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Abstract: The uncoordinated integration of electric vehicles (EVs) severely deteriorates the operational
performance of a distribution network. To optimize distribution network performance in an EV
charging environment, this paper presents a two-stage optimization approach, which integrates
coordinated EV charging with network reconfiguration. A formulation to minimize system power
loss is presented, and an optimal solution is obtained using a binary particle swarm optimization
algorithm. The proposed approach is tested on a modified IEEE 33-bus medium-voltage node
test system, coupled with a low voltage distribution network. Results of the coordinated and
uncoordinated EV charging are compared with those of the developed integrated approach, and the
operational performance of the system is studied. The results show that the integration of network
reconfiguration with coordinated EV charging significantly decreases network power losses and fairly
improves voltage profile. Thus, the proposed strategy can lead to improved operational performance
of the system while dealing with the growing penetration of EVs in the network.

Keywords: electric vehicle; network reconfiguration; binary particle swam optimization;
distribution network

1. Introduction

The power system network is arguably the largest infrastructure made by humans on earth.
Such a network consists of generation, transmission, and distribution systems [1]. The transmission
system is mostly used to transfer electrical energy from a power-generating plant to its distribution
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systems, to which multiple different rating loads are connected [2]. The conventional power system is
divided into many national-level power system networks, wherein mostly electricity generation is
produced by exhausting fossil fuels (e.g., coal, petroleum, natural gas, oil shales, bitumen, tar sands,
heavy oils and others, to power distribution loads). Therefore, the burning of these fossil fuels for
electricity generation, industrial consumption, automotive industries, and other transportation sectors,
produces greenhouse gases (GHG) and CO2 emissions [3,4].

Recently, to meet global energy demand and supply, utility providers are shifting from traditional
electricity generation for use in automotive industries and transportation networks towards more
sustainable and renewable energy resources (RES), including nuclear energy, solar energy, wind energy,
tidal wave, biomass energy, and others. Increasing global environmental problems, high oil prices,
and technological advancements all drive the transition towards eco-friendly and more economical
mobility networks [5,6]. As a result, electric vehicles (EVs), hybrid EVs (HEVs), and plug-in EVs (PEVs)
have emerged as the most attractive options for mobility [7].

In the current study, we refer to PEVs as “EVs”; these are grid-connected vehicles that take their
charging energy from the electric grid. The charging activity can be performed either at home or at a
public charging station [8]. Compared to conventional household domestic loads, the EV charging
loads are relatively large. In brief, the modern power system networks is highly populated with the
integration of grid-connected renewable energy (RE) systems, energy storage systems (ESS), flexible AC
transmission systems (FACTS), and high-voltage direct current (HVDC) [9], among others.

In the modern world, the increased integration of EV loads and mobile connection to power grids
has increased the energy demand characteristics of the power network to the highest peak demand
level, which requires a modern self-attention grid. Furthermore, a worst-case scenario may occur when
hundreds of EV fleet customers returning to their homes plug in their EVs to the electric grid and charge
their vehicles at the same peak demand hours as the conventional load [10]. The unequal distribution
of nonlinear loads, the random behavior of EVs, and the large integration of Photovoltaics(PVs) and
wind energy sources produce congestion; complexity and physical limitations; as well as energy loss,
power quality, and grid reliability issues due to the thermal constraints of the transformers and the
transmission and distribution lines. Therefore, the uncontrolled charging of EVs can lead to overloading
of the distribution network, voltage violation, power loss increment, and poor management of the
network [11,12]. Multi-utilities companies like electric utility, gas utility and water utility operations
also have serious concerns about the grid objectives and system performance parameters. Therefore,
devising a smart management system of EV charging can sufficiently satisfy customers’ charging
demand without compromising grid objectives. The smart scheduling strategies under a centralized
control framework gives authority to the distribution network operator to make charging decisions by
considering both the grid and customer interests. The development of smart and modern grids provides
an excellent platform upon which to implement centralized scheduling strategies [13]. Furthermore,
the smart load management of EV load leads to high-technology applications and economic freedom
to improve the significant importance of the demand-side management (DSM) of the customers [14].

The impacts of EV charging and their scheduling strategies have been discussed in several literature
studies. For example, one study [15] implemented a smart scheduling of EVs based on the minimum
load deviation of substation transformers using a genetic algorithm (GA) method of optimization
algorithm. The strategy has effectively reduced load stress on the system by accommodating EVs
in valleys to give smooth load profiles. Similarly, researchers [16] performed a planning-level study
to accommodate clusters of EVs in a distribution network. The scheduling task is implemented
by using GA with the objective of minimizing system cost and emission. In similar studies [17,18],
the authors managed to charge the EV activities at the maximum utilization of renewable energy sources
and tested linear programming to implement the complex scheduling task. In another work [19],
the authors proposed the direct control of EV load management with the objectives of minimizing
energy cost and maximizing the energy delivered to the EV batteries; however, that work did not
consider practical domestic network constraints. Furthermore, past studies [20,21] proposed an optimal
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charging scheduling of EVs to reduce the network power loss. They formulated a scheduling problem
assuming a fixed state of charge (SOC). However, their proposed systems are in conflict with the
practical scenario.

Aside from smart charging scheduling strategies, the growing penetration of EVs in a distribution
network has raised awareness regarding the importance of integrating grid strategies, such as
network reconfiguration, in order to achieve an improved network performance. In an automated
distribution network containing EV charging load, network reconfiguration technique can be utilized
to improve the system’s operational performance. The literature provides details on smart charging
scheduling schemes considering various objectives. However, the sequential integration of grid
strategy, i.e., network reconfiguration with coordinated charging strategy has yet to be addressed.
Network reconfiguration is one of the important techniques used in power systems to improve
network reliability.

In this paper, a sequential integration approach is presented, which integrates the network
reconfiguration with coordinated EV charging. The aim of integrating the reconfiguration strategy is
to minimize distribution network losses and improve voltage profile. The EV charging scheduling and
network reconfiguration problems are both solved by employing the Binary particle swam optimization
(BPSO) algorithm. During the network reconfiguration process, the network radiality constraint is
taken into account. The proposed approach is tested on a modified IEEE 33-bus system, and the results
show that the sequential integration of network reconfiguration after the scheduled charging load of
EVs further reduces network losses and improves system voltage profile compared to the case when
only the smart charging is considered. Thus, the proposed approach can help the utilities companies
integrate the network strategies with the smart scheduling of EVs to improve their system performance.

The rest of the paper is structured as follows. Section 2 formulates the problem of interest and
details the system constraints. Section 3 describes the proposed two-stage methodology to obtain an
optimal solution. The results are discussed in Section 4, and Section 5 concludes the paper.

2. Problem Formulation

The uncoordinated charging of EVs leads to distribution network overloading and power loss
increment. High power losses reduce system efficiency, which in turn, affects its economic operation.
As a solution to this problem, a smart charging scheduling scheme can manage the charging load of EVs
without system overloading and power loss increment. To fulfil the customers’ charging demand and
network constraints, this paper analyzes a smart charging scheduling scheme. The advance scheme is
sequentially integrated with the domestic network reconfiguration and then implemented to improve
the network performance during the high penetration of EV charging. However, both scheduling
task and network reconfiguration are complex optimization problems that involve many constraints.
Each task is modeled on common objective function of power loss minimization and is defined in
Equation (1)

Min( fc) = Min
T=24∑
t=1

nb∑
i=1

|Ii|
2kiRi (1)

where fc is the loss function, t is a one-hour time interval over the time period (T = 24 h), Ii is the
current in the branch i, nb is the total number of branches, and ki is the variable that represents the
topology status of the branches (0 = open, 1 = closed). This topology is determined during the network
reconfiguration process. EVs act as the charging load on the network; their random connection with
the network increases the Ii flowing in the ith branch, which may result in the overloading of the
line, thus causing high line losses. To limit this current, a smart selection of the EVs is required,
which minimizes objection function states in Expression (1). The formulated objective is subject to
various constraints. In the EV charging environment, the total load demand of a system includes the
EV charging load and the residential load. At any instant of time (t), this total load demand should
not exceed the maximum demand level of a system to avoid overloading the system. Expressions
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(2) and (3) show that the constraint can limit the dispatch of uneconomical units to meet the extra
demand and save the operational cost of the system.

m∑
j=1

Pload
j (t) ≤ P

Max.
demand (2)

Pload
j (t) = PReseidential

j (t) + PEV
j (t) (3)

In Expressions (2) and (3) above, PMax demand is the peak residential load demand throughout a
day. However, if a random charging is performed during this interval, this will violate the constraint
with increased system losses. In addition, Pj

load(t) is the total power consumption at the bus j for the
time interval (t), Pj

Re sidential(t) is the residential load demand at the bus j for time step (t), and Pj
EV(t)

is the EV load demand at the bus j in a time interval (t). To ensure power, the quality of the system
voltage magnitude at each node must be within the permissible ranges determined by the utilities
companies. In this paper, the upper voltage limit of 10% (1.10 per unit) and lower voltage limit of 6%
(0.94 per unit) are tested [22].

Vmin ≤ V j ≤ Vmax (4)

In Expression (4) above, Vmin and Vmax are the minimum and maximum allowable voltages,
respectively, and Vj is the voltage at the node j. Similarly, at every scheduling step of SOC consideration,
it is very important to determine the EV energy demand. This constraint is very helpful for the
health and safety of the battery. Here, the SOC constraint with upper and lower limits is defined in
Expression (5) as

SOCk,min ≤ SOCk ≤ SOCk,max (5)

where SOCk,min is the minimum state of charge of Kth EV, which is assumed as 20% of rated capacity.
In addition, SOCk,max is the maximum charging capacity of Kth EV, and SOCk is the current state
of charge of Kth EV when it connects with the system. In the scheduling process, it is assumed
that once a particular EV is selected for the charging, it will not disconnect from the system until
it attains its required SOC. The distribution network operates with radial configuration due to its
simple and economical design. Radial configuration is typically used as a constraint for network
reconfiguration. Network reconfiguration provides a new topology of the network by altering the
closed/open status of the switches. However, the network should not lose its radial topology when
switches change their status. Radial network configuration is used as a constraint while implementing
network reconfiguration in the second stage of the research and is handled by all spanning trees
algorithms [23].

3. Proposed Algorithm for Optimal Charging Scheduling Integrated with
Network Reconfiguration

In order to achieve an optimal EV charging scheduling with an improved network performance,
this work has been carried out sequentially into two stages, as shown in Figure 1. Stage 1 deals
with the coordinated charging scheduling of EVs in a low voltage distribution network based on
minimum power loss. Therefore, in Stage 2 of the scheduled EVs charging environment, the network
reconfiguration is then integrated with the scheduling task to improve network performance.

3.1. Optimal EV Charging Scheduling

Figure 1 (Stage 1) shows the proposed algorithm for one scheduling interval to coordinate charging
activities by considering typical EV mobility patterns. Uncertainties in the EV mobility patterns are
one of the core challenges in developing an optimal charging schedule. To model a more practical
charging schedule, EV mobility pattern should be thoroughly considered. A detailed EV mobility
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pattern has been explored in a past work [15]. The random extraction of arrival and departure patterns
corresponding to residential areas can be found in Figure 2. Moreover, the scheduling algorithm also
considers the typical 24-h demand patterns and peak load demands of each hour monitored from the
main substation transformer, as shown in Figure 3.
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There are 24 scheduling intervals, and each one is independent from the others. In every interval,
EV availability is determined from the mobility data. The scheduling algorithm without violating
system boundaries updates in every time step t = 1 h and accommodates the maximum possible EVs
in the network, thus obtaining the minimum network power losses. Once an EV reaches its SOCmax,
it is no longer a part of the scheduling algorithm. At the end of every time step, optimal hourly
scheduled load data are obtained, which reflect the minimum network power loss. Once the Stage
1 task is completed, then hourly load data, which consist of conventional and scheduled charging
load of EVs, are then fed to a later stage of network reconfiguration. In this stage, the same BPSO
algorithm is used, and an hourly optimal network configuration is determined in the presence of the
scheduled EVs charging load, thereby reducing network losses and improving network performance.
The radiality, which is the main constraint of this stage, ensures the unidirectional power flow of
the system. This stage determines the optimal combinations of network switches that should be
opened so that power flowing through the branches follows the shortest possible path, thus generating
minimum power loss. The solution process of network reconfiguration is illustrated in the second
stage of Figure 1, in which each stage is implemented with the BPSO algorithm and is detailed in the
following section.

3.2. BPSO Algorithm

This section analyzes a suitable algorithm for solving problems involving non-convex and
non-linear solution spaces, such as EV charging scheduling. An appropriate algorithm should be able
to provide quality solution in the minimum possible time while satisfying a number of constraints.
Particle swarm optimization (PSO) is considered suitable here as it has been proven to be a robust
optimization algorithm for complex, non-linear, and near to real-time scheduling tasks [24]. The BPSO
algorithm has been used as an optimization tool to solve both the scheduling problem and network
reconfiguration. The BPSO algorithm is the binary version of the PSO introduced by Kennedy and
Eberhart in 1997 for binary nature problems [25]. In BPSO, each particle i corresponds to its position
Xi and velocity Vi in a d-dimensional search space. The position of a particle Xi is represented as a
vector in a binary space (i.e., Xi ∈ {0, 1}), whereas the particle’s velocity is a vector in the continuous
solution space.

V(k+1)
i = ω×Vk

i + C1 × rand1 ×
(
Pk

best,i −Xk
i

)
+ C2 × rand2 ×

(
Gk

best,i −Xk
i

)
(6)

In Equation (6), Vi
(K+1) is the particle’s velocity in the range Vmax = 4; Vmin = −4. In addition,

Pbest,i
k is the personal/local best position of particle i up to iteration number k, Pbest,i

k is the global
best position among all Pbest,i

k up to iteration number k, ω is the inertia weight linearly varied from
0.9 to 0.4, C1 and C2 are the acceleration factors in the range of 2.0–2.05, and rand1 and rand2 are the
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random numbers in the range of (0, 1). Unlike the conventional PSO, in the BPSO algorithm the
position of a particle represents a bit and its mutation from zero to one or one to zero is carried out
with transformation function (i.e., sigmoid function), which is expressed as

Sig
(
V(k+1)

i

)
=

1

1 + e−V(k+1)
i

(7)

The position (Xi) of a particle (i) is mutated as either 1 or 0, as defined in Equation (8).

X(k+1)
i =

 1 i f rand() < Sig
(
V(k+1)

i

)
0 i f rand() ≥ Sig

(
V(k+1)

i

) (8)

The sigmoid function transforms the velocity into probability to mutate the particle position to
either one or zero. If the particle’s velocity is closer to its boundaries, i.e., (−4, 4), then the likelihood of
position mutation is very low. For a particle velocity that is exactly zero, the probability of bit mutation
increases to 50%.

4. Results and Discussion

4.1. Modified IEEE 33-Node Medium-Voltage Network

The proposed algorithm is tested on a modified IEEE 33-node medium-voltage network (Figure 4)
supplied by three mega volt ampere (MVA) substation transformers with 0.0477 Ω reactance, coupled
with a low-voltage residential network supported by a 100-kVA distribution transformer with 0.0654 Ω
reactance, as shown in Figure 4. The test system comprises 32 branches and 33 buses. The 32 branches
are normally closed through switches, which are called sectionalizing switches. In addition, there are
five extra switches that are normally opened, which are known as tie line switches. The minimum
and maximum voltage limits are set at ±6%. The nodes (2, 3, 8, 12, 16, 18, 22, 24, 32, and 33) are
penetrated with EVs. The line and load data of the test system are appended in Table 1. EV charging
can be done with different charging levels (i.e., Levels 1, 2, or 3). However, the current study focuses
on Level 1 charging, i.e., single phase (230 V, 16 A, 3.7 kW) due to its minimum cost. A 16-kWh
Nissan LEAF EV model with a charger rating of 3.3 kW has been considered for this charging level.
However, the depth of discharge of the EV’s battery is considered 80%. Here, three cases, including
(i) uncoordinated EV charging, (ii) coordinated EV charging, and (iii) coordinated EV charging with
network reconfiguration, are investigated. In addition, two EV penetration levels are assumed:
EV penetration level I corresponds to 60 EVs and level II represents 80 EVs.
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Table 1. Modified IEEE 33-bus system data.

S.NO. From Node To Node Switch R (Ω) X (Ω) P (kW) P.F

1 1 2 S1 0.0922 0.0470 40

0.9

2 2 3 S2 0.4930 0.2512 45
3 3 4 S3 0.3660 0.1864 60
4 4 5 S4 0.3811 0.1941 30
5 5 6 S5 0.8190 0.7070 60
6 6 7 S6 0.1872 0.6188 100
7 7 8 S7 1.7114 0.2351 100
8 8 9 S8 1.0300 0.7400 60
9 9 10 S9 1.0440 0.7400 60

10 10 11 S10 0.1966 0.0651 40
11 11 12 S11 0.3744 0.1298 60
12 12 13 S12 1.4680 1.1549 30
13 13 14 S13 0.5416 0.7129 60
14 14 15 S14 0.5910 0.5260 60
15 15 16 S15 0.7460 0.7462 60
16 16 17 S16 1.2890 1.2889 60
17 17 18 S17 0.7320 0.7320 45
18 2 19 S18 0.1640 0.1640 45
19 19 20 S19 1.5042 1.5042 45
20 20 21 S20 0.4095 0.4095 45
21 21 22 S21 0.7089 0.7089 45
22 3 23 S22 0.4512 0.4512 45
23 23 24 S23 0.8980 0.8980 100
24 24 25 S24 0.8960 0.8959 100
25 6 26 S25 0.2031 0.2031 30
26 26 27 S27 0.2842 0.2842 30.
27 27 28 S28 1.0589 1.0589 30
28 28 29 S29 0.8043 0.8043 60
29 29 30 S30 0.5074 0.5074 100
30 30 31 S31 0.9745 0.9745 82.5
31 31 32 S32 0.3105 0.3105 100
32 32 33 S33 0.3411 0.3411 30

Tie Switches (Normally open to maintain the radial topology of the network)

S. No. From Node To Node Tie Switches

1 8 21 S33
2 9 15 S34
3 12 22 S35
4 18 33 S36
5 25 29 S37

4.2. Uncoordinated EV Charging

An uncoordinated way of charging refers to a random charging approach without taking system
constraints into account. Based on the typical EV arrival pattern shown in Figure 2, the EVs are
involved in the charging process as soon as they arrive at home. This random way of EV charging
overloads the system, increases system power loss, and causes voltage violation. The impacts of
uncoordinated charging of EVs on the system loading, voltage violation, and power loss are highlighted
in Figures 5–7, respectively. The simulation results of this uncoordinated charging case are presented in
Table 2. Figure 5 shows that the random or uncoordinated charging activities during peak hours caused
system overloading by 10% and 7% of peak demand with penetration levels II and I, respectively.
Meeting these new peak demands requires additional generation from the system, which will increase
the cost and seriously affect system performance.
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Table 2. Impact of different scenarios of EV charging on system performance.

Parameters
Uncoordinated

Charging

Coordinated Charging
without Network
Reconfiguration

Coordinated Charging
with Network

Reconfiguration

Vre f
(p.u)

Vi
(p.u)

∆V
(%)

Vre f
(p.u)

Vi
(p.u)

∆V
(%)

Vre f
(p.u)

∆V
(%)

∆V
(%)

Minimum Voltage
Deviation (%)

∆Vmin =
Vre f−Vi,max

Vre f
×100%

1 0.96 4 1 0.96 4 1 0.97 3

Maximum Voltage
deviation (%)

∆Vmax =
Vre f−Vi,min

Vre f
×100%

1 0.93 7 1 0.94 6 1 0.95 5

Current loading (p.u)
Is, min

0.86 0.86 0.85

Current loading (p.u)
Is,max

1.03 1.00 0.99

Power loss (kW) P loss,min 75 75 51

Power loss (kW) Ploss,max 104 99 68

Energy loss (MWh) 2.22 2.20 1.51

Open Switches S33, S34, S35, S36, S37 S33, S34, S35, S36, S37 S7, S9, S14, S28, S31
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Figure 5. Impact of uncoordinated EV charging on system loading.

The voltage deviation at the worst node over a 24-h scheduling period is shown in Figure 6.
As can be seen, the minimum voltage at the weakest node without EV penetration is 0.946 per unit.
In all simulated cases of Stage 1, node 18′ (i.e., the farthest node in the system) is identified as the
weakest bus with the maximum voltage drop throughout a day. For different EV penetrations, voltage
violated the lower limit; the values are recorded as 0.932 and 0.931 per unit for penetration levels I and
II, respectively. With each penetration level, the voltage drops below the lower regulatory limit of the
utility (i.e., 0.94 per unit). The system power loss for uncoordinated EV charging is shown in Figure 7.
As can be seen, the maximum power loss for level I penetration is about 103 kW at 20:00, and this is
further increased to 104 kW for level II penetration. According to the power loss profile, aside from the
uncoordinated approach, penetration level also affects the system power losses. Penetration level II
has greater charging load compared to level I; thus, the uncoordinated integration of high charging
load has considerably increased network power loss.
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Figure 7. Impact of uncoordinated EV charging on system power loss.

4.3. Coordinated EV Charging

The deteriorating impacts of uncoordinated charging are overcome by the proposed coordinated
charging implemented with a BPSO algorithm. The coordinated charging strategy can smartly manage
the charging load of EV to achieve grid objective, i.e., minimum power loss without violating system
constraints. The simulation results of the smart charging scenario on the network performance are
presented in Table 2, and its impacts are highlighted in Figures 8–10. Figure 8 shows the smart
management of the charging load of EVs with level II penetration. From the mobility pattern, we can
see that the EV customers start arriving in their homes from 16:00 p.m. onward. However, the smart
charging algorithm does not allow EVs to connect with the system until 18:59 p.m. due to the peak
demand of conventional load. Instead, the strategy smartly accommodates EVs in the off-peak times
so that the total demand of the system does not violate the threshold level of peak demand to obtain a
flattened load profile, as shown in Figure 8. In each scheduling interval, the charging load of EVs is
accommodated without exceeding maximum demand level, thus avoiding system overloading.

The impact of a coordinated charging scenario, which satisfies the charging demand of EV
customers on the voltage profile of the worst node 18′, is shown in Figure 9. The minimum voltage
with and without EV penetration is recorded as 0.94 per unit and 0.95 per unit, respectively. The results
show that the voltage remained within the regulatory limits and none of the customers experienced
power quality issues.
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Figure 8. Impact of coordinated EV charging on system load demand.
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Figure 9. Impact of coordinated EV charging on voltage profile.

The power loss profile of a 24-h schedule for coordinated charging is shown in Figure 10. With the
proposed approach, the maximum recorded power losses are about 98 and 99 kW with penetration
levels I and II, respectively. Figure 10 also shows that there is a considerable reduction in network
power loss with coordinated charging compared to uncoordinated charging. In terms of energy
savings, the coordinated charging strategy saved 0.02 Mwh energy at the end of the day compared
to uncoordinated charging. Thus, the adoption of a coordinated charging strategy can reduce the
economic burden on the utilities companies.Sustainability 2020, 13, x FOR PEER REVIEW 12 of 15 
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4.4. Coordinated EV Charging with Network Reconfiguration

In an EV charging environment, the integration of network strategy (i.e., network reconfiguration)
can significantly affect the network operational performance, as highlighted in Figures 11 and 12.
In this case, an optimal hourly network configuration is determined using hourly scheduled load
data from the coordinated EV charging case. Figure 11 shows a comparison of the corresponding
minimum voltages recorded in each hour at the weakest nodes (i.e., nodes 18′ and 33′) before and after
reconfiguration. The minimum recorded voltage for the coordinated case without the implementation
of network reconfiguration is 0.94 per unit. After the execution of network reconfiguration strategy,
the minimum value at the weakest bus is 0.97 per unit. The results show a considerable improvement
in voltage profile with the optimal network reconfiguration. In terms of energy savings, incorporation
of network reconfiguration strategy saved 0.69 Mwh energy at the end of the day compared to the
coordinated charging only.
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Figure 12. Comparison of system power loss with and without network reconfiguration.

The power loss profile obtained by implementing network reconfiguration with coordinated
charging is shown in Figure 12. In this case, an average power loss reduction of 31% is recorded
in each scheduling interval compared to the coordinate charging without network reconfiguration.
The significant reduction in power loss can be attributed to the incorporation of network reconfiguration,
which determines the best topology of the network by changing the status of the operating switches.
There are two kinds of operating switches in the network: (i) tie line switches that are normally
open and (ii) sectionalizing switches that are normally closed. The given network consists of 37
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branches, of which 32 branches are normally closed through sectionalizing switches and 5 branches are
normally opened through tie switches. Keeping in view the radiality constraint, the BPSO algorithm
can determine the best possible combinations of these switches, thus achieving minimum power loss
of the network. The best combinations of switches that reduced the power loss by up to 31% are S7, S9,
S14, S28, and S31. Before network reconfiguration, these switches were closed. The BPSO algorithm
determined that these switches must be opened so that power flow can follow the shortest possible
path, ultimately resulting in minimum power loss.

Taking these findings into consideration, an improved network in EV charging environment
is obtained. A comparison of the results of the coordinated charging with and without network
reconfiguration is tabulated in Table 2. The switching operation is recorded in different time slots over
a complete scheduling period, which changes network topology to balance the load and minimize
network power loss.

5. Conclusions

In the future, the growing penetration of EV fleets in the distribution network can challenge the
operational performance of a network system. Therefore, this paper presents an integrated approach
of coordinated EV charging assimilated with network reconfiguration for achieving optimal system
performance. A formulation to minimize system power loss is presented, and the optimal solution
is obtained using the BPSO algorithm. The proposed algorithm has been tested on a modified IEEE
33-node medium-voltage network, coupled with low voltage distribution. Simulation results showed
that, compared to the coordinated charging, the proposed strategy resulted in 31% energy savings with
an improved voltage quality in each scheduling interval. Thus, an improved network performance is
obtained, which contributes to the more efficient and economic operation of the system. Moreover,
the integration of network reconfiguration has fairly improved the voltage; thus, more EVs can be
accommodated, resulting in higher customer satisfaction.
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