow), E5 (22 times, 1 − 1 = 0 After Borrow), E122 (12 times, Calculation), E19 (11 times,
Borrow Across Top Smaller Decrementing To), E6 (10 times, 1 − 1 = 1 After Borrow) and E33 (10 times,
Borrow From One Is Ten).

A comparison of these results with those for primary students shows that the two groups
(university students and students in primary education) were almost identical in terms of the top
10 subtractions for which errors were committed. For example, the results reported by López and
Sánchez [51] used the same questionnaire and found that the subtractions with the highest error rate
among primary students, ordered from highest to lowest number of errors, were S19, S20, S18, S17, S13,
S16, S10, S15, S11, S12, S14, S9, S8, S6, S5, S7, S3, S2, S4 and S1. Specifically, the 10 subtractions with
the highest error rate were the same for both university and primary students, with only the order
changing, in the cases of S19, S20, S18, S17, S13, S16, S10, S15 and S11, to which were added S9 for
university students and S12 for primary students. In both cases, the five subtractions with the highest
error rate included S13, S19 and S20. Moreover, when taking into account error rate and error type for
these 10 subtractions, all of them involved errors E9, E39, E40 and E122, and seven or more of them
produced errors E19, E29, E44, E61, E100 and E304.

Having analysed the error types produced by university students, we examined whether
the typology of these errors was related to aspects concerning when the algorithm was learned;
in other words, whether the typology of errors persists over time. This was done by comparing the
results obtained in this study with the errors systematically made by primary students in completing
the same questionnaire ([51]) (See Table 6).

The majority of the subtraction errors most frequently made by university students coincided
with those occurring in primary education. Additionally, the findings of this study show that the
errors made by university students fundamentally coincided with the errors identified as systematic
in the study by López and Sánchez [51]. This is interesting because it appears to show that errors
made in primary education persist over time despite the years that pass after university students have
completed compulsory primary education and the multitude of occasions on which they will surely
have performed subtractions for various purposes, in both their everyday and academic lives.



Sustainability 2020, 12, 9148 14 of 21

Table 6. Most frequent error types committed by university students in the subtractions they completed
compared to primary students.

Error Frequency in Our Study Order According to
Frequency in Our Study

Order According to
Frequency in Primary

Education 1
Systematic Errors 1

E122 212 1 1
E12 140 2 6 *
E39 96 3 2 *
E34 94 4 *
E40 91 5 *
E80 78 6 18 *
E81 71 7 *
E28 67 8 *
E33 67 9 *
E19 54 10 4
E94 50 11 21 *
E115 50 12
E9 48 13 10
E69 48 14
E5 47 15 3 *
E7 43 16 19
E29 39 17
E44 37 18 *
E56 34 19
E302 a 34 20
E65 32 21 20 *
E75 32 22
E308 a 32 23
E304 a 31 24
E100 30 25
E36 29 26 12 *
E4 27 27
E85 26 28
E89 26 29
E88 25 30
E123 b 24 31
E61 21 32
E6 20 33 17 *
E79 19 34
E95 19 35
E77 18 36
E8 17 37 16
E51 17 38
E20 15 39 5
E45 15 40
E306 a 15 41
E307 a 15 42
E38 14 43 *
E47 14 44
E301 a 13 45

1 López and Sánchez [51]. * Indicates the type of errors committed by university students in this study,
which corresponded to the errors systematically made by primary-level students [51]. a Use of 301 in place
of 101, and so on, to easily catalogue the new errors observed in this study. b E123 = not diagnosable.

5. Discussion

For the results obtained in this study, analysis of the responses of 535 university students
in answering 20 subtraction questions showed that only one quarter of those students (24.11%)
answered correctly. If one assumes that committing an error in respect to one calculation may be
understandable, 46.54% of students made one error at most—almost half of the sample. If this
assumption is extended to a maximum of two errors, 64.67% of students achieved this standard (almost
two thirds). In this latter, most benevolent case of committing a maximum of two errors, one third of
students did not achieve the standard. This is a fairly high figure if one considers that subtraction
is one of the fundamental elements of basic maths that is learned during the first school years of
compulsory education, fundamentally because it is commonly used in ordinary life. These findings are
similar to those obtained for primary students.
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Referring as it does to university students, this finding is surprising and leads to various questions,
including the following: do students who do not learn to use the subtraction algorithm in primary
education still not fully know how to use it through further years and even when they reach university?
Have there been no filters post-compulsory education that have required these students to perfect
the execution of the subtraction algorithm? Finally, has the fact that they do not have in-depth
understanding of the algorithm not proven to be an impediment to students successfully passing
through further years? This is without forgetting, moreover, that these university students are
supposedly a subgroup of primary education students who have completed the education that is
compulsory for all citizens; those who attend university supposedly have higher intellectual or working
capacity or more interest in continuing to perfect and specialise their education.

These findings cause us to doubt whether subtraction truly is something that is commonly used in
ordinary life. If this were the case, this being basic maths, it is not comprehensible for there to be such
a high number of errors. Perhaps the use of calculators means that it is no longer absolutely necessary
today to perform subtraction on a habitual basis in everyday life, or at least that adults do not consider
it to be truly necessary. This would require more research in various senses and might even lead to
the possibility of reconsidering the teaching and learning of subtraction in compulsory education,
with the implementation of different didactic methodologies. This might also be applicable to the rest
of basic maths.

It is clear that any citizen uses, or should use, subtraction on an almost daily basis. Further, a
calculator is not always available, or at least not always used. This circumstance should cause educators
to reflect on the reasons for these results. Do citizens—not all, but many—really not commonly perform
subtractions? Do they not react to the huge quantity of information that is constantly appearing in
the media, or when they perform daily chores, many of which require subtraction, do they accept the
results without even checking whether the information they are receiving is correct? If this were true,
such a lack of critical spirit and preparedness to verify what is received becomes a matter of concern
that cannot be dismissed as merely of anecdotal interest.

Other aspects are striking. It appears that teaching diploma students were the group that best
completed the questionnaire, with even significant differences separating them from business and
statistics students. What is the cause of these results? Could it be that the teaching students perceived
the questionnaire as being relevant to their interests, in the awareness that they would have to
implement this activity in their future professional work—something that would not be felt by business
or statistics students? More research would be useful in this regard. Perhaps the relevance of the
proposed task to their interests motivated those students to try their best, and this was not the case
for the business or statistics students. Various studies have reported that when tasks are proposed in
contexts that are relevant to students, better results are achieved (see [62]). This can open up paths
for future research. However, in any case, was subtraction not understood to be something that any
citizen must develop, and therefore relevant to all the students? Business and statistics students also
have to perform subtraction as citizens, as well as in their training as university students. Does this not
cause them to perceive that they will, or must, frequently perform subtraction?

What is more, a subgroup of teaching diploma students—those who had just completed their
work placements at primary education centres—obtained better results than the other students on the
same course. This may be due to the previous explanation that they perceived subtraction as relevant
to what they were doing, which requires us to ask again: is subtraction not relevant for any citizen,
university student or otherwise? Do students not commonly perform subtraction? Perhaps we are
arriving at the essence of the problem: at these ages, subtraction is not commonly performed.

The structure of subtractions might have had an influence on the errors made. An examination
of the subtractions in respect to which the university students made the most errors in this study
shows that in addition to them all requiring borrowing, the subtractions that proved most difficult
for the students to solve included a column where the top and bottom contained the same digit,
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various consecutive zeros or a one in the top, or a bottom containing fewer digits than the top. This is
interesting as it might open up pathways for new educational proposals.

No research was found involving university students that could be compared with these results.
However, it is possible to compare the results with subtractions for which primary students committed
most errors, such as those in the study by López and Sánchez [51], which were almost the same as
those in this study. A more detailed examination of the structure of those subtractions shows that
the difficulty in resolving them was mainly due to them requiring borrowing (which is corroborated
in the study by Cebulski and Bucher [55]), and to the difficulty of understanding the place value
system and zero as a digit and a number ([51,57]). This may have educational implications in terms of
treating these aspects as fundamental to teaching and learning the subtraction algorithm. The method
used to apply the subtraction algorithm may also be important (in the study published by Fiori and
Zuccheri [57], students who solved subtractions using the Australian algorithm made fewer errors than
those who used the traditional algorithm, although there were not significant differences). This shows
that errors made when performing subtractions are similar in different contexts, which reinforces the
importance of these findings not only in the Spanish context but also for the international mathematical
education community.

In some of the subtractions performed by the university students, the result obtained was higher
than the top row, which should catch anyone’s attention whether or not they have adequate knowledge
of the subtraction algorithm. It appears that this was not the case for many university students.
For example, if we consider the example included in the Materials and Methods section, it does not
appear acceptable to produce the answer 3223 (Figure 2) as a result for subtraction S15, 9007 − 6880.
It can easily be observed from an overall check upon completion of the sum, without checking whether
the algorithm has actually been correctly applied, that the sum of 6880 plus 3223 is considerably higher
than 9007. This has also been observed in the results obtained from analysing subtractions performed
by primary students (see [57]).

These situations, which do not appear to be isolated, seem to reflect an absence of number sense
and a lack of critical thinking among students, which may mean a lack of training in this respect; perhaps
too much emphasis on learning the subtraction algorithm has caused scant critical understanding of
what it means. Too much emphasis may have been placed on rote and algorithmic learning at the
expense of reasoning and creativity. In terms of the subtraction algorithm learning process, the fact that
these students are from different educational and training backgrounds makes the problem arguably
more widespread than it might initially be supposed, meaning that attention should perhaps be focused
on the compulsory education stages, where various studies such as that published by Resnick [8] have
reported that many children solidly internalise the construction of conceptual meanings of numbers in
the form of units without understanding the place value of digits within sums. Applied to the striking
findings of this research, this circumstance means that one can at least doubt the instructive methods
implemented to teach the algorithm during compulsory education. Efforts should hence be directed at
developing more creative and critical and less mechanical didactic methodologies, in order to improve
learning regarding this operation and what is required of it in everyday life. Subtractions may not be
frequently performed in everyday life, but estimates are constantly made. These estimates can reveal a
number sense that would not accept an exorbitant price for three or four simple products purchased at
a butcher’s, whether due to error or other causes, where even if the algorithmic operation has not been
carefully performed, an approximate estimate of the expected cost should reveal a number sense that
most citizens show or should show.

Specifically, when someone performs a basic calculation or resolves a problem, it is logical that
upon completion they should consider whether the result obtained is in line with the proposed
calculation or problem to be solved (this can be understood as the final stage of problem solving
identified by Polya [63], involving a retrospective view). If this were to happen at a particular time,
an adequate critical approach should lead to the conclusion that there must have been some error in
the calculation, and this is what is understood as number sense (see [64]). With regard to this issue,
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authors including Cobb and Wheatley [65], Cobb, Yackel, Wood, Wheatley and Merkel [66], Fuson [47]
and Kamii and Lewis [67] have emphasised that the algorithm should be taught from a comprehensive
and critical viewpoint, above all stressing number sense over and above the strict teaching of the steps
in the procedure. Some of the training approaches for teachers who will explain subtraction could be
focused along these lines.

Perhaps this peculiarity does not only materialise when learning the subtraction algorithm;
it might also extend to the learning of other basic maths and even beyond that to the development of
learning in mathematics and perhaps in other subjects. This scarcity or absence of number sense among
university students might even be part of a more general issue, to which reference has previously
been made: their lack of critical spirit. This, which might be understood in a broad and ambitious
context with the aim of training students as future citizens, could also include specific issues such as
something that is considered apparently mechanical—the execution of an algorithm—but which also
requires reasoning, critical spirit and common sense.

The limitations of the study include the convenience nature of the sample, and the study would
have to be extended to be able to generalise the results. However, the results remain interesting
and seem logical based on what is known about the subtraction algorithm. The data were collected
anonymously, which hindered subsequent follow-up regarding particularly striking individual cases,
for example, through individual interviews that would have facilitated a more in-depth examination
of how the subtractions were approached and, in turn, the causes of the errors that were made.

In terms of future prospects, it would be useful to carry out research analysing the errors that other
university students (as, for example, art university students or political science university students)
make when they perform subtraction and to investigate their understanding and use of this basic
mathematical operation. A study in this sense with adults would make it possible to complete a cycle
of knowledge of the errors that occur when performing the subtraction algorithm and, based on that
knowledge, open up pathways for the development of actions to attempt to improve the learning of
subtraction or even, if considered appropriate, to change the way in which the subtraction algorithm is
learned, for example, by reducing mechanical learning of the algorithm and strengthening learning
of the number sense that could facilitate a changed view of this basic maths, rendering it not merely
mechanical but critical and reflective. Other possibilities as future research could be to design a new
questionnaire including word problems or modelling problems on subtraction (see [68]) in order to
experiment it and to compare the results obtained with those of this study.

One specific proposal that entails the preparation and implementation of didactic methodologies
that promote more significant learning could be aimed at linking subtraction learning with contexts
that are more relevant to the everyday life in which the calculation is used, and not always in an
algorithmic form. More specifically, for example, primary students could be shown correct or incorrect
subtractions, such as those completed by the university students in this study, in order for the primary
students to identify which are erroneous and why the error occurred. Based on the students’ work
and perceptions, potentially carried out and discussed as a group, the teacher can analyse the types
of error arising together with the students, which could indirectly impact on the algorithm required
for the subtraction and on how to perform the subtraction adequately. This working approach might
be expected to help understand the causes of subtraction errors as the primary students perform
subtractions. It would be useful for this proposed work to be adequately planned.

6. Conclusions

This study analysed the errors that university students made when performing subtraction.
A 20-subtraction questionnaire was used as the instrument. The sample included university students
from three different centres: teaching, business and statistics. The sex, age, centre, year, type of study
completed prior to arrival at the university and time taken to complete the questionnaire were taken
into consideration. The results were compared with the errors made by primary students.

In this context, the main conclusions of this research are as follows:
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- Only one quarter of university students correctly answered all 20 subtractions in the questionnaire
they completed. Extending the criteria for successful completion of the questionnaire to admit up
to two errors resulted in only two thirds of students completing the questionnaire correctly.

- There were significant differences related to the level of success in completing the questionnaire
depending on the students’ sex (in favour of women), centre of studies (in favour of teaching
students compared to business and statistics students) and time taken to complete the questionnaire
(in favour of those who took fewer than five minutes, as against those who took longer than
five minutes). There were no significant differences in terms of successful completion of the
questionnaire based on age, year or previous studies.

- The typology of the most frequently occurring errors committed by university students, which
essentially coincides with the profile for primary students, indicates that in addition to these
errors corresponding to a deficient handling of basic numerical relationships, they were also due
to weaknesses in understanding zero and the place value system.

It is not easy to understand how university students can commit so many errors when performing
subtraction, and whether subtraction is really an operation that is fundamental to their future lives
as professionals and citizens. The findings of this study appear to show an absence of number sense
and critical thinking among university students—or at least that this is an aspect where there is room
for improvement. The teaching and learning of subtraction at primary ages should be aimed in
this direction, perhaps as well as those of other basic maths, where the aim is not merely to achieve
mechanical algorithmic learning but also to develop constructive, critical and reflective thinking; this
would permit the opening up of various lines of research.

Despite teaching diploma students being the group that committed fewest errors in this study,
their results are particularly concerning given that they will be the teachers with responsibility for
the teaching and learning of subtraction in primary school classrooms. If they have not mastered
their understanding of zero and the place value system, it will be difficult for them to be able to work
adequately in a primary school classroom and this may mean that they are limited to teaching on a
rote basis by using a set of rules that will probably be given in a textbook. It may therefore be useful to
take into account the possibility of addressing this in the undergraduate curriculum for this university
qualification, in order to construct a more critical and reflective form of learning.
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