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Abstract: The release of large quantities of CO2 into the atmosphere is one of the major causes of global
warming. The most viable method to control the level of CO2 in the atmosphere is to capture and
permanently sequestrate the excess amount of CO2 in subsurface geological reservoirs. The injection
of CO2 gives rise to pore pressure buildup. It is crucial to monitor the rising pore pressure in order to
prevent the potential failure of the reservoir and the subsequent leakage of the stored CO2 into the
overburden layers, and then back to the atmosphere. In this paper, the Minjur sandstone reservoir in
eastern Saudi Arabia was considered for establishing a coupled geomechanical model and performing
the corresponding stability analysis. During the geomechanical modeling process, the fault passing
through the Minjur and Marrat layers was also considered. The injection-induced pore-pressure and
ground uplift profiles were calculated for the case of absence of a fault across the reservoir, as well as
the case with a fault. The stability analysis was performed using the Mohr–Coulomb failure criterion.
In the current study, the excessive increase in pore pressure, in the absence of geological faults, moved
the reservoir closer to the failure envelope, but in the presence of geological faults, the reservoir
reached to the failure envelope and the faults were activated. The developed geomechanical model
provided estimates for the safe injection parameters of CO2 based on the magnitudes of the reservoir
pore pressure and stresses in the reservoir.

Keywords: geomechanical modeling; CO2 leakage; global warming; CO2 storage; fault activation

1. Introduction

The continued dependence on fossil fuels has excessively increased the quantity of CO2 in the
atmosphere. The current level of the CO2 concentration in the atmosphere is 410 ppm, which is
expected to increase to 600–1550 ppm until 2030 [1–3]. The Carbon Dioxide Capture and Sequestration
(CCS) process is primarily concerned with capturing CO2 that is released by power plants and refineries
as part of the flue gases, and then storing it in deep geological reservoirs. Different underground
geological formations like saline aquifers, depleted oil and gas reservoirs, and deep coal seams present
potential sites for CO2 sequestration [4–6].

The injection of CO2 over a long time period into sedimentary reservoirs can affect the reservoirs
in various ways. The CO2 injection will increase the reservoir pore pressure and will result in the
volumetric expansion of the reservoir. CO2 injection at high pressure is known to either initiate some
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new fractures or reactivate the previously existing fractures within the reservoir. Once the faults are
reactivated, CO2 will be leaked to the overburden layers and possibly to the outside atmosphere.
There is a possibility that the leaked CO2 will mix with the potable water layers and will affect the
quality of the drinking water [7,8].

Opening of the already existing faults will not only cause CO2 leakage but also can cause the
geological layers to slip at the activated fault [9]. The slipping of the geological layers can cause
the local seismic events. Injection of CO2 into geological layers having pre-existing faults should be
avoided. In the case of injecting CO2 into a geological reservoir having faults, it should be ensured that
CO2 injection does not open the already existing faults [10–15].

In order to maximize the storing capacity and to prevent leakage, CO2 should be injected to
sedimentary reservoirs with higher depths and highly impermeable caprock [16–18]. Most current CO2

sequestration projects inject CO2 into sedimentary reservoirs with depths less than 2000 m [8,19–21].
Injecting CO2 into sedimentary reservoirs at a depth less than 2000 m will result in excessive ground
vertical displacement, and the stored CO2 can be leaked into the near surface potable water layers.
In order to prevent the sequestrated CO2 from leaking into the layer of potable water, the injection
should be carried out into deep sedimentary reservoirs [14,22,23]. Several reported investigations have
addressed the sequestration of CO2 in geological formations and have discussed the various associated
challenges [24–30].

The important application of CO2 sequestration in geological formations has been the focus
of several researchers who reviewed the latest developments of this technology. In this context,
Jia et al. [31] addressed the Enhanced Oil Recovery (EOR) technique in shale reservoirs, the proper
injection scheme, and the modeling of gas injection. Ajayi et el. [32] shed light on monitoring the injected
CO2 into suitable geological formations and possible measures to ensure CO2 containment and alleviate
any possible leak to the atmosphere. The important issues of possible alterations induced by injection
of CO2 at high pressures due to chemical and geomechanical interactions within carbonate reservoirs
have been highlighted by Siqueira et al. [33]. Cao et al. [34] addressed latest developments regarding
the safety and economic impact of CO2 storage, including risk assessment and improved safety.

This paper presents a procedure for monitoring CO2 injection into the Minjur reservoir using
a numerical modeling scheme that includes the pore-pressure and ground vertical displacement.
The modeling scheme has been utilized to evaluate the reservoir’s stability. The deeper the injection
depth, the less ground uplift. This is the reason why the deep Minjur reservoir was selected in
the current study in order to attain lower values of ground uplift during injection. During the
geomechanical modeling process, the fault passing through the Minjur and Marrat layers was also
considered. This study is an attempt to find safe CO2 injection parameters and CO2 injection feasibility
for the Minjur reservoir in the presence of geological faults. The devised modeling scheme utilized
COMSOL multiphysics and CMG-GEM softwares for studying the geomechanical behavior of the
reservoir, while its stability was assessed using the failure criterion as depicted by Mohr–Coulomb
diagram models.

2. Governing Equations

The numerical modeling performed in the current study was based on the CO2 flow and reservoir
deformation equations. The governing equations are presented in the following sections.

2.1. CO2 Flow Equations

For modeling the flow of CO2, Darcy’s equation and the mass conservation principle were invoked
in the current study [25,30,35].

∂
∂t
(ρfφ) +∇.(ρfq) = Qm, (1)

q = −
k
µ

(
∇pf + ρfg∇D

)
, (2)
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where ρf ≡ density of CO2 (kg/m3), q ≡ Darcy’s velocity vector (m/sec2), pf ≡ pore pressure (Pa),
Qm ≡ source (kg/m3),φ≡ porosity of the matrix, D ≡ vertical depth (m), and k ≡permeability (mDarcy).

Based on Equation (1), the increase in the mass of CO2 during the injection process will increase
the magnitude of pore pressure. Based on Equation (2), the CO2 flow depends on the reservoir’s
permeability, the viscosity of the CO2, and the pressure difference between the reservoir and the
injected CO2.

2.2. Deformation Equations

The reservoir will experience volumetric expansion due to the interaction of the injected CO2

with the reservoir structure that eventually leads to ground vertical displacement. During the
numerical modeling, the coupling between the flow equations and the reservoir deformations
was considered. For modeling deformation of the reservoir, the stress–strain constitutive relation,
the strain–displacement, and the stress equilibrium equations were invoked in the modeling
procedure [25,30,35].

−∇.σ = Fv = ρavgg, (3)

σ− σ0 = C : (ε− ε0 − εinel) −αpfI, (4)

ε =
1
2
((∇u)T +∇u), (5)

where σ ≡ stress tensor (N/m2), Fv ≡ force vector (N/m3), ε ≡ strain tensor, C ≡ elastic coefficient,
and u ≡ displacement (m).

Equations (3)–(5) will be solved for the calculation of the displacement components along the x, y,
and z axes. The displacement in the z-direction will correspond to the ground vertical displacement.

2.3. Fault Permeability Equations

The geological faults present in the deep geological layers are highly sensitive to changes in
effective stresses on the fault plan. If the CO2 injection reservoir contains a geological fault, the injection
of CO2 tends to levitate the pore pressure at the vicinity of the fault, while decreasing the effective
stresses acting on the fault. The decrease of effective stresses below its critical value will cause the
fault to open and eventually permit CO2 to infiltrate the overburden layers. The variation in the fault
permeability due to changes in effective stresses was calculated using the Barton–Bandis Model [36].

kf = kccf
( e

eo

)4
, (6)

where
e = eo −V j, (7)

V j =
σn′

kni + σn′/Vm
, (8)

Vm = eo

1− (
krc f
kcc f

)1/4, (9)

where kf ≡ fracture permeability (mDarcy), kfc ≡ fracture closure permeability (mDarcy), eo ≡ fracture
opening before CO2 injection, Vm ≡ minimum fracture opening, e ≡ current value of fracture
opening, V j ≡ ratio of effective normal fracture stress to fracture stiffness, kni ≡ initial normal fracture
stiffness (kPa), and kfr ≡ initial fracture permeability (mDarcy).

3. Numerical Modeling Scheme in COMSOL and CMG-GEM

As shown in Figure 1, the Minjur sandstone reservoir is located at comparably more depth and
overlain by the highly impermeable Marrat caprock. Other than the Marrat caprock, the Minjur
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reservoir is further overlain by the Hith Anhydrite and Shuaiba impermeable caprocks that will block
the leakage of the stored CO2 into the potable water Um Er Radhuma layer [37].
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Figure 1. Minjur reservoir with overburden and underlying layers [37].

In order to perform the numerical modeling of the geomechanical behavior of the reservoir,
both CMG-GEM (Computer Modeling Group Ltd.-Geomechanical Modeling Software, Calgary,
AB, Canada) and COMSOL (cross-platform finite element solver and multiphysics simulation software,
Burlington, MA, USA) were utilized. In the current study, the geomechanical modeling in CMG-GEM
and COMSOL multiphysics software was performed separately. The modeling in CMG-GEM was
mainly performed to simulate the fault opening during CO2 injection. CMG-GEM was also used
to simulate the leakage of the stored CO2 into the overburden layers after the opening of the fault.
The change in the pressure of the overburden layers and the change in the magnitude and pattern
of the ground uplift after fault activation were also modeled using CMG-GEM. The strength of the
Barton–Bandis model in the CMG-GEM is that it can be applied to specific grid blocks in the caprock
in order to represent the fracture. The change in the effective stresses within the fracture in the caprock
because of injection and the resulting leakage of the stored carbon dioxide can easily be modeled
using the Bardon–Bandis model in CMG-GEM. The ensuing ground uplift caused by the leaked
carbon dioxide can also be easily modeled using CMG-GEM [38–40]. COMSOL allows conventional
physics-based user interfaces and coupled systems of partial differential equations. In the current study,
during the modeling in the COMSOL multiphysics software, the caprock was considered without
a fault. The resulted change in magnitudes of the reservoir pore pressure and ground uplift were
calculated during the carbon dioxide injection to the reservoir.

GEM is an efficient, multidimensional, equation-of-state (EOS) simulator that allows the use of
the custom script files for performing multiphysics operations. In the geomechanics module of the
GEM software, the iterative coupling method was used in order to perform the coupled flow and the
reservoir deformation analyses. Due to the iterative coupling method, the flow variable, e.g., pressure,
is first calculated in the parent CMG flow simulator and then sent to the GEM module to calculate
the deformation variables, such as displacements, stresses, and strains. In the coupled geomechanical
modeling by CMG-GEM, the matrix porosity was calculated by using the displacement values in each
time step. At each grid point, the calculated new values of the porosity were used by the flow simulator
for the next time step [38–43].
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Figure 1 shows the geological model used as a basis for the simulation models constructed in
COMSOL and CMG-GEM. The Barton–Bandis model in CMG-GEM was utilized to monitor the fault
opening during CO2 injection. Figures 2 and 3 show the models constructed in COMSOL multiphysics
and CMG-GEM, respectively. These simulation models depict the Minjur reservoir along with the
various overburden layers and basement. The various input parameters of the CO2 flow and reservoir
deformations are given in Table 1 [37,44–46].
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In this reservoir modeling, the initial values for the displacement and pore pressure were taken as
zero and 26.5 MPa, respectively. Due to confinement of the reservoir by various geological layers from
all sides, the reservoir deformation was constrained from all directions except the vertical direction
which will account for the resulting ground uplift. In order to keep the injection pressure higher than
the reservoir base pressure and lower than the Lithostatic pressure of the reservoir, CO2 was injected at
a pressure range of 48 to 56 MPa. The initial maximum horizontal stress on the Minjur reservoir was
76.6 MPa, the initial minimum horizontal stress on the Minjur reservoir was 67.5 MPa, and the initial
vertical stress on the Minjur reservoir was 61.2 MPa [47–50].
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Table 1. Various properties of the Minjur reservoir [37,44–46].

Input Parameters For Reservoir

Initial Permeability, kf (10−15 m2) 0.7
Dynamic Viscosity, µ

(
10−5Pa.s

)
1.84

Young’s Modulus, E (GPa) 50.4
Rock Density, ρ (Kg/m3) 2472

Biot Coefficient, α 0.8
Bulk Modulus, K (GPa) 40.6

Initial Porosity, ∅m 0.15
Shear Modulus, G (GPa) 18.8

4. Results and Discussion

4.1. Reservoir Pore Pressure

The injection depth in this reservoir simulation was 2600 m and the injection pressure ranged
from 48 to 56 MPa. The injection pressure of CO2 was higher than the reservoir’s initial pressure in
order to facilitate the spread of CO2 within the reservoir. Pressurized CO2 will eventually increase the
reservoir’s pore pressure. Figure 4 shows the pore pressure at various injection periods. As depicted
in Figure 4, the pore pressure built up as CO2 injection continued. As displayed in Figure 5, the rate
of pore pressure increased with the increase of injection pressure. Although the increase of injection
pressure tended to increase the spread of the injected CO2 over the reservoir, the increased spread
took place at the cost of creating higher levels of pore pressure. Figure 6 shows the monotonic increase
of pore pressure during the injection of CO2. Because of the large pressure difference between the
injected CO2 and the reservoir initial pressure, the pore pressure increased rapidly during the initial
injection stage, as displayed in Figure 6.
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4.2. Ground Vertical Displacement (Uplift)

As CO2 was injected, the reservoir pore pressure increased, thus tending to expand the reservoir.
Due to the confinement of the reservoir by the geological layers from all sides, the deformation was
very negligible in the horizontal directions and also in the vertical downward direction, but the
reservoir could expand in the top vertical direction. As displayed in Figures 7 and 8, the ground uplift
continued to increase as the pressurized CO2 was injected into the reservoir. As displayed in Figure 7,
the maximum amplitude of the ground uplift existed just above the CO2 injection port. The ground
uplift was extended to cover a wider area around the injection port. The vertical ground displacement
was basically restricted by the static load exerted by the overburden layers.
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4.3. Fault Permeability Variation

Injecting CO2 near a geological fault will increase the pore pressure near the fault plan and will
decrease the effective stresses on the fault that keep the fault closed. As the pore pressure was increased
with CO2 injection, the fault permeability also increased, but as the pore pressure reached a critical
value, the effective stresses became zero or even negative and the fault was opened. The permeability
of the fault was suddenly increased to a high value as the fault was opened. The stored CO2 would
leak into the overburden layers, thus leading to significant changes in the magnitudes of pore pressure
and the ground vertical displacement. The saturation plots in Figure 9 show the CO2 leakage to the
Dhruma overburden layer after the activation of the fault. The pore-pressure profile in the Dhruma
overburden layer after the fault opening is displayed in Figure 10. Figure 11 shows ground uplift
before and after the fault activation. As displayed in Figure 11, the ground vertical displacement
attained its maximum value just above the injection port before the fault opening, while after the fault
opening, this maximum value shifted to follow the location above the fault opening point.
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5. Stability Analysis

The stability analysis during CO2 injection was performed for the case of absence of a fault across
the reservoir and caprock as well as for the case with a fault. The stability analysis was performed
for preventing the reservoir’s failure and to avoid the possibility of the stored CO2 leakage into the
atmosphere or to the overburden layers, in case of the fault activation in the caprock. The intact
rock strength is one of the important properties that is needed to predict the behavior of the rock in
geomechanics [51]. Various failure criteria are discussed in the literature for predicting the failure
behavior of the intact rock. Among the failure criteria available in the literature, some have not
considered the intermediate stress while the others have considered the intermediate stress for
predicting the failure behavior of the intact rock [52–58].

In general, in order to reflect the strength of intact rock in geomechanics, six important failure
criteria can be listed: (a) Drucker–Prager, (b) Mogi, (c) Modified Wiebols and Cook, (d) Modified Lade,
(e) Hoek–Brown [59], and (f) Mohr–Coulomb. In 1977, Lade introduced his criteria for soils [60], and in
1999, Ewy [51] extended this criterion to rock by introducing a cohesion representation parameter.
He established this criterion for the study of wellbore stability and it is used in petroleum engineering.
Zhou proposed his criteria for modeling the initial form and extension of the borehole breakout
around a wellbore prior to Ewy, in 1994. This is an extended form of the criteria of Drucker–Prager.
Similar to the Wiebols and Cook criterion, it predicts rock intensity and is also known as the Adjusted
Wiebols and Cook criterion [52]. The Mogi criterion is also a major failure criterion. By conducting
three different types of tests (confined extension tests, confined compression tests, and biaxial loading
tests) on various rock types, Mogi developed his first criterion in 1967. By extending Von Mises’s
theory, he introduced his second criterion in 1971. The Hoek–Brown criterion, introduced in 1980,
does not consider the intermediate principle stress in the prediction of the failure behavior of the intact
rock [59]. Mohr–Coulomb and Drucker–Prager were the most common failure criteria used in the
study of wellbore stability prior to the above-mentioned failure criteria. Rock strength was strongly
overestimated by the Drucker–Prager failure criterion [51]. The Mohr–Coulomb failure criterion is
still used for predicting the failure behavior of the intact rock. The Mohr–Coulomb failure criterion
does not consider the intermediate principal stress for predicting the failure behavior of the intact rock;
however, due to its simplicity and extensibility to rock masses, the Mohr–Coulomb criterion is the
most common rock failure criterion [61].

During the geomechanical modeling in the current study, the injection of CO2 at 56 MPa
injection pressure for 10 years causes the maximum magnitude of the pore pressure. In Figure 12a,b,
the Mohr–Coulomb model was invoked to assess the failure criterion and examine the stability of the
reservoir. The dotted circles in Figure 12a,b are based on the magnitudes of the initial stresses in the
reservoir before CO2 injection. The magnitudes of the pore pressure and stresses will be changed with
the injection of CO2 into the reservoir. The solid circles in Figure 12a,b display the final stress condition
of the reservoir after CO2 injection for 10 years. As displayed in Figure 12a, the solid circle is nearer
to the failure envelope as compared to the dotted circle, which means that the reservoir will move
closer to the failure envelope with an increase in the magnitude of pore pressure due to CO2 injection.
Figure 12a displays that CO2 injection at 56 MPa for a 10-year injection period into the reservoir without
fault will not initiate the reservoir’s shear failure. As displayed in Figure 12b, the increase in the pore
pressure in the presence of the fault across the caprock causes the activation of the fault in the caprock.
The solid circle corresponding to the final stress condition of the reservoir touches the failure envelope.
Figure 12b shows that the injection of CO2 at 56 MPa for a 10-year injection period into the reservoir in
the presence of the fault will initiate the shear failure of the reservoir and will cause leakage of the
stored CO2 into the overburden layers.
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In practical applications, it is important to note that the geochemical modeling of various reactions
is critical to the success of CO2 sequestration predictions. To apply the developed modeling scheme in
real-life situations, one must rely on actual field records, as gleaned from the available logging data.
Although, the current model provides good predictions of the geomechanical behavior due to the
pore-pressure buildup and its subsequent possible caprock fracturing, leakage to the overburden
layers, ground uplift, and safety of the reservoir, the model can be further refined to mimic a real-life
application. Such predictions can be enhanced by taking into account the hysteresis resulting from
post-injection pathway changes of the capillary pressure and relative permeability [32]. To account for
such effects and bring our model to practical fidelity, we are currently extending the modeling scheme
to account for the important aspects of the trapping mechanisms.
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6. Conclusions

In the current paper, coupled geomechanical modeling was performed during CO2 injection
into the deep Minjur reservoir, which has a geological fault that passes across the reservoir and the
Marrat shale caprock. The current study deals with the prevention of the reservoir’s shear and tensile
failures and with the prevention of the geological fault’s reactivation in the reservoir and caprock.
The outcomes of the current study are summarized below:

• As CO2 is injected into the reservoir, the magnitude of the pore pressure increases, with a maximum
rate of increase during the initial injection period due to a large pressure difference between the
base reservoir and injected CO2. Furthermore, the magnitude of the pressure buildup is also
dependent on the variation of the injection pressure. In the presence of geological faults in the
reservoir and caprock, the excessive increase in the pore pressure will activate the faults and CO2

will be leaked to the overburden layers. The leakage of the pressurized CO2 will cause an increase
in the pressure magnitude of the overburden layers.

• The injection of CO2 will cause the reservoir’s structure to experience deformations. As CO2

continues to be injected, the reservoir will be volumetrically expanded. The coupling between
pore pressure and stresses will cause an increase in stress magnitudes. Due to the restriction of
the deformation of the reservoir in horizontal and downward vertical directions, the reservoir
movement is only possible in the upward vertical direction. The vertical movement of the reservoir
and caprock causes ground uplift during CO2 injection. The increase in the injection depth will
be helpful in reducing the magnitude of ground uplift. The ground uplift will be maximum just
above the CO2 injection port in the absence of the fault in the reservoir, whereas, in the presence
of the geological fault, the ground uplift will be maximum just above the CO2 leakage point.

• The Mohr–Coulomb failure criterion shows that the reservoir’s stability is highly dependent
on the excessive increase in pore pressure during CO2 injection. The excessive increase in pore
pressure in the absence of geological faults will move the reservoir closer to the failure envelope
but in the presence of geological faults, the reservoir will reach to the failure envelope and the
faults will be activated.
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