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Abstract: The Industrial Internet of things (IIoT) helps several applications that require power control
and low cost to achieve long life. The progress of IIoT communications, mainly based on cognitive
radio (CR), has been guided to the robust network connectivity. The low power communication
is achieved for IIoT sensors applying the Low Power Wide Area Network (LPWAN) with the
Sigfox, NBIoT, and LoRaWAN technologies. This paper aims to review the various technologies and
protocols for industrial IoT applications. A depth of assessment has been achieved by comparing
various technologies considering the key terms such as frequency, data rate, power, coverage, mobility,
costing, and QoS. This paper provides an assessment of 64 articles published on electricity control
problems of IIoT between 2007 and 2020. That prepares a qualitative technique of answering the
research questions (RQ): RQ1: “How cognitive radio engage with the industrial IoT?”, RQ2: “What
are the Proposed architectures that Support Cognitive Radio LPWAN based IIOT?”, and RQ3:
What key success factors need to comply for reliable CIIoT support in the industry?”. With the
systematic literature assessment approach, the effects displayed on the cognitive radio in LPWAN
can significantly revolute the commercial IIoT. Thus, researchers are more focused in this regard.
The study suggests that the essential factors of design need to be considered to conquer the critical
research gaps of the existing LPWAN cognitive-enabled IIoT. A cognitive low energy architecture is
brought to ensure efficient and stable communications in a heterogeneous IIoT. It will protect the
network layer from offering the customers an efficient platform to rent AI, and various LPWAN
technology were explored and investigated.

Keywords: LoRa; Sigfox; cognitive LPWAN; Industrial Internet of Things

1. Introduction

LPWAN provides long-distance communication for rural and urban areas to support
IIoT devices considered by a 10-year provision time to acclimate IIoT applications with
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higher extensibility and availability of intelligent monitoring infrastructure for a small
portion of data exchanges. LoRa is favorable to use with smart sensing applications work-
ing on the IIoT non-authored spectrum [1]. NBIoT is suitable for supporting agriculture
and environmental data collection and observations; industrial data tracking and moni-
toring; inventory tracking; smart billing; and smart buildings, smart metering, and smart
cities. Machine-to-machine (M2M) communication uses the Bluetooth Low Energy (BLE)
technique for data communication; the other IIoT applications used in healthcare, smart
agriculture, intelligent home, smart vehicles, smart city, smart gadgets, and industries
use the cognitive LPWAN, LoRA, Sigfox [2–7]. Figure 1 shows the various sectors of IIoT
applications. There is a need to mix most LPWAN technologies in heterogeneous IIoT appli-
cations to provide more efficient and convenient intelligent services. In heterogeneous IIoT
applications, there is a need to mix most LPWAN technologies to provide more efficient
and convenient intelligent services. This will be deployed by cognitive LPWAN [8].
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Cognitive LPWAN will provide promising IIoT systems strategies and improve spec-
trum usage to increase network performance. The use of cognitive radio will help overcome
the limitations due to several IIoT infrastructure things. Cognitive devices in LPWAN can
work collaboratively more than available spectrum allocations. The LPWANs can share
channels and events because of the extra traffic packets within the specific event area,
thereby striving to block the channel concurrently [9–11]. The most sophisticated Industrial
Internet of Things (IIoT), based on applications for smart cities, industries, metering, and
home architectures, are required to transmit data over long distances, consume low energy,
and to be cheaper and highly scalable [12–14]. However, the design mechanism requires
maintaining the existing cellular communication technologies.

Thus, it has been a recent research prospect to meet-up all the above requisites related
to IIoT-based applications, and due to the importance of the matter, newer and more
suitable communication technologies such as Low Power Wide Area Network (LPWAN)
started to appear with no delay. LPWAN is currently being utilized in numerous applica-
tions based on Industrial IoT (IIoT) due to their merits of offering low power consumption
rates, long transmission range, low cost, simplified network topology, scalable and simple
deployment, small data frame sizes [14], and thin infrastructure; even though it has low
data rates [15]. According to the estimation provided in [16], 800 million IIoT devices
may become connected over LPWAN standards by 2022 due to the good qualities and
advantages of LPWAN. However, there is a concern that most LPWAN will typically suffer
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from spectra congestion due to their major deployment in the unlicensed Industrial, Scien-
tific, and Medical (ISM) band [17]. This demerit may cause increased interference, limited
scalability, spectral inefficiency, and reduced transmission range to LPWAN systems [18].

As an aftermath, the necessity to mitigate the above limitations has encouraged the
recent paradigm shift to integrate Cognitive Radio (CR) in LPWAN. The maturity of the
study of CR has happened recently, intending to improve efficiency and spectral utilization
in wireless communication systems; CR can automatically detect available channels in
a wireless spectrum and alter its transmission parameters to ensure improved communica-
tion and radio operating behavior [19]. CR has gained better consideration under new IEEE
standards such as IEEE 802.15.2, IEEE 802.22, and IEEE Standards Coordinating Committee
(SCC) due to the capability of CR to solve some problems related to wireless communi-
cations, e.g., interference, delayed network deployment, and spectral efficiency [20–23].
Moreover, CR has been utilized in many IIoT-based applications [24], e.g., improving the
Quality of Service (QoS) in Wireless Sensor Network (WSN)-based smart grid applica-
tions [25]. Cognitive radio has also made its mark to mitigate interference in industrial
WSNs (IWSNs) and fulfills the QoS requirement by improving the latency, transmission,
and frame losses challenges [26].

This analysis aims to research the literature on cognitive radio in LPWAN for industrial
IoT. We investigate different studies providing different backgrounds for study and their
relationships. The following research questions (RQ): RQ1: “How cognitive radio engage
with the industrial IoT?”, RQ2: “What are the Proposed architectures that Support Cognitive
Radio LPWAN based IIOT?”, and RQ3: What key success factors need to comply for reliable
CIIoT support in the industry?”.

The main contribution of this paper is a systematic literature assessment on a long
variety of extensive location (LoRa), Sigfox era, long time evolution class m (LTE-m) [27],
and narrowband internet of things (NBIoT) in low electricity extensive location LPWAN
technology with an unlicensed spectrum [28,29]. Cognitive LPWAN allows industrial IoT
applications for smart city services to access different wireless connectivity and selects
appropriate communication technologies to achieve the best interaction experience [30–32].

The article is organized as consisting of three sections. Section 2 presents a compre-
hensive study on methods, material and methods, where it discusses the data collection,
searching, and selecting the papers, and covers a depth review on cognitive-enabled in-
dustrial IoT applications, methods with pros and cons. Section 2 also answered each of
the research questions and highlighted the deployment’s significance, the determinant
factors for designing, and modeling cognitive-enabled industrial IoT frameworks. Section 3
presents the concluding remarks, with future scope for this work being suggested.

2. Materials and Methods

This study considers the systematic review technique a suitable approach to address
particular research questions by applying the several phases that can be categorized into
three parts—preparation, leading, and reporting the review. Figure 2 presents the overall
review methodology for cognitive-enabled IIoT methods for different industrial applica-
tions. The data/paper selection methodology for the year and the source is illustrated in
Figures 3 and 4.

This study’s review methodology focused on the existing approaches, techniques,
and design principles of industrial IIoT applications in LPWAN. All the relevant data
(journals and conferences within 2007–2020) were collected and arranged during the first
phase (preparation phase): the background and formulated research questions RQ1, RQ2,
and RQ3. The review of the existing methods components and data sources are highlighted
in Tables 1–4.
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Table 1. Comparison Technologies of Low Power WAN [10,13,18,20–28,33,34].

Technologies LTE-M
Narrowband

LTE IoT Ecs GSM LORA Sigfox Symphony Link Weightless

Coverage area <11 km <15 km 20 km <13 km <3 km 2 km

Spectrum radio <900 MHz
[L]

both range
(867–869 MHz, or

902–928 MHz)
[UL]

900 MHz
[UL]

923
MHz

[L]

BW 1.4 MHz 200 kHz 200 kHz 2.4 MHz 125 kHz 250 kHz
500 MHz 100 kHz

125 kHz
250 kHz
500 MHz

12.5 kHz

Capacity data
Rate <1 Mbps <150 kbps <400 kbps 10 kbps <50 kbps 100 bps <50 kbps 625 bps

Life cycle battery
(years) >10

where L is for Licensed, UL for Unlicensed.

Table 2. Summarized comparative analysis of CR LWPAN technologies for the Industrial IoT applications [16,17,22,35–37].

Technologies Maximum
Coverage

Maximum
Data Rate Modulation Operation CR

Capabilities IIOT Applications

Sigfox 50 km (rural) 100 bps BPSK Unlicensed
ISM (800–900 Mz)

To be
considered

• Smart Metering
• electricity, crude oil, natural gas, water, and sewage
• Smart Environment
• Water quality, air pollution, and radiation level
• Earthquake early detection and Tsunami
• eHealth

Weightless-W 5 km (Urban) 100 kbps DBPSK
Licensed/Unlicensed

(TV white space
138 to 780 MHz)

Yes
• Smart Cities

# intelligent traffic control
# security and
# emergency reporting services
# Retail

Nwave
(Weightless-N) 3 km (Urban) 100 kbps DBPSK Unlicensed

868 to 923 MHz.
Yes

(uplink only)

LoRa 5 km (urban),
15 km (rural) 50 kbps chirp spread

spectrum (CSS)

Unlicensed
ISM (400, 800,
and 900 MHZ)

Yes • Smart sensing
• Smart Grids and Utility

Symphony
Link 12 km 100 kbps PSK and

GMSK Unlicensed To be
considered

• Smart Agriculture
# livestock monitoring and tracking
# greenhouses

• Smart Industries and Factories
• Automotive and logisticsNBIoT 15 km 250 kbps QPSK Licensed

700–900 MHz No

LTE-M 11 Km 1 Mbps OFDMA/SC-
FDMA

Licensed
700–900 MHz No

• Smart home
• Consumers
• Smart buildings

Table 3. Summary of Industrial IoT features with the various parameter requirements [16,34–61].

Smart Applications Low Power Capacity Coverage Cost CR Potential Interference to Other Primary Users

Environment M H M H L
eHealth, Life Sciences, and Wearables H H H M H

Farming and Agriculture H H H M L
Metering M H H H M

Logistics and Automotive L H H M L
Emergencies and Security H L H M L

Industrial Manufacturing and Automation L H L H H
Cities M H H H M

Real Estate and Building L M H L L
Energy and Smart Grid M H H M M

Retail L H H H H
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Table 4. Summary of the different Cognitive Industrial IoT technologies and applications.

Year Approaches Features Advantage Challenges Refs.

2019
Network functionalities are
implemented via software

instances in cloud

Proposed an architectural
specification Improved performance

Strategizing regarding the
implementation of the classical

network functionalities, associated
with the challenges in their
respective implementations

[6,26,31]

2019 Development of a UNIX-based
network interface for LPWAN

Regarding transmission
distance and end-device

energy consumption

Remote track vehicle status in
real-time

Light vehicles with
impending power barriers [7]

2018 Traffic-pattern data set in the
data-cognitive engine

Cognitive- LPWAN selects
appropriate communication

technologies to achieve a
better interaction experience.

intelligent applications and
services for the choice of different

Wireless-communication
technologies.

Cognitive-LPWAN and test the
proposed AI-enabled LPWA

hybrid method
[27,41]

2017
Interference distribution

conditioning on
sensor measurement

Improves area spectral
efficiency (ASE) compared to
a conventional ALOHA and

an adaptive transmission

Access the medium only when
a sensor values is measured

Spectral efficiency need
to be enhanced [12]

2019 Notable state-of-the-art
approaches

Enhancement of different
IIoT-based applications.

CR-LPWAN systems for
IIoT-based applications Lower efficiency and higher latency [42]

2018

The AI algorithm provides
the smart control of

wireless-communication
technology

Cellular-communication
technologies (4G, 5G)

AI-enabled LPWA
hybrid method

Higher delays in
communication delay and

higher energy consumptions
[24]

2019
C-LPWAN based on generic
network architecture and a
PHY layer front-end model

Develop CR-LPWAN
systems towards enhancing

IIoT-based applications

Enhanced IIoT-based
applications, including Industrial

IoT (IIoT) applications
Interference issue [36]

2020

For integrating CR in LPWAN
effectively, deciding on

suitable network architecture
and physical layer

To enhance the performance
of IIoT-based on applications

CRLPWAN are required for
adaptive threshold techniques to

improve sensing performance
Low throughput [17]

2.1. How Cognitive Radio Engage with the Industrial IoT?

The Cognitive Radio (CR) technologies for the Industrial IoT (IIoT) have been impres-
sive. Many researchers have been considering the CR-based IIoT for industrial applications
and proposing several approaches, techniques, and design principles using the LPWAN.
In this section, the standards, protocols, devices, and methodologies will be discussed to
articulate the engagement of CR in IIoT applications.

2.1.1. LPWAN for IIoT

LPWAN is considered an efficient technology for IIoT applications, which promises high-
energy efficiency and coverage capability with low power consumption [31]. The LPWAN
approaches such as Sigfox, LoRA, NBIoT, and other licensed cellular IIoT technologies
standardized by 3GPP such as eMTC (LTE-Cat-M1) and 5G cellular IIoT are all represented
for IIoT applications and expected to be part of the new 5G framework by 2020 [32].
Multiple access levels have been applied using LPWAN for IIoT applications. In a mixed
LPWAN network, Sigfox can collect the IIoT data using LoRaWAN [33] intermediary
devices to facilitate connectivity to the IIoT core network, as shown in Figure 5. The LTE
and 5G as wireless Access technology based on the Internet of Things connect the cells
such as NBIoT, WiFi, and LoRa [38]. The comparison is shown in Table 1.

In Mixed LPWAN, device management functions are: registration, authentications,
data traffic, speed transmission, and bandwidth performance using the core network.
The consistency of network servers in LPWAN occurs to control the LoRaWAN base
stations’ traffic flow to provide received payload [39]. Base stations forward the collected
data to the IIoT SaaS to manage the database contents.

Generally, LPWA networks are suffering from latency limitations that are mitigated,
and the highest rate demand is replaced by long coverage range and low consumption [40].
The inverse demand for the two technologies such as IIoT concerns big applications, and it
is accessing that traditional cellular networks will still be a resolution, for example, non-
energy-constrained issues that request high data rates [41]. CR delivers capacity through
spectrum sensing. So, CR obtains the best frequency through the interaction with its radio
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setting [42]. That is very important for CR to increase the frequency utilization for scare
radio resources. Lately, research has been projected using multiple access technologies for
unlicensed frequency allocation [43].
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IIoT system can control the frequency dynamically using cognitive radio power that
maximizes radio utilization and system performance. In CR LPWANs, the radio channel
between the licensed networks and the unlicensed BS only can take place within the
cellular radio coverage area [24–44]. For convenient resource allocation by following QoS
rules, the channel bandwidth allocation in LPWAN is made well-defined in wireless
applications [45–47]. Hence, LPWANs face no difficulties during serving the traffic for
wireless applications, even though QoS has strict requirements [48]. Moreover, CR-LPWAN
is seen to be efficient whenever the primary radio network (PRN) system’s radio spectrum
remains underutilized, even though it has various resources. Therefore, the dynamic
spectrum access is essential for efficiently managing the spectrum in CR-LPWANs for
IIoT sensor nodes densely deployed [44]. Spectrum sensing functionality is the factor that
distinguishes CR-LPWAN from conventional WSN.

CR can adjust the operating parameters of its spectrum sensing capability dynamically;
utilizing this can determine the vacant bands [45]. CR manages these vacant bands effi-
ciently to improve the utilization of the overall spectrum. There are two distinct categories
of radio: active region using licensed bands and active region unlicensed bands. Like-
wise, radio users can be classified into two types—Licensed PUs and Unlicensed CUs [46].
The unlicensed CUs can use available licensed channels, only if no interference is caused
for the licensed users. The unlicensed CUs in CU-WPLAN use the IoT devices to detect
licensed PU’s activity through spectrum sensing whenever licensed PUs use the available
licensed channels. Therefore, CR should have the capability to operate both in licensed and
unlicensed bands, as PUs cannot fully take advantage of the licensed spectrum bands [47].

2.1.2. Cognitive LPWAN

LPWAN technology is a low range revolutionary system for IIoT low-powered sensor
devices that operate in a short distance area [48]. Thus, LPWAN technologies are up-and-
coming for low power consumption, coverage, and low costs. Cognitive LPWAN operates
multiple LPWAN technologies as a combination in one backbone network that achieves
efficient user experiences using AI services [49]. It can provide stable communication
between people and things together in heterogeneous IIoT. Cognitive LPWAN expands
subscribers with more performance and relief smart services by enhancing cognitive
LPWAN technologies for various applications of smart cities, Internet of vehicles, and smart
home with the AI mechanisms [50].
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The cognitive devices or users need to detect the spectrum before the unused spec-
trum’s occupation using a detection technology to determine an inactive frequency spec-
trum. After access to the available spectrum, cognitive users need to perceive other
channels to prepare the primary users to achieve transparent transfer and prevent cognitive-
communication [51–53]. The benefit of using cognitive radio in LPWAN is to use sufficient
spectrum and efficient energy and resource availability when using the unused oppor-
tunistic licensed spectrum [10]. Smart sensors that use a cognitive radio can access the IIoT
network through LPWAN base stations responsible for receiving, storing [54], and process-
ing data from other nodes and distributing the different requests on the network. Smart
sensor nodes use a specific low power, low-speed, long-range network—typically LPWAN
networks [55]. In long-range and lower power consumption applications and cellular LP-
WAN technologies such as LTE, NBIoT is used. A dynamic spectrum access scheme is used
in such networks to allow unlicensed users to access unused licensed bands dynamically.
Cognitive radio with dynamic spectrum access provides a solution for increasing spectrum
utilization in cognitive LPWAN [56].

The fusion of different LPWA technologies offers cognitive-LPWAN (C-LPWAN),
an entirely new set of the application domain, as it can make intelligent services more
comfortable and efficient for the users. The C-LPWAN based on an AI-enabled engine has
been presented in [57]. According to this study, C-LPWAN can ensure superior advan-
tages over known LPWAN technologies by minimizing energy consumption and delay.
The architecture of C-LPWAN incorporates different LPWAN technologies, and by utilizing
precise calculation, analysis, and distributed cloud support, it can choose the best suitable
technology for each application [58].

2.1.3. Cognitive Industrial Internet of Things (IIoT)

The growth of IIoT applications in different aspects will require enabling protocols and
more spectrum due to different kinds of devices, sensors, and things that can be connected
to the Internet. Available spectrum will become rare relative to this phenomenal growth,
especially in the Industrial, Scientific, and Medical Bands. Technologies such as LoWPAN
and ZigBee depend on ISM bands that are not sufficient for their needs for a spectrum [59].
Cognitive radio in IIoT with dynamic spectrum access can be more aggressive, in which
multiple users can simultaneously use a channel if only it satisfies the predefined quality
condition. The use of cognitive technology in IIoT will help to bring control to IIoT growth
issues in the case of channels distribution among devices shared with infrastructure-based
development through radio connections [60].

The operational planning for Cognitive IIoT fundamentally characterizes the interac-
tivities of mainly five essential cognitive functions: intelligence cycle, large data test, logic
knowledge, derivation, and detection. Intelligent systems decide for resolution and request
services supplying similar signals useful for the IIoT model [61,62]. Cognitive processing
in IIoT network based on cellular backbone architecture as shown in Figure 6 enables
IIoT devices to determine its action [63]. This can be accomplished by exchanging local
event information between the sensor nodes and servers. Besides, IIoT devices can ex-
change control data for spectrum allocation and channel determination for handover. The
radio sensing integration with cloud-enabled services can assist as self-reconfigurable IIoT
resolutions for an implementation application [64].

Another cognitive IIoT consideration is the use of coexistence performance of hot
spot indoor with LTE [65]. The coexistence system of ZigBee and LTE will promise more
performance explored through the different communication networks since LTE offers
low density in rural regions and ZigBee high density for urban regions. The integration
between LTE and ZigBee configuration will introduce a new approach to different spectrum
bands in one architecture without the spectrum sharing aspect [66].
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Figure 6 Figure 6. Cognitive-enabled LPWAN Technologies for IIoT [61–63].

In cognitive IIoT in LTE access technology, the spectrum sensing is a process that
enables Secondary Users (SUs) to sense the spectrum with a given probability to detect and
protect the signal from Primary Users (PUs) possibly in noisy environments [67]. It should
be that the PUs signal must be identified for SUs communication at the desired interference
level. For perfect sensing performance, two metrics, the probability of misdetection and
false alarm, should be considered in cognitive IIoT system evaluation [64]. False alarm
represents that SU discovers that the idle PU is active, which can miss transmission
opportunity. The following equation determines the probability of false alarm [68]:

Pf a = C
((

λ

υ2 − 1
)√

T·FS

)
, (1)

where C represents the complementary distribution function of a standard Gaussian,
λ denotes the spectrum sensing threshold, v2 is the channel power noise, T denotes the
spectrum sensing time, and fs indicates the sampling rate of the channel. The detection
probability of an arbitrary SU i is derived as follows [69]:

Psu = C
((

1√
2γ+ 1

− 1
)

C−1
(

Pf a

)
−
√

T·FSγ

)
, (2)

where γ represents the SINR of the PU’s signal measured at the SU. The misdetection
probability for SU can be written by:

Pmd = 1− Psu. (3)

Cognitive radio performance can affect the sensing ability during the detection process
of the active SUs. Multipath fading problems in wireless channels that appeared in PUs
will make SUs fail in the process of PUs detection, which will push the SUs to cause much
interference to the PUs in their successive transmissions [70]. Either SU in its neighborhood
can detect PUs to be active or inactive during the process of spectrum sensing; the clear
channel probability (Pcc) for SUs with which the channel is free from the incumbent PUs,
can be obtained by the following equation:

Pcc =
(

1− Pf a

)
·H0 + Pmd·H1, (4)

where Pf a and Pmd respectively refer to the probabilities of false alarm and misdetection
for SU. H1 is the probability of active PUs in the neighborhood of SU, and H0 is the proba-
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bility of inactive neighboring PUs. SUs energy detector suggested declaring the activity or
inactivity of incumbent PUs with probability (1− Pcc) and probability Pcc, respectively.

2.1.4. IIoT LPWAN Cognitive Radio Bands

Primary radio networks (PRNs) and cognitive radio based on LPWANs are deployed
for the two different categories of radio frequency. The PRNs are mobile cellular networks
where the radio-licensed bands are often observed to be underutilized. Cognitive LPWANs
can deploy with PRNs at a specific frequency band. The channel radio between primary
and cognitive LPWAN becomes a place within the primary radio distance [71]. The primary
licensed users can only use the radio bands allocated in Primary Radio. The PRN frequency
systems for cognitive LPWANs apply the CU where the frequency is unutilized. That is,
CUs can differentiate and exploit these spectrum holes occurring in the PRN radiofrequency.
Specifically, CU can exploit the spectrum hole occurring to transmit an opportunistic
technique that does not interfere with all Primary Users [72].

The sensor system transmits its information values to the cell LPWAN, applying spec-
trum availability through cognitive energy radio. Figure 6 shows a set of different IIoT end
nodes, which depend on LPWAN and may include Smart cities. End nodes communicate
with CR-LPWAN gateway (GW) by the LPWAN network. The coverage region of the
Cognitive LPWAN is possibly primary user (PU) communication, as shown in Figure 7.
For example, a PU network belongs to a cellular network or TV network. The Cognitive
LPWAN operates within the PU’s coverage region via determining transmitting oppor-
tunistically over white spaces on a non-interference resource. Data rate coming from the
end nodes by white spaces progresses through the CR-LPWAN GW to an IIoT network,
which includes all devices on the Internet. A geo-position database with different applica-
tion servers can be accessed via the Cognitive LPWAN gateway to significantly determine
white spaces’ obtainability to recognize application, determining control commands signifi-
cantly [73]. The information is finally transmitted to the server that is unspecific in Figure 5
for cognitive radio based on the IIoT. 

 

 

Figure 7 Figure 7. Radiofrequency network architecture [72,73].

2.1.5. Spectrum Allocation

The radio frequency spectrum allocation to unlicensed users depends on the central
spectrum in cognitive IIoT-based LPWAN. Although a centralized sensing technique is
available for collecting information on free frequencies, sometimes decentralized sending
technique also plays a part. The spectrum availability is scanned by the transceiver on
the IIoT device and sent by access points using a specified network. This spectrum access
process allows allocating a specific spectrum channel to a certain cognitive user on the IIoT
device based on availability [74]. In spectrum access, the radio technique for unlicensed
frequency users to effectively access the unutilized licensed bands to decrease the new
frequency bands or white area is recognized as the dynamic access frequency band.
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In this platform, frequency band unlicensed users essentially use unused licensed
frequency bands without damage. When the frequency licensed band of the user initiates
the frequency band, the frequency band unlicensed user has to create the free frequency
band and transmit it to another inactive radio. The Cognitive Radio techniques and fre-
quency spectrum dynamic access platform significantly improve resolution for upgrading
frequency utilization in the cognitive radio [75]. Dynamic access is a technique wherein
the frequency spectrum holes in spectrum radio allocation mean the radio spectrum is
used proactively. Fixed allocation sources based totally on the static spectrum get right
of entry to be unsuitable for cooperating with spectrum radio disabilities anticipated to
proportion sources.

On the contrary, dynamic resource allocation functions well using spectrum holes
or spectrum accessible bandwidth, by applying several approaches. Various shared radio
resources have distinctive structures and can allocate several constant frequency band-
widths to numerous structures. The media access control (MAC) or channel allocation
in LPWANs are better to explain so that the percentage of resources can turn out to be
dependent on special SINR within the wireless software; the LPWANs can contribute to
the Wi-Fi applications with difficult QoS demands [76].

The planner ought to decide a mac protocol of CR based on IIoT, based totally on
numerous vital requirements. Firstly, IIoT devices are unique in using massive data, higher
cost, communique vicinity, electricity consumption, and communication devices. Sec-
ondly, the checked radio frequency band is widespread. Many essential operators play
approximately the function of choosing a mac protocol for the IIoT machine. The operators
are communication probability, delays, and power consumption. Therefore, purposeful
MAC protocol has to tolerate decrease fees, decrease complexity, and low strength in-
take. A mac protocol has to be as much as the correct errors. For example, this work [77]
offers a comprehensive evaluation among mac types of standards, IEEE 802. 11ah, and
IEEE 802.15.4.

The requirements are consistent with its structures. The IEEE 802.15.4 is a better
deployable system than the IEEE 802.11ah or IEEE 802.14 because of its energy saving and
networkability permits regulating a huge number of IIoT devices system in unlicensed 2.4
using Direct Sequence Spread Spectrum (DSSS). Numerous smart devices allow MAC pro-
tocols, for instance, slotted aloha and acquainted Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA); and orthogonal frequency division multiple Access (OFDMA)
and Frequency Hopping Spread Spectrum (FHSS) were deployed for IIoT LPWAN systems
for applying the spectrum [78]. For instance, a CSMA/CA MAC protocol [79].

Cognitive LPWAN is an especially designed dynamic radio where the primary radio
network (prn) structures with a huge number of radio sources become underutilized; so the
cognitive radio LPWANs, the green get admission to is primary to the dynamic spectrum
control for being closely deployed within the IoT [80]. The cognitive LPWAN is superb
from the conventional interference standpoint through spectrum sensing implementa-
tion [81]. Cognitive radio locates the restricted bands anywhere and functions, adjusting
its processing variable parameters, by dynamically controlling radio band utilization.

2.2. What Are the Proposed Architectures That Support Cognitive Radio LPWAN Based IIoT?

Architectures that Support Cognitive Radio LPWAN-based IIOT are discussed in the
following subsections:

2.2.1. Cognitive IIoT LPWAN Architectures

Cognitive Radio LPWAN supports artificial intelligent application services, such as
automatic driving and smart houses [16]. The heterogeneous wireless communication tech-
nologies can be used for the design and implementation of the IIoT infrastructure. To design
the IIoT infrastructure for the unlicensed LoRa and Sigfox, the short coverage area BLE
and WiFi; and cellular technologies, LTE-m, NBIoT, and 5G, have been suggested [82].
The coverage area of narrowband IoT is less than a distance of 15 km, whereas Bluetooth
BLE is less than a length of 10 m; WiFi is less than 100 m; Long Range LoRa is less than
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20 km; LTE is less than 11 km; and 5Gis less than 15 km [83]. The performance parameters
such as distance, high data rate, bandwidth, and sensor capacity are discussed in Table 1.
The limitations of the different implementations of narrowband IoT base stations using
the LTE infrastructures are highlighted. Using LTE radio wave resources can save the
power consumption of WAN applications as well as costs. Long Range LoRa is mostly
used for cognitive interconnection and transmission and other implementation applica-
tions for its enhancement of the unlicensed spectrum. Table 2 presented a summarized
comparative analysis of CR LWPAN technologies for the critical Industrial IoT applications.
The NBIoT supports environment AI monitoring in smart cities. The WiFi technology sup-
ports smart home as AI home, Machine-to-Machine wireless communication technology,
and other implementation applications; LoRa supports smart sensing, smart home, and
M2M communication technology [84].

Table 3 presents Industrial IoT characteristics with different parameter requirements (L:
Low; M: Medium; H: High). For example, for environments WPWAN CIIoT applications,
the power needed is medium due to the scattering of devices around the area; the random
distribution probabilities of the long and short distances between the sensor and gateway
are similar. Link capacity needed is high due to huge reporting sensors. Coverage is
medium as well because for environmental applications, usually the coverage is smaller
than cities and larger than campuses. The cost needed is high due to the nature of the
environment’s application usually at the remote side where no network deployment is
available. CR potential interference to other primary users is low, which is due to the
environment’s application usually at the remote side where there is rarely another network
to be deployed at remote or jungle areas, and even though it happens that another foreign
network has deployed, the number of devices would not be large.

2.2.2. Architecture and Domain of CR-Based IIoT

CR based on IIoT region and IIoT articles should have the intellectual office to make
smart goals on the range and perform smart administration by breaking down system cir-
cumstances. In [85], a CR method was proposed to improve M2M interchanges. Substantial
scale IIoT applications make vast volumes of information, yet this information is unfilled
and unambiguous with reliable data. An information CR dependent on IIoT structure
empowers interpretation for the executive’s information and insightful assurance work.
Intellectual condition aware structure-based public IoT (pIoT) diminishes to overhead,
where pIoT is free and dynamic, as it depends on the open connections between articles.
Status obtaining is trailed by information identification and information mining methods
to identify diverse follow-up conditions. This helps in the evaluation of administrations.
After this, many approaches have appeared with different concerns and functioned for
accurate decisions [86].

Virtual objects (VOs) are created in [87] to speak to sensors. This model applied sensor
information and used the data. The system design has sensors, controllers, a focal center
point, a server, and a client layer. A composite virtual article speaks to a gathering of VOs
that have discernment with semantic interoperability. The purchaser level gives an interface
to clients to collaborate with the framework for application utilization. A Distributed
Internet like Architecture for Things (DIAT), because of three-level engineering, can bolster
the secure expansion of various heterogeneous gadgets. The layered design manages
security and adaptability also. Intellectual capacity acknowledges perceptive choices with
a self-governing administration arrangement. Psychological capacities are consolidated
at all three dimensions, bringing about a stack called IIoT Daemon. With the expansion
of sensors in IIoT comes the issue of vitality proficiency. One arrangement is to choose
vitality effective passageways. This is accomplished through diversion hypothesis and
disseminated learning. In any case, the structure must be adaptable and less perplexing
in the calculation. Software-defined radio (SDR) innovation for the remote IIoT stage was
considered in [88].
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2.2.3. The Architecture of U-LTE Cognitive Radio for IIoT

Unlicensed LTE (U-LTE) bands provide an attractive opportunity to satisfy subcarriers,
enabling access to 5 GHz for IIoT. These bands coexist with other Wi-Fi/IoT users. The
coexistence between U-LTE and IoT requires a protocol to listen before talk (LBT) with
cognitive radio [55–72]. The differences between LTE and IoT in PHY/MAC can cause
continuous interference to Wi-Fi/IoT systems. Unlicensed band operation needs the com-
ponent to be within the regulatory requirements of a given area deployment state of affairs
of U-LTE at the side of IIoT person device and devices, by using speaking with Wi-Fi to
get AP to use the unlicensed spectrum, form a femtocell, and grow to be number one
customers. United states in a small cell with eNodeB utilize unlicensed spectrum and grow
to be secondary customers. In U-LTE, the unlicensed spectrum is handiest for downlink
site visitors and the operations that include making sure reliable communications and
checking the provision of intended unlicensed channels are achieved through eNodeB [89].

In the coexistence of U-LTE with Wi-Fi/IoT system as shown in Figure 8, the LTE and
Wi-Fi/IoT randomly generate multiple signals with respective energy and transmission
time. Free channels could be allotted to the transmission between the respective source and
sink where the machine architectures of U-LTE cognitive radio for IIoT occupy idle channels
and transmit for its respective period [90]. The contention adoption via the wireless based
on mac protocol with a random access mechanism will find that the medium busy most of
the time and have high back off. 

 

 

Figure 8 
Figure 8. Coexistence of U-LTE Cognitive Radio/IIoT [88,90].

Within the cognitive radio utility in such coexistence architecture, wireless/IIoT can
be considered as a primary user (pu) and U-LTE because of the secondary consumer (su).
The alerts come from IIoT assets that occupy the channels following their own MAC
protocol employing the channel allocation device. While U-LTE indicators will comply with
the requirements channels through the cognitive radio machine. The cognitive radio system
can be prepared on LTE base station, which gets a transmission request from LTE resources
and then discovers the unfastened channels utilizing estimated idle channel threshold by
way of measuring the energy degree for the duration of the listening duration [91].

2.2.4. Architectures of NBIoT Cognitive Radio

New 3GPP technology standardized in LTE known as NBIoT has gained more atten-
tion for IIoT applications. NBIoT enables a wide range of services for M2M communication
for stable connectivity among IIoT devices, which are desirable to access the medium at any
time. The IIoT traffic involves small data packets that can be subject to excessive collision
due to many devices. The use of cognitive radio with random access strategies is done to
reduce congestion in the network [92]. In addition, the cognitive radio will promise to meet
the requirements of future IIoT spectrum by identifying vacant channels dynamically, and
the networks of CR-IIoT will offer collaborative sensing at a low rate and provide support
needs of channels for information exchanges between cognitive radio users and the central
node for the IIoT, as shown in Figure 9 below.
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In NBIoT cognitive radio, energy saving should be considered to reduce the system
realization cost for cognitive radio users; this is due to comparing the energy detected on
a channel with the local threshold. Matched filter detection can be used as an optical signal
detection mechanism to maximize the SNR of the recovered primary user (PU) signal.
In such a network, the received signal can be represented as y(n) affected by the noise u(n)
thatis assumed to be a complex Gaussian distribution function with zero mean and known
variance given by E(|u(n)|2) = σ2n. The received signal at NBIoT cognitive radio device
denoted by S(n) with zero mean and known variance can be given by E(|s(n)|2) = σ2s [32].
The shared signal-to-noise ratio β at a certain group of NBIoT cognitive radio devices is
given by:

β =
σ2s
σ2n

. (5)

In this system, all devices assumed are assigned to different groups of sensed fre-
quencies based on their packet priority and sensing SNR, such that devices with the same
sensing abilities were assigned to the same group. The decision variable of the energy
detector for collected Ns recovered signals can be written as follows.

T(β) =
Ns

∑
n=1
|β(n)|2 (6)

when T(β) follows Gaussian distribution Collaborative sensing, all devices in NBIoT
cognitive radio will transmit their local detection information to the central node to take
the final decision on the presence of the PU signal, and then the decision is communicated
to all devices. The collaborative sensing system set to times is known as sensing time (TS)
and collaborative sensing time (TCS) for sensing and communicating sensing information
to and from the central node. This scheme will provide more accurate sensing decisions,
especially under the low SNR scenario.

2.3. What Key Success Factors Need to Comply for Reliable CIIoT Support in the Industry?

The key success factors for reliable CIIoT are discussed in this section. The IIoT can be
built and operated with the development of other technologies using the Internet connec-
tion. The use of cloud and distributed computing, remote sensor system, and actuator sys-
tems’ significance toward reliable cognitive IIoT is reviewed in the following subsections [93].

2.3.1. CIIoT with Fog and Clouds

Distributed computing is another rising plan, and it accepts that the future world
will join the “everything as an administration” model dependent on the sharing of assets
through the cloud. Individuals will approach any administration, whenever and wher-
ever with the assistance of the Web association. Be that as it may, access to these assets
is an incredible test. Distributed computing has three noteworthy administration mod-



Sustainability 2021, 13, 338 15 of 20

els: framework as an administration, stage as an administration, and programming as
an administration [94]. Notwithstanding these models, detecting as an administration is
additionally proposed. Also, haze registering conveys the administrations near the end
clients; that is why it is essential to consider such cloud administrations (correspondence,
stockpiling, arrangement, and the executives) at the edge of a system. Utilizing psychologi-
cal capacity and CRN with its dynamic range of abilities, can consolidate with distributed
computing to convey IIoT administration provisioning to the real world [95].

2.3.2. CIIoT Remote Sensor Systems

Remote sensor systems (WSNs) have officially demonstrated their helpfulness as of
late. Scaled downsize and minimal effort have made sensors a significant wellspring of data
gathering. The need to know whenever and anywhere has bolstered the idea that they are
joining in IIoT structures [96]. Notwithstanding, data recovery from these sensors remains
a test in the substantial-scale topographical arrangement or in-home applications because
of range accessibility and obstruction. Besides, assets constrained sensors to produce and
transmit crude information rather than expansive and valuable information streams. WSN
information can be valuable for little-scale applications, yet it might have issues in the IIoT
setting. In this manner, WSNs mix with CRNs and give foundationless and self-composed
systems that have great potential for IIoT applications. Cognitive Radio with Actuator Sys-
tems (WSANs) performs activities indicated by condition detecting [56,62,64,66–68,72–75].
Their impromptu nature gives the least physical expansion and for the most part, results
in a solitary assignment. Joining WSANs in IIoT needs a more comprehensive vision.
Transmitting activities to actuators in an opportune and proficient way is a major obstacle.
NFC and RFID have generally been appropriate for WSANs; nevertheless, a subjective
info-communication viewpoint is additionally researched to improve the IIoT system [97].

2.3.3. CIIoT with D2D and M2M Technologies

The developing increment in the number of gadgets has transformed the concentration
into M2M correspondence rather than human-to-human (H2H) correspondence. A few gad-
gets such as mobiles, workstations, and sensors can engage in data communication without
the requirement for human intercession. Reliance on machine information has made M2M
correspondence significant for future IIoT systems [54,72]. Therefore, the self-configurable
systems for inter-device communication methods are necessary [73–75]. Moreover, the sys-
tem resource must be shared between M2M and established H2H interchanges coordinating
CRNs [98]. The summary of the cognitive radio technologies for different IIoT applications
is presented in Table 4.

2.3.4. Cognitive Engine

Cognitive Engine (CE) is a central feature of CR that acknowledges intelligent argu-
mentation and learning on the software radio system and executes the entire cognitive
sequence. CE uses the radio resource cognitive engine and cognitive data engine [20,56,62].
Radio resource development for the lifetime multi-paradigm flow of data in the technology
networks is performed with data automatic operating power and by implementing the
data intelligently. The cognitive data engine could organize the communication allocation
resources and allocation network resources [21,62,72–75] of heterogeneous IoT and remote
access cloud, and create the actual time returns of the overall data allocation resources to
the cognitive data engine.

3. Conclusions and Future Work

The IIoT helps several applications that require power control and low cost to achieve
long life. The development of the IIoT communication technologies base on CR has achieved
high ability for industrial network stable connectivity. An efficient and appropriate smart
service in smart cities, i.e., advanced health care, automatic driving, and users, can cur-
rently easily access such IIoT. This paper focuses on smart wireless technologies based on
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cognitive radio wireless medium with low power wide area LPWAN unlicensed spectrum
using LoRa, Sigfox, LTE-M, and NBIoT. Various cognitive IIoT applications have been
studied, with their techniques, protocols, and the model success determinant parameters
with their significance being identified. Cognitive LPWAN allows smart city services to
access other wireless access points and selects appropriate communication technologies
to achieve the best user experience. Our future study for the research area is to develop
a framework that facilitates less energy, long-run devices, and the highest possible data
rate using the cognitive Internet of Things for the industrial solution.
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Abbreviations
3GPP Third Generation Partnership Project
5G Fifth Generation
AI Artificial Intelligence
BLE Bluetooth Low Energy
CIIoT Cognitive Radio IIoT
CR Cognitive Radio
CRLPWAN Cognitive Radio Low Power Wide Area Network
CSMA Carrier Sense Multiple Access
CU Cognitive User
eMTC Enhanced Machine Type Communication
FHSS Frequency Hopping Spread Spectrum
IIoT Industrial Internet of Things
IoT Internet of Things
ISM Industrial, Scientific, and Medical
IWSNs Interference in Industrial Wireless Sensor Networks
LoRA Bi-directional Long Short-term Memory
LoRaWAN Low Range Wide Area Network
LPWAN Low Power Wide Area Network
LTE Long Term Evolution
M2M Machine-to-Machine
MAC Media Access Control
NB-IoTNBIoT Narrow Band Internet of Things
OFDMA Orthogonal Frequency Division Multiple Access
PU Primary User
QoS Quality of Service
RQ Research Question
SCC IEEE Standards Coordinating Committee
SDR Software-defined radio
SINR Signal to Interference Noise Ratio
U-LTE Unlicensed LTE
VOs Virtual objects
WSN Wireless Sensor Network
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