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Abstract: To better understand the origin of microplastics in municipal drinking water, we evaluated
50 mL water samples from different stages of the City of Rochester’s drinking water production and
transport route, from Hemlock Lake to the University of Rochester. We directly filtered samples using
silicon nitride nanomembrane filters with precisely patterned slit-shaped pores, capturing many of
the smallest particulates (<20 µm) that could be absorbed by the human body. We employed machine
learning algorithms to quantify the shapes and quantity of debris at different stages of the water
transport process, while automatically segregating out fibrous structures from particulate. Particulate
concentrations ranged from 13 to 720 particles/mL at different stages of the water transport process and
fibrous pollution ranged from 0.4 to 8.3 fibers/mL. A subset of the debris (0.2–8.6%) stained positively
with Nile red dye which identifies them as hydrophobic polymers. Further spectroscopic analysis
also indicated the presence of many non-plastic particulates, including rust, silicates, and calcium
scale. While water leaving the Hemlock Lake facility is mostly devoid of debris, transport through
many miles of piping results in the entrainment of a significant amount of debris, including plastics,
although in-route reservoirs and end-stage filtration serve to reduce these concentrations.

Keywords: silicon nanomembrane; microplastics; ultrafiltration; municipal water

1. Introduction

Plastic debris can be found nearly everywhere, even to the point where we can define a geological
epoch by its presence [1]. As plastic weathers and degrades in the environment, there has been
an intensive effort in the last decade to better understand the impacts of microplastic debris in a variety
of settings, including along waterways [2–4], in the air [5], in wildlife [6], and in humans [7,8]. Plastics
themselves are heterogenous materials, with a wide range of complex chemistries, many of which can
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trigger toxicological endpoints, such as oxidative stress and cytotoxicity [9]. The implications of this
persistent debris for human health are not yet known, but there is evidence that plastic nanoparticles
can cross the blood–brain barrier in fish, causing behavioral changes [10]. Additionally, polystyrene
microspheres (5 and 20 µm in diameter) were found in the liver, kidney, and gut of mice after 28 days of
exposure, and 0.1 mg/day of exposure was enough to induce metabolomic alterations [11]. One estimate
suggests the average American consumes between 39,000–52,000 microplastic particles annually [12].

A recent review of microplastic assessments in fresh water sources documents a range of reported
microplastic concentrations spanning ten orders of magnitude [13]. It is likely that both the variable
measurement techniques and the true variation in environmental pollution levels help explain this
remarkable range of answers in the literature and underscores the urgent need for standard definitions
and practices. These challenges are confounded at the sub-millimeter size scale, where microparticulate
debris has the potential to be absorbed by the human body [8]. In this range, it becomes more difficult to
isolate microplastics in environmental samples efficiently, increasing time and cost, ultimately making
an assessment of human exposure prohibitively difficult. Manual-inspections that pull out fibers or
size plastic ‘nurdles’ are not scalable methods for quantifying the amount of small debris (<20 µm) in
the environment, as many millions of microparticles could be produced from a single millimeter-sized
fiber [14]. Methods for inspecting plastic debris rely heavily on the sequestration and planarization of
the debris to make it compatible with different forms of metrology (e.g., fluorescence microscopy, Raman
spectroscopy, Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy
(EDS)). An ideal way to prepare samples for these techniques would be to utilize a direct filtration
method to concentrate the particulate mass for imaging and characterization. Effective machine
learning techniques can help categorize particles given clear imaging criteria [15]. Simply drying
a drop of liquid and immobilizing particles on a surface can create samples for characterization
on a smaller scale, but this method cannot interrogate larger liquid volumes for sparse numbers of
particles efficiently.

Here, we demonstrate that ultrathin silicon nitride membranes [16,17] provide a robust way to
rapidly filter municipal water samples and capture a size-specific range of debris for a variety
of inspection techniques. Silicon nanomembrane technology has been used in a variety of
biosensing applications since their introduction over a decade ago [18–24]. Nanomembrane filters are
extraordinarily efficient at separations due to their thinness (<400 nm thick), providing separations
at low pressures. Over the last decade, the silicon nanomembrane platform has transitioned into
silicon nitride materials that are more robust while still maintaining the ability to fabricate a variety
of pore shapes and sizes (50–30,000 nm). In the context of detecting microplastics, silicon nitride
nanomembranes also provide a plastic-free background for direct measurements on the filter after
filtration, are inert to harsh chemical treatments (4M KOH, 3:1 H2SO4:H2O2 Piranha Etch) used to
dissolve biological contaminants, and create low-background signals to common spectroscopic and
conventional imaging modalities. Thus silicon ‘nanomembranes’ offer significant value to the study of
microplastic contamination, particularly in the smallest size range.

Our study introduces a novel silicon nanomembrane-based filtration and processing assay to
track the existence of microplastic debris along the route from the City of Rochester’s water production
facility at Hemlock Lake, NY to the University of Rochester’s Goergen Hall tap and drinking fountain.
The ability to rapidly process water samples to visualize debris, including plastics, provides new
context to earlier reports of microplastic contamination in municipal drinking water. We found that the
water produced by the Hemlock Lake facility was relatively free of debris (10 particles/mL), however,
some samples along the water transport route measured >1500 particles/mL (with microplastics
accounting for as much as 9% of all the debris). Debris, including microplastics, was particularly
concentrated at the end of long interrupted stretch of pipes including the entrance to the University’s
Goergen Hall, suggesting they are entrained en route to the taps of homes and businesses.
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2. Materials and Methods

2.1. Water Processing and Sample Collection

Samples were taken at various points along the water transport route from the Hemlock Lake
water production facility to the Goergen Hall at the University of Rochester (Figure 1). Samples were
collected on 2 July 2019 (between the Plant Output and Reservoir Exit samples) and 2 August 2019
(between the Campus Entrance and 5 min Drink samples). The Goergen Tap sample was collected
on 16 December 2019. To ensure the sampling containers were not contaminating any of the sample
collected, the outside and inside of containers were thoroughly rinsed with 100% ethanol stored in
glass bottles, which we have previously found to contain no particulate. The containers and caps
were sonicated for 1 h, then rinsed again with ethanol. After drying, 5 mL of ethanol was left in the
container to confirm that the interior was airtight while being stored. As a control, we stored and
processed 50 mL of ultrapure water (Invitrogen) in the same manner.
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2.2. Sonication and Cleaning Protocol

All glassware, pipette tips, 1.5 mL conical Eppendorfs, and customized nanomembrane holder
(SEPCON) components were sonicated for 15 min in 100% ethanol prior to use, then dried in a 70 ◦C
oven. Glassware were covered with ethanol rinsed aluminum foil and all other items were stored in
sterile, covered tissue culture petri dishes until use.

2.3. Graduated Cylinder Gravity Filtration

Lithographically patterned silicon nitride nanomembrane filters (5.4 × 5.4 mm silicon chip,
three 0.7 × 3.0 mm rectangular windows, 8 µm slit widths 400 nm thick membrane, 6.3 mm2 active
area) were produced by SiMPore Inc. (www.simpore.com, West Henrietta, NY, USA) [25]. These filters
were then placed in SEPCON™ (SiMPore Inc., West Henrietta, NY, USA) units and sealed with silicone
gaskets. The bottoms of 100 mL glass graduated cylinders were drilled out using a 3 mm diameter
glass-drilling bit, then pressure-sensitive adhesive (3M) was used to attach a SEPCON device containing
a silicon nanomembrane to the bottom of the cylinder, allowing gravity filtration to occur through
both the cylinder and SEPCON device. Sample water (50 mL) was filtered through the silicon nitride
nanomembranes, then the SEPCON units were removed and dried in a 70 ◦C oven. Membranes and
debris were imaged under white light using a brightfield microscope (Nomarski DIC, 2.5625 pixels/µm),
simultaneously in reflection and transmission mode at uniform lighting, or under white light using
a dissection microscope (1.96 pixels/µm).

2.4. Dissolution and Washing Protocol

Eppendorf tubes (1.5 mL) were filled with 0.75 mL of 0.125 M Tris HCl. The SEPCONs containing
filtered debris were then placed in the filled tubes. Next, 200 µL of 10% w/v Sodium Dodecyl
Sulfate (SDS) and an additional 300 µL of 0.125 M Tris HCl were placed in the SEPCON basket.
The Eppendorf-SEPCON unit was then heated to 95 ◦C and stabilized for 5 min at that temperature.
An additional 200 µL of 14.6 M 2-mercaptoethanol was added to the SEPCON basket and the filters
were left to process for 1 h inside of a fume hood. SEPCONs were removed and dried on a cleaned petri
dish. Ultrapure water (Invitrogen) was heated to 90 ◦C. The heated water (750 µL) was used to load
the SEPCON basket and left for five minutes. The SEPCONs were then gravity drained by lifting the
SEPCON unit slightly out of the 1.5 mL tube, and this process repeated for 3 repetitions. After washing,
the membranes were dried in a 70 ◦C oven, then imaged under white light using a brightfield
microscope (Nomarski DIC, 2.5625 pixels/µm), simultaneously in reflection and transmission mode.

2.5. Nile Red Staining

Substrates were stained in situ with a lipophilic dye Nile Red (Abcam ab228553, 20 µL, 1 µg/mL),
then imaged under an epifluorescent microscope (0.6107 pixels/µm). Stained debris was assumed to be
plastic as described elsewhere [26].

2.6. Image Processing, Segmentation, and Quantification

Images were processed on a MacBook Pro (15-inch, 2019, 2.3 GHz 8-Core Intel Core i9, 16 GB Ram).
The number of images analyzed for each replicate ranged between 9–36 images. Automatic segmentation
of particulate from DIC imaging was achieved through the use of Trainable WEKA Segmentation [27],
a plugin found in the Fiji [28] distribution of ImageJ [29]. A separate classifier was trained using
5–10 examples of 5 categories (defined as particle, slot, residue, membrane, and edge) identified on
each sample. The classifiers were used to categorize images from each sample, then the probability
map for each particle category was automatically generated (Minimum, Auto-Threshold, ImageJ) to
create a binary map of debris. Fibers were extracted from the debris map, using an algorithm found in
DiameterJ [30] (path 29), leaving only a sparse particulate map. The map was then processed with
ImageJ’s watershed algorithm to separate aggregates. The particles were subsequently quantified

www.simpore.com
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using FiJi’s count particles plugin, capturing the individual particulate dimensions, which were then
used to calculate a variety of physical information, such as particle volume with a simple model of an
oblate spheroid.

Fluorescent images were cropped manually to the entire active area of the nanomembrane
filter, then automatically thresholded (Minimum, Auto-Threshold, ImageJ) quantified using ImageJ’s
watershedding algorithm to separate particles. Some outliers were manually removed from the data set
(12/765 images) due to orders of magnitude changes in particulate concentration. Separately, fibers in
images were counted by eye (2–3 independent volunteer counters) and particles of noticeable length
were sorted into ‘large’ (>8 µm) or ‘small’ (≤8 µm) bins based on the relative size of the diameter of the
fiber to the size of the slots in the silicon nanofilter (Supplementary Materials, Figure S1).

2.7. Elemental Analysis

We performed EDS (EDAX) on selected substrates using a Zeiss Auriga SEM. Substrates were
sputter-coated with a 7 nm Au layer for improved backscatter imaging.

3. Results and Discussion

3.1. Water Transport Route and Filtration Apparatus

The City of Rochester’s drinking water is sourced from a Hemlock Lake, a minor Finger Lake
located about 30 miles south of the city (Figure 1). The water treatment plant at Hemlock Lake
withdraws water through a 30-foot-deep intake structure connected to a 60” diameter intake pipe
that runs along the bottom of the lake. Water is passed through #4 mesh screens to prevent large
objects and aquatic animals from entering the plant. Once the water enters the plant, it is treated
with coagulants (aluminum chlorohydrate and cationic polymer), chlorine and CO2. Coagulated
water passes through large chambers to allow flocculation (particle aggregation) to occur to enhance
the filtration process. Filtration is achieved through a 6-foot column of anthracite and sand media.
The output water stream (Plant Output) is then transported 18 miles through 19th century cast-iron
and steel pipes, arriving at a reservoir in the town of Rush, NY. Samples were collected from water
entering the reservoir (Reservoir Entrance) and exiting the reservoir (Reservoir Exit). The water is
distributed throughout the city, including the University of Rochester. The Campus Entrance sample
was collected from the pipes leading up to Goergen Hall, located underground between Park Lot and
Goergen Hall. The Goergen Entrance sample was collected from a loading-dock access valve inside
Goergen Hall itself, marking the last stop before the drinking fountain on the third floor. Internally,
the final two samples for human consumption represents a use-case for drinking water at the fountain,
immediately drinking it (Immediate Drink), compared with flushing the system (5 min Drink) and
then collecting water. Because of filtration at the drinking fountain, a laboratory sink was measured
(Goergen Tap) for comparison, as well as laboratory-grade ultrapure water (Control).

We developed an apparatus that allows us to drain samples directly through a silicon
nanomembrane filter for convenient image inspection of microparticulates (Figure 2), demonstrating the
utility of capturing microparticulate using a silicon nanomembrane filter (SiMPore, Inc, Henrietta, NY).
Due to their nanometer-scale thickness (and high porosity (>10%), silicon nanomembranes have very
high permeability [20,31,32]. The membrane active areas are small (0.1–25 mm2) compared to polymeric
or cellulosic membrane filters (Filter paper area = ~1500 cm2). Here, we use a 400 nm thick SiN film,
lithographically patterned with 8µm wide microslits (active area = 6.3 mm2) and simple gravity filtration
to concentrate and capture debris on the surface. The starting head pressure of the liquid column in
the graduated cylinder is 0.2 PSI (1.38 kPa), and filtrations of 50 mL drinking water sample volumes in
this study typically take 10–15 min. As more debris is captured on the surface, flow diminishes. If the
filtration cake occupies less than 60% of the membrane’s pores, the pressure difference is negligible
(Supplementary Materials, Figure S2). After filtration, the membranes are extracted and imaged
initially using white-light Nomarksi-DIC microscopy (8–10×). Then, the membranes are cleaned with



Sustainability 2020, 12, 10655 6 of 14

an SDS-based mixture to gently remove organics on the surface of the microparticulate and then
imaged again. Finally, the membranes with particulate are stained in situ using Nile Red stain (20 µL,
1 µg/mL) and imaged on an epifluorescent microscope.
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Figure 2. Direct isolation, dissolution, and staining of microparticulate debris. (A) Liquid samples
(50 mL) are poured into 100 mL graduated cylinder apparatus and filtered through a silicon
nanomembrane (5.4 × 5.4 mm chip, three 0.7 × 3.0 mm rectangular windows, 8 µm slits), attached at the
bottom of the cylinder with a SEPCON adapter. (B,C) After filtration, the nanomembrane is removed
from its protective housing and dried, (D,E) then imaged using a DIC microscope (transmission and
reflection mode, white light). (F,G) After a dissolution protocol, the membranes are imaged again.
(H,I) Membranes are stained with Nile Red dye as an indicator of plastic material and imaged using
fluorescence (red false color, z-stack max projection).

3.2. Image Processing and Particle Enumeration

Figure 3 describes the image processing information for gathering the particulate information.
Raw images (Nomarski-DIC/Phase) are categorized using an individual pixel classifier (simple random
forest, 200 iterations, WEKA) trained from 5–10 manually identified regions on a single image from
a sample. These classifiers are then applied to the full image set of the sample. WEKA segmentation
is performed on scaled 2000 pixel-wide images, with classification times taking between 30 and
120 s/image with trained segmentation algorithms. Further analysis of a single image to perform
particle/fiber segmentation and particle counting can take an additional 30 to 60 s per image. The classes
chosen reflect characteristics of both the underlying silicon nanomembrane and the debris caught upon
it. The background of the membrane (membrane—yellow) is fairly homogeneous, which makes it
easier to also identify edges (edge—cyan), slits in the membrane (slot—red), and non-uniform residues
(residue—purple). The debris (debris—green) class is then extracted and thresholded (blue) to identify
fibers that span and reach beyond the individual image’s field of view (Diameter J). Each identified
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fiber (green) is counted and removed from processing the remaining debris, which are assigned as
particulates (magenta). The particulates are then watershedded to separate aggregates, to better reflect
their heterogeneous composition. The particles are then counted. In a similar manner, fluorescent
images that were gathered post-staining with Nile red were auto-thresholded, to create the ‘debris’
classification, then analyzed using the same analysis path.
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Figure 3. Semi-Automated image segmentation and particle counting. Individual images were merged
in Photoshop to create the full membrane composite (Goergen Entrance). (A) Brightfield DIC images
are used to train a classifier from 5–10 manually identified regions on each sample (Simple Random
Forest [27], 100 iterations) (B) producing a set of probability maps for each classification (debris-green,
slot-red, edge-cyan (thin features that are not visible here), membrane-yellow, and residue-purple).
(C) The debris probability map is thresholded (Auto-threshold [33], Minimum 150 counts, overlaid
in blue), then watershedded to separate aggregates. (D) Fibers (green) are extracted from particulate
(magenta) analysis.

Individual pixel classifiers are useful for identifying regions of interest in an image, but additional
guided image processing is necessary for discrimination of particles and fibers. Current limitations to
the fiber processing algorithm necessitate that a fiber span the full field of view, as binary edge–loop
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erode/dilation is used to find long-range fibrous structures; smaller fibers completely encapsulated in
the field of view are counted as particulates (Supplementary Materials, Figure S3). Constraints on the
aspect ratio of debris, commonly used as a fiber discrimination metric, would not work well for this
filtration and analysis setup due to the potentially large number of particles (thousands) and their
high overlapping potential, making watershedding operations a necessity (Supplementary Materials,
Figures S3 and S4).

The full debris profile of this study is seen in Figure 4. Upon the exit of the water filtration plant,
the water has little debris, but as the water is transported 18 miles through 150-year-old cast-iron
pipes by gravity to a reservoir, the amount of particulate increases by roughly an order of magnitude.
We also observe a reduction in particulate as the water exits the reservoir, potentially settling out
over a residence time of 1.5–2 days. The water is transported another 7 miles to the University of
Rochester where it is distributed to buildings on campus. A sharp increase is observed in the pipes
entering Goergen Hall, and then decreases again at the output of the drinking fountain, which is
filtered. The number of fibers caught is always much lower than the total amount of particulate
(2–16 fibers/mL, automatically counted, Supplementary Materials, Figure S1). The dissolution step
tends to increase the amount of counted particulate in addition to dissolving biological contamination
(Supplementary Materials, Figure S5) while the staining process identifies a smaller subset of this
debris, suggesting the smaller particles are typically fragments of organic debris or carbon from the
environment, possibly previously coating the surface of the microplastic or larger organic particles.
The largest significant difference in the amount of identified microplastic occurs at the Reservoir
Entrance, while the highest concentration of debris occurs at the Goergen Entrance (Supplementary
Materials, Figure S6). These values are compared to a control volume of ultrapure water (50 mL) which
has been stored, transported, filtered, treated, and stained using the same methods.

The sizing of the debris is heavily favored toward the smallest particles that we can observe
(approximately 1 µm in size), and also because of additional watershedding operation in the image
processing that separate larger aggregates (Supplementary Materials, Figure S3). The dissolution
cleaning stage also has the impact of disintegrating loosely bound aggregates into finer particulate,
though there is potential for additional smaller material to be lost through the slits of the nanofilter.

In order to estimate the mass of debris captured on the nanomembrane, we applied a simple
volumetric model to the identified 2D particulate images. Modeling each particle projection as
an ellipsoid (R1 = R2 =

Minimum Axis Length
2 , R3 =

Maximum Axis Length
2 , Volume = 4πR1R2R3

3 ) produces
an average volume of positively-stained debris captured on the membrane on the order of
50,000–700,000 µm3. At the drinking fountain, this would produce a total plastic mass estimate of debris
captured on the membrane as 300–700 ng (assuming a range of densities between ρ = 0.8–1.8 g/cm3).
Larger microparticles will dominate these calculations, while particles that effectively minimize their
aerial image projection or larger solid particles that were fragmented in image processing due to
watershedding will necessarily create an underestimation of their volume by this method.

While the macroscopic appearance of drinking water may not change visibly, our exposure to
small microplastic particulate from tap water can vary over orders of magnitude depending on the
source of the water. Based on consuming 500 mL of water a day, the drinking fountain would permit
496 microplastic particles/day and 3–7 µg of microplastic load upon immediate use. If unfiltered,
the pipes directly below the drinking fountain indicate 5.0 particles/mL (2522 particles/day) and
0.5–1.2 µg of microplastic load. Simple filtration appears to be effective in reducing the debris load,
as there is a ~50% reduction in the amount of particulate at the drinking fountain immediately compared
to the building’s source, however, more of these particulates appear to be plastic. These concentrations
are in agreement with the higher reported values in literature for treated tap water (~106 particles/m3),
though there is a wide range of evidence reported (average ~104 particles/m3) [13]. Many of the
observed particles in pipes before the drinking fountain are rust and sand from the environment in
which the water resides. Ultimately, the exploration of specific debris within this size range (<20 µm)
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of microparticulate can be more rapidly addressed without the need for laborious, time-consuming
manual sorting and serial analysis.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 15 
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Figure 4. Particulate quantification along the water transport route. (A) Representative images of the
captured particulate are shown (10× objective magnification, 8 µm wide slits). (B) Particle Concentration
normalized to the volume of water filtered. (C) Average volume of a particle calculated from minor
and major axis of image projection. N = 3 replicates, 9–36 images/replicate for dissolution and filtration
stages, 1–2 whole field images for stained stage (N = 2 for asterisk [*]). Error bars are the standard error
of the mean.

3.3. Material Analysis

Although Nile red is an indicator of lipophilic materials, it does not tell us anything else about the
material of the non-stained debris caught on the nanomembrane surface. To better understand the
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variety of debris caught on the surface, we used energy dispersive spectroscopy (EDS) to get an elemental
composition of the microdebris. Figure 5 shows an example of debris caught underneath Goergen
Hall (Goergen Entrance). There are a wide variety of elemental peaks observed; most commonly iron,
carbon, calcium and chlorine. These spectra would commonly be found in rust, calcium scale, silicates,
and other salts found on the surfaces of internal plumbing. Combined with hyperspectral imaging,
or other material information from Raman spectroscopy (Supplementary Materials, Figure S7) and
morphological imaging as seen here may create a more robust model of weathered particles.
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Figure 5. EDS measurement of debris captured on silicon nanomembrane. (Inset) Brightfield-DIC
image of the region under inspection (Goergen Entrance). The placement of the microparticulate is well
preserved, save an additional fiber laying down after transferring to the vacuum chamber of the SEM.
Spectra taken from a number of individual microparticulates show a variety of elemental compositions,
including likely identifications of rust and sand.

We also explored the possibility of evaluating material characteristics of plastic debris captured
on the nanomembrane through their glass transition temperatures and intrinsic strains. While there
are many different formulations of plastic materials, it is possible to discriminate functional material
properties of the microdebris by applying heat treatments to the species in situ. Figure 6 demonstrates
alternative methods to differentiate microdebris captured on the silicon nanomembrane. As the
nanomembrane is not birefringent and is made of silicon-rich silicon nitride, it has the capacity to
tolerate relatively high temperatures (melting point 1900 ◦C) and remain undisturbed, while maintaining
optical transparency. The ability to observe the debris as it is heated allows us to collect information
about glass transition behavior for different materials. The phase transition of particles made from
the same materials appears contemporaneously across the silicon nanomembrane (Supplementary
Materials Video S1), indicating even heating across the microscopic field of view. This approach
may help to differentiate between objects are similar in shape, size, and color without the expense
of using a more sophisticated spectroscopic technique. Similarly, a common evaluation of plastics
using polarimetry [34,35] can be used to distinguish stressed plastic fibers from otherwise dull
matter surrounding it. Combining a multifactorial model, material library, and precise control of
the temperature may eventually allow us to make material classifications based on this imaging
platform alone.
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Figure 6. Alternative methods for material characterizations on silicon nanomembranes.
(A–C) Microplastics differentiation by glass transition temperature. (A) Polystyrene beads and
polyethylene shreds are captured on silicon nanomembrane (8 µm slit width). (B) The nanomembrane
is heated on a ceramic resistor (350 ◦C surface), and the polyethylene shreds deform as the particles
reach their glass transition temperature (red box). (C) After a few minutes, the polystyrene beads
deform (yellow box) as these materials reach their glass transition temperature. (D,E) Microplastics
differentiation by birefringence. A plastic tea bag was shredded and captured onto a silicon
nanomembrane, then imaged under a bespoke polarizing microscope. (D) Viewed under yellow light,
the plastic debris is not easily differentiable from tea leaf matter, however, (E) polarized illumination
reveals birefringent properties of the tea bag shreds (yellow).

4. Conclusions

We used silicon microslit filter technology to concentrate and purify microplastic debris from
a variety of water samples taken along the water production and treatment route for our drinking
water. This platform simplifies the sample preparation and quantification of small microparticulate
through direct filtration, (5–60 min dependent on debris profile), staining (10 min), drying (10 min),
imaging (5–15 min) and semi-automated machine learning for image analysis and particle classification
(30–120 s/image). While the water leaves the producing plant relatively devoid of small debris
particulate (sub 20 µm), transport through many miles of piping appears to entrain debris, while settling
points and end filtration along this route reduce the amount of debris a person might consume.
A majority of these particulates are not plastic although a significant fraction of them (up to 8.6%)
were identified as microplastics using a lipophilic stain. This platform could be used in a variety of
other contexts for environmental sampling of microdebris, such as a rapid quality control or a debris
sensing mechanism. Furthermore, the usage of silicon nanomembranes enables many other sample
preparation methodologies and complex metrologies that are unavailable to conventional membrane
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solutions. Lastly, the combination of small input volumes and membrane surface areas can allow for
parallelization of sample processing and imaging in the future, leading to higher throughput analysis
of small water volumes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/24/10655/s1,
The following files are available free of charge. Supplementary Information (Word Document), Figure S1: Average
number of automatically counted fibers vs human identified comparison, Figure S2: Evolution of transmembrane
pressure as membranes are fouled, Figure S3: Boundary Selection of Fibers, Figure S4: Aggregate sizing of
particulate, Figure S5: Dissolution protocol removes organics with minimal disruption to plastics, Figure S6:
Inter-location stage significance testing. Figure S7: Nominally 10 µm polystyrene spheres were captured on
a silicon nanomembrane (400 nm thick, 8 µm wide slots) and imaged using a Keyence VK-X 3D laser scanning
microscope. Video S1: Microplastic debris deform as they are heated in situ.
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6. Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective.
Integr. Environ. Assess. Manag. 2017, 13, 510–515. [CrossRef]

http://www.mdpi.com/2071-1050/12/24/10655/s1
http://dx.doi.org/10.1016/j.ancene.2016.01.002
http://dx.doi.org/10.1038/srep17988
http://www.ncbi.nlm.nih.gov/pubmed/26644346
http://dx.doi.org/10.1007/s10661-017-6305-8
http://www.ncbi.nlm.nih.gov/pubmed/29063206
http://dx.doi.org/10.1016/j.scitotenv.2016.09.213
http://www.ncbi.nlm.nih.gov/pubmed/27693147
http://dx.doi.org/10.1038/s41561-019-0335-5
http://dx.doi.org/10.1002/ieam.1913


Sustainability 2020, 12, 10655 13 of 14

7. Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt.
PLoS ONE 2018, 13, e0194970. [CrossRef]

8. Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic effects of commonly
used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res. 2017, 159,
579–587. [CrossRef]

9. Zimmermann, L.; Dierkes, G.; Ternes, T.A.; Völker, C.; Wagner, M. Benchmarking the in Vitro Toxicity
and Chemical Composition of Plastic Consumer Products. Environ. Sci. Technol. 2019, 53, 11467–11477.
[CrossRef]

10. Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.-A.; Cedervall, T. Brain damage and
behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep.
2017, 7, 11452. [CrossRef]

11. Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses
suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [CrossRef] [PubMed]

12. Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of
Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [CrossRef] [PubMed]

13. Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics
in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155,
410–422. [CrossRef] [PubMed]

14. Suran, M. A planet too rich in fibre: Microfibre pollution may have major consequences on the environment
and human health. EMBO Rep. 2018, 19. [CrossRef]

15. Bianco, V.; Memmolo, P.; Carcagnì, P.; Merola, F.; Paturzo, M.; Distante, C.; Ferraro, P. Microplastic
Identification via Holographic Imaging and Machine Learning. Adv. Intell. Syst. 2020, 2, 1900153. [CrossRef]

16. Striemer, C.C.; Gaborski, T.R.; McGrath, J.L.; Fauchet, P.M. Charge- and size-based separation of
macromolecules using ultrathin silicon membranes. Nature 2007, 445, 749–753. [CrossRef]

17. DesOrmeaux, J.P.S.; Winans, J.D.; Wayson, S.E.; Gaborski, T.R.; Khire, T.S.; Striemer, C.C.; McGrath, J.L.
Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates. Nanoscale
2014, 6, 10798–10805. [CrossRef]

18. Johnson, D.G.; Khire, T.S.; Lyubarskaya, Y.L.; Smith, K.J.P.; DesOrmeaux, J.-P.S.; Taylor, J.G.; Gaborski, T.R.;
Shestopalov, A.A.; Striemer, C.C.; McGrath, J.L. Ultrathin Silicon Membranes for Wearable Dialysis.
Adv. Chronic Kidney Dis. 2013, 20, 508–515. [CrossRef]

19. Gaborski, T.; Miller, J.; Striemer, C.; McGrath, J. Highly permeable, transparent and degradable membranes
for tissue scaffolding. Microsc. Microanal. 2013, 19, 8–9. [CrossRef]

20. Gaborski, T.R.; Snyder, J.L.; Striemer, C.C.; Fang, D.Z.; Hoffman, M.; Fauchet, P.M.; McGrath, J.L.
High-Performance Separation of Nanoparticles with Ultrathin Porous Nanocrystalline Silicon Membranes.
ACS Nano 2010, 4, 6973–6981. [CrossRef]

21. Salminen, A.T.; Zhang, J.; Madejski, G.R.; Khire, T.S.; Waugh, R.E.; McGrath, J.L.; Gaborski, T.R. Ultrathin
Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models. Small 2019, 15, 1804111.
[CrossRef] [PubMed]

22. Winans, J.D.; Smith, K.J.P.; Gaborski, T.R.; Roussie, J.A.; McGrath, J.L. Membrane capacity and fouling
mechanisms for ultrathin nanomembranes in dead-end filtration. J. Membr. Sci. 2016, 499, 282–289. [CrossRef]

23. Robert, N.C.; Stephanie, M.C.; Andrea, R.M.; Jon-Paul, S.D.; James, A.R.; Thomas, R.G. Ultrathin transparent
membranes for cellular barrier and co-culture models. Biofabrication 2017, 9, 015019.

24. Casillo, S.M.; Peredo, A.P.; Perry, S.J.; Chung, H.H.; Gaborski, T.R. Membrane Pore Spacing Can Modulate
Endothelial Cell–Substrate and Cell–Cell Interactions. ACS Biomater. Sci. Eng. 2017, 3, 243–248. [CrossRef]

25. Wright, E.; Miller, J.J.; Csordas, M.; Gosselin, A.R.; Carter, J.A.; McGrath, J.L.; Latulippe, D.R.; Roussie, J.A.
Development of isoporous microslit silicon nitride membranes for sterile filtration applications. Biotechnol.
Bioeng. 2020, 117, 879–885. [CrossRef]

26. Hengstmann, E.; Fischer, E.K. Nile red staining in microplastic analysis—Proposal for a reliable and fast
identification approach for large microplastics. Environ. Monit. Assess. 2019, 191, 612. [CrossRef]

27. Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H.
Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics
2017, 33, 2424–2426. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0194970
http://dx.doi.org/10.1016/j.envres.2017.08.043
http://dx.doi.org/10.1021/acs.est.9b02293
http://dx.doi.org/10.1038/s41598-017-10813-0
http://dx.doi.org/10.1038/srep46687
http://www.ncbi.nlm.nih.gov/pubmed/28436478
http://dx.doi.org/10.1021/acs.est.9b01517
http://www.ncbi.nlm.nih.gov/pubmed/31184127
http://dx.doi.org/10.1016/j.watres.2019.02.054
http://www.ncbi.nlm.nih.gov/pubmed/30861380
http://dx.doi.org/10.15252/embr.201846701
http://dx.doi.org/10.1002/aisy.201900153
http://dx.doi.org/10.1038/nature05532
http://dx.doi.org/10.1039/C4NR03070B
http://dx.doi.org/10.1053/j.ackd.2013.08.001
http://dx.doi.org/10.1017/S1431927613002031
http://dx.doi.org/10.1021/nn102064c
http://dx.doi.org/10.1002/smll.201804111
http://www.ncbi.nlm.nih.gov/pubmed/30632319
http://dx.doi.org/10.1016/j.memsci.2015.10.053
http://dx.doi.org/10.1021/acsbiomaterials.7b00055
http://dx.doi.org/10.1002/bit.27240
http://dx.doi.org/10.1007/s10661-019-7786-4
http://dx.doi.org/10.1093/bioinformatics/btx180


Sustainability 2020, 12, 10655 14 of 14

28. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.;
Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012,
9, 676. [CrossRef]

29. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods
2012, 9, 671–675. [CrossRef]

30. Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G., Jr.; Diameter, J. A validated open source nanofiber diameter
measurement tool. Biomaterials 2015, 61, 327–338. [CrossRef]

31. Snyder, J.L.; Clark, A., Jr.; Fang, D.Z.; Gaborski, T.R.; Striemer, C.C.; Fauchet, P.M.; McGrath, J.L.
An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous
membranes. J. Membr. Sci. 2011, 369, 119–129. [CrossRef] [PubMed]

32. Snyder, J.L.; Getpreecharsawas, J.; Fang, D.Z.; Gaborski, T.R.; Striemer, C.C.; Fauchet, P.M.; Borkholder, D.A.;
McGrath, J.L. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon
nanomembranes. Proc. Natl. Acad. Sci. USA 2013, 110, 18425–18430. [CrossRef] [PubMed]

33. Prewitt, J.M.; Mendelsohn, M.L. The analysis of cell images. Ann. N. Y. Acad. Sci. 1966, 128, 1035–1053.
[CrossRef] [PubMed]

34. Stein, R.S. Measurement of birefringence of biaxially oriented films. J. Polym. Sci. 1957, 24, 383–386.
[CrossRef]

35. Carazo-Alvarez, J.; Haake, S.J.; Patterson, E.A. Completely automated photoelastic fringe analysis. Opt. Lasers
Eng. 1994, 21, 133–149. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1016/j.biomaterials.2015.05.015
http://dx.doi.org/10.1016/j.memsci.2010.11.056
http://www.ncbi.nlm.nih.gov/pubmed/21297879
http://dx.doi.org/10.1073/pnas.1308109110
http://www.ncbi.nlm.nih.gov/pubmed/24167263
http://dx.doi.org/10.1111/j.1749-6632.1965.tb11715.x
http://www.ncbi.nlm.nih.gov/pubmed/5220765
http://dx.doi.org/10.1002/pol.1957.1202410706
http://dx.doi.org/10.1016/0143-8166(94)90067-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Water Processing and Sample Collection 
	Sonication and Cleaning Protocol 
	Graduated Cylinder Gravity Filtration 
	Dissolution and Washing Protocol 
	Nile Red Staining 
	Image Processing, Segmentation, and Quantification 
	Elemental Analysis 

	Results and Discussion 
	Water Transport Route and Filtration Apparatus 
	Image Processing and Particle Enumeration 
	Material Analysis 

	Conclusions 
	References

