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Abstract: Measuring urban environmental performance supports understanding and improving the
livability and sustainability of a city. Creating a more livable and attractive environment facilitates
a greater shift to active and greener transport modes. Two key aspects, among many others, that
determine the environmental performance of an urban area are greenery and noise. This study aims
to map street-level greenery and traffic noise using emerging data sources including crowd-sourced
mobile phone-based data and street-level imagery data in Sydney, Australia. Results demonstrate
the applicability of emerging data sources and the presented advanced techniques in capturing the
seasonal variations in urban greenery and time-dependent nature of traffic noise. Results also confirm
the presence of a negative correlation between urban greenery and traffic noise.

Keywords: urban; environmental performance; greenery; canopy; traffic noise; Sydney

1. Introduction

With rapid urbanization and motorization of travel in cities over the past few decades,
various environmental issues have emerged that largely affect urban livability and environ-
mental sustainability, especially in the city centers where human activities and mobility
usually concentrate. Evidence has shown that traffic noise and urban heat islands are
two of the key factors contributing to the decline in life quality and the overall well-being
of residents and that such negative effects are the strongest in dense and congested city
centers [1–9].

The World Health Organization (WHO) has published a series of reports discussing
how and to what extent environmental noise affects society, both physically and men-
tally [10,11]. With private cars being the dominant mode used to travel in many cities,
increased urban space is dedicated to cars rather than to people. Many communities tend
to emphasize vehicle mobility based on which urban infrastructure is planned, at the cost
of reduced walkability. We have witnessed the replacement of urban green space as a result
of this car-centric development, whereas the city should be planned for the people, not
cars. It is also known that urban greenery has a close relationship with public health and
the environment [12].

Urban greenery and traffic noise are two key factors contributing to a city’s envi-
ronmental performance, livability, and walkability. The challenging question concerns,
however, how we can better measure, map, and thus understand urban environmental
performance from a spatial and temporal perspective using emerging data sources such
crowd-sourced, distributed, imagery, and mobile phone-based data. Spatial quantifica-
tion and visualization of urban greenery and traffic noise are ubiquitous in delivering
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people-centric planning strategies. If a city decides to improve its walking environment by
providing more green canopies in the cityscape and reducing traffic noise through travel
demand management, a greater shift to active and green transport is foreseeable.

Noise mapping was initially developed in Europe and has been extensively applied
and developed since the issuance of the Environmental Noise Directive [13]. More recently,
there has been a growing number of initiatives that use a mobile phone-based participatory
approach to measure and map noise in urban areas. This makes it possible to collect both
physical sound-level data and perceptual data on the sound environment [14]. A case
study of Toronto by Zou et al. [15] demonstrated that noise variability was predominantly
spatial in nature, rather than temporal, and there was a high correlation between seasonal
noise patterns. Noise maps can be used to identify noise levels within cities, identify areas
with greater exposure, assess future scenarios, help to identify the presence of this invisible
contaminant, and serve as a basis to adopt actions to reduce noise levels through structural
and nonstructural measures such as sustainable urban planning [16]. As an example, Cai
et al. [17] used empirical noise and traffic data to optimize a regional traffic noise estimation
model and developed traffic noise maps of Guangzhou, China. Bilasco et al. [18] proposed
an information system model which generated a noise map using sound measurements,
building heights, land uses, a digital land altitude model, and wind speed and direction in
GIS software.

Aerial images, remote sensing, and GIS-powered tools have been widely used to
monitor and manage urban greenery [19]. Unbalanced allocation of urban greenery and
the risk of health challenges are shown to be correlated [20,21]. Street-level imagery data
such as Google Street View (GSV) provide a high spatial resolution that enables providing
new insights to urban greenery analysis [22,23]. A study by Yang et al. [24] indicated
that measuring street greenery through GSV can be an advanced method for assessing
residents’ daily exposure to urban greenery. They found that urban greenery observed
in GSV images was positively associated with the walking behavior of older adults. Li
et al. [25] investigated different types of urban greenery using multisource spatial datasets.
They observed different spatial distributions and associations with the social status of
residents related to different types of urban greenery. The literature suggests that a large
number of ecosystem services benefitting the urban population are provided by trees, for
instance, reducing the temperature through shading and evapotranspiration [26].

The objective of this paper is thus twofold. We first aim to quantify and visualize
the spatial distribution of urban greenery at the street level in Sydney, as a case study,
by exploring Google Street View (GSV) images across different seasons. We then aim to
estimate traffic noise and map its spatial and temporal distribution in Sydney by exploring
both crowd-sourced mobile phone-based data and traffic volume data at different times
of day.

2. Methods and Data
2.1. Mapping Urban Greenery

The growing global awareness of climate change and rapid urbanization has put urban
heat and greenery at the center of many discussions on the future of sustainable planning.
Urban greenery improves amenities as tree canopies provide shade for pedestrians and
cyclists and reduce traffic noise. To quantify and visualize the street-level greenery in
Sydney, as a case study, we use Treepedia [27], an open-source tool developed by the MIT
Senseable City Lab using GSV images. The green canopy is measured by the Green View
Index (GVI) on a scale of 0–100, representing the percentage of the canopy coverage of any
location from different vertical view angles (−45 degrees, 0 degrees, and 45 degrees) and
during different seasons (winter and summer). See Appendix A.

The overall framework for quantifying urban greenery consists of three steps. The
very first step is to sample multiple locations in the network based on which the GVI
values are to be calculated. With these sampled locations, the second step is to retrieve
the GSV images using the Google Street View API. Finally, the GVI of each location can be
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calculated considering multiple horizontal and vertical angles to account for both tall trees
and ground vegetation. In what follows, we will introduce each of these steps, respectively.

2.1.1. Location Sampling

First, a continuous road network must be represented in a discrete manner by sampling
multiple locations. These locations are used to calculate the GVI. In Figure 1, we illustrate
how location sampling was performed for the Sydney central business district (CBD). The
street network as the original input was transformed into a discrete format containing
multiple locations at every 40 m. The distance between the sampled locations can be
adjusted depending on the size of the area as well as user preferences. We sampled these
locations evenly across the network which were then fed into the Google Street View API
so that corresponding GSV images could be retrieved. Due to the high computational cost
as well as the monetary cost of using the Google Street View API, we selected the sampling
distance of 40 m that is believed to cover a suitable field of view in the street view images
without distorting the quality of the greenery index. A sensitivity analysis may be needed
to find the optimal sampling distance.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 18 
 

  
(a) (b) 

Figure 1. (a) Street network of the Sydney central business district (CBD); and (b) sampled loca-

tions at every 40 m. 

  

Figure 2. Google Street View (GSV) images covered from multiple (a) horizontal and (b) vertical 

angles [28]. 

To capture greenery from images, the green pixels must be identified, which can be 

accomplished by color differentiating between red, blue, and green. Although some arti-

ficial green features could be misclassified as greenery, this misclassification has limited 

effect on the subsequent analysis in real applications given the fact that artificial green 

features only account for a small portion of the cityscape. Note that the initial classification 

contains some spark points considered as noises. In the refined classification, these are 

filtered out. For each sampled location in the network, we calculated the GVI. We took the 

retrieved metadata as input and collected the corresponding GSV images using the 

Google API. If these images were chosen at every 60 degrees horizontally (see Figure 2a), 

we ended up with a total of six images for each vertical angle. That is, for each vertical 

angle, we calculated the GVI using all the six horizontal images. We differentiated be-

tween different vertical angles because it allows us to study different types of greenery in 

the city space, e.g., tall trees vs. low bushes. Further, when collecting GSV images, we have 

Figure 1. (a) Street network of the Sydney central business district (CBD); and (b) sampled locations
at every 40 m.

2.1.2. Retrieving Metadata

With all the locations sampled, the next step was to retrieve the metadata correspond-
ing to each of the sampled locations. Metadata include necessary location information
such as the GSV image date, latitude, longitude, and tilt specifications. This information
was used for retrieving the GSV images at all the sampled locations through the Google
Street View API. One significant limitation of the GSV images is the unavailability of
images across different seasons for all locations. Some locations may only have images
from wintertime or summertime only. This creates an inconsistency in the analysis which
may require further data sources to improve the greenery estimation.

2.1.3. Calculating GVI using GSV Images

The GVI was calculated considering the obstruction of tree canopies in the GSV images
and classifying the pixels therein. On a scale of 0–100, it quantifies the canopy coverage at
any location (i.e., the GVI) as the ratio of the total green area from all the images to the total
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area covered by these images (Li et al., 2015). The panorama covers multiple horizontal
and vertical angles (see Figure 2).
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Figure 2. Google Street View (GSV) images covered from multiple (a) horizontal and (b) vertical
angles [28].

To capture greenery from images, the green pixels must be identified, which can
be accomplished by color differentiating between red, blue, and green. Although some
artificial green features could be misclassified as greenery, this misclassification has limited
effect on the subsequent analysis in real applications given the fact that artificial green
features only account for a small portion of the cityscape. Note that the initial classification
contains some spark points considered as noises. In the refined classification, these are
filtered out. For each sampled location in the network, we calculated the GVI. We took
the retrieved metadata as input and collected the corresponding GSV images using the
Google API. If these images were chosen at every 60 degrees horizontally (see Figure 2a),
we ended up with a total of six images for each vertical angle. That is, for each vertical
angle, we calculated the GVI using all the six horizontal images. We differentiated between
different vertical angles because it allows us to study different types of greenery in the city
space, e.g., tall trees vs. low bushes. Further, when collecting GSV images, we have the
option to distinguish between different seasons from which these images are taken. This
feature allows us to study the seasonal effect on urban greenery.

2.1.4. Visualization Techniques

The result presented in Figure 3a cannot be used directly for visualization purposes
because the network is currently represented in a discrete format by a finite number
of sampled locations. To obtain a continuous representation of urban greenery along
the streets, we performed an interpolation from the GVI values of the existing sampled
locations. The interpolation results are shown in Figure 3b. We can see that the GVI
values are now continuous across the entire network, forming a so-called raster image. The
remaining task to be conducted was to mask the raster considering only roadsides where
urban greenery was expected. To do so, we considered a polygon of the road network
and a buffer area surrounding the streets with a width of 10 m (see Figure 3c). The final
result after masking is illustrated in Figure 3d. It shows how urban greenery is spatially
distributed along the streets in the network.
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Figure 3. A comparison between (a) the original discrete representation of urban greenery and (b) the
rasterized continuous representation after interpolation. (c) Road network of the Sydney CBD with a
buffer area of 10 m width; and (d) masked representation of urban greenery based on the raster.

2.2. Mapping Traffic Noise

Noise, defined as “unwanted sound”, is perceived as an environmental stressor and
nuisance that affects social behavior and is shown to be associated with hypertension,
cardiovascular diseases, and psychological symptoms. To estimate traffic noise levels in
Sydney, we used NoiseModelling, a plugin of the open source OrbisGIS that enables the
production of urban noise maps based on the French standard method for road noise
emission and the NMPB method for noise propagation [29]. It consists of two steps:
estimation of traffic noise emission over the road network and calculation of sound levels
propagating over a receiver’s grid. For mathematical details, we refer to the above reference.
We chose NoiseModelling as our evaluation tool over some other alternatives such as
CNOSSOS-EU [30–32] because the former offers estimation of both noise emission and
propagation across the network and is readily implementable as an open-source package
using GIS.

The key input data to the traffic noise model were the average traffic volumes and
speeds across the area of interest. We obtained traffic volumes across the Sydney CBD at
three time intervals including the morning peak 7–9 a.m., the afternoon peak 4–6 p.m., and
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the off-peak periods 9 a.m.–4 p.m. and 6 p.m.–7 a.m. The traffic volume estimates were
built from a range of data inputs including a detailed computational representation of the
road network, household travel surveys, census data, public transport route information,
parking price data, toll road usage data, educational enrolment data, airport passenger
data, car ownership data, tourism data, current traffic count data (with/without vehicle
classification), and public transport patronage data (boardings/alightings) [33].

To calibrate the noise model, observational noise data were collected using Noise-
Capture, a free crowd-sourced mobile phone-based application. It collects environment
noise levels and uses mobile phone GPS to locate receiver positions. See Figure 4 for an
illustration of the spatial extent of the empirical noise data collection. Data were collected
at different times of the day across a few weekdays for multiple 1-h and 2-h periods. A
digital noise level meter (30–130 dB +/− 1.5 dB) with a frequency range from 31.5 to 4K hz
was also used to adjust the mobile phone-based noise measurements.
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in db.

2.2.1. Data Processing: Traffic Volumes and Building Footprints

Vehicles in the traffic data were categorized as light vehicles vs. commercial vehicles
(i.e., heavy vehicles). Speeds on motorways and other roads in the Sydney CBD were
assumed at 80 km/hr and 40 km/hr, respectively. Figure 5a shows an example of the traffic
volume dataset as well as an illustration of how light vehicles are spatially distributed
across the Sydney CBD during the morning peak. In addition to the road network, we
also needed building footprint polygons in the Sydney CBD which work as barriers to the
noise propagation. Building footprints information was obtained from OpenStreetMap
(Figure 5b) that enables exporting such information for any area of interest.
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2.2.2. Noise Propagation Model Parameter Calibration

After launching OrbisGIS and importing traffic volume data and building footprint
polygons, we then set up the noise propagation model parameters before simulating how
noise propagates in the network. A number of model parameters are adjustable whose
formal definitions and value guidelines can be found in [29] including:

• The maximum propagation distance which represents a cut-off distance between each
source and receiver.

• The maximum wall seeking distance which permits overlooking walls farther than
this distance between each source and receiver.

• The road width which represents an offset distance from the road center line to start
creating receivers.

• The receiver’s densification value which creates additional receivers at this distance
from sources.

• The maximum area of the triangle which sets the maximum surface for the noise map
triangular mesh.

• The sound reflection order which represents the maximum number of wall reflections
between each source and receiver.

• The sound diffraction order which represents the maximum number of horizontal
diffractions between each source and receiver.

• The wall absorption value which indicates the level of noise absorption by the wall.

To calibrate the noise model, we collected comprehensive observational data using
the mobile phone application NoiseCapture. A digital noise level meter (see Figure 6a)
was also used to see how reliable the data collected by mobile phones were. We expected
that the noise levels collected by NoiseCapture would be greater than those measured by
the meter because the microphone of a mobile phone can be more sensitive to sounds (not
necessarily noise) such as people talking or wind. A comparison between the two collected
datasets did confirm our conjecture (see Figure 6b). Thus, we treated the measurements
from the sound meter as being more accurate and adjusted the observations from mobile
phones accordingly (using their average values). The adjusted noise was considered as
the ground truth data and compared with the simulated data in order to calibrate the
noise model.
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Figure 6. (a) Digital noise level meter; and (b) comparison between noise levels collected by mobile
phones and the meter.

We found that parameters such as the maximum propagation distance (mpd), the
reflection order (sro), and the diffraction order (sdo) have significant effects on the sim-
ulated noise. The rest have limited impact on the results including the maximum wall
seeking distance (mwsd), the road width (rw), the receivers’ densification value (rdv), the
maximum triangular mesh area (mtma), and the wall absorption value (wav). A total of
five parameter sets were tested and compared as summarized in Table 1.

Table 1. Calibration parameter sets of the noise propagation model during the off-peak period.

Model Parameters

mpd (m) mwsd (m) rw (m) rdv (m) mtma (m2) sro sdo wav Comp. Time (hr) RMSE MAE

1 750 50 1.5 2.8 75 0 0 0.23 0.30 10.08 7.72
2 750 50 1.5 2.8 75 2 1 0.23 6.30 9.04 6.85
3 900 50 1.5 1 50 0 0 0.23 0.67 9.59 7.32
4 1000 50 1.5 1 50 0 0 0.23 0.67 10.00 7.69
5 900 50 1.5 1 50 2 1 0.23 11.30 8.94 6.79

For the selection of the most appropriate model parameters set, three criteria were
used including the computational time, the root mean square error (RMSE), and the mean
absolute error (MAE). Results suggested that parameter set 2 provides the most reasonable
compromise between the computational time and the model accuracy, which was thus
chosen to estimate traffic noise for the Sydney CBD as a case study. A comparison between
the observed and the simulated noise for parameter set 2 is provided in Figure 7.
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3. Results
3.1. Urban Greenery

We first demonstrate and compare the urban greenery mapping results for different
vertical angles, examining the applicability of the implemented model and street view
imagery to capture both tall trees and low bushes. Without loss of generality, we choose
three vertical angles of 0 degrees, +45 degrees, and −45 degrees. Figure 8a–c clearly
illustrates the effect of the vertical angle on the estimated urban greenery in the study area.
With a +45 degrees vertical angle, we seem to capture a larger portion of urban greenery in
the cityscape, suggesting the existence of many tall trees along the streets. When the vertical
angle reduces to zero degrees, the coverage of green canopies slightly reduces. The lowest
level of vegetation is estimated when the vertical angle is −45 degrees, which suggests
very limited existence of bushes and ground vegetation in the study area. To reflect the
overall greenery at any location, we combine the three vertical angles using a weighted sum
assuming a 50% overlap between the GSV images from the zero degrees vertical angle and
those from either +45 degrees or −45 degrees. The final result is illustrated in Figure 8d.
We also consider the seasonal effect (winter vs. summer) on urban greenery. In line with
the Australian Bureau of Meteorology [34], the winter is considered to span from April
to September, while the summer includes the remaining months in a year. As expected,
results demonstrate that urban greenery reduces significantly in winter compared with its
peak in summer. See Figure 9 and Appendix B.
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Figure 9. A comparison of urban greenery between (a) summer and (b) winter. The legend represents
the GVI value ranges.

3.2. Traffic Noise

Here, we spatially visualize the simulated traffic noise by the NoiseModelling tool in
OrbisGIS in Sydney. Using calibrated parameter set 2, we run three noise simulations for
the morning peak, the off-peak period, and the afternoon peak. The results are illustrated
in Figure 10a–c, respectively. In general, the areas near the Western Motorway (A4) and the
Pacific Motorway (M1) turn out to be the noisiest areas in the Sydney CBD. In the inner
CBD, the noisiest area lies at the intersection of Elizabeth Street and the King Street that
are also the two noisiest streets in the city center. From the south, George Street is also
noisy, but it becomes quieter after the intersection with Bathurst Street. The north part of
the Sydney CBD including Circular Quay, Dawes Point, and The Rocks is quieter than the
other parts. Overall, the spatial distribution of traffic noise exhibits high similarity between
the morning and afternoon peaks, although the former is slightly noisier than the latter
(see Figure 10d). The level of noise is the lowest, as expected, during the off-peak period.

3.3. Spatio-Temporal Correlation between Urban Greenery and Traffic Noise

The literature on urban environmental performance suggests the existence of a neg-
ative correlation between urban greenery and noise pollution. A study by Dzhambov
et al. [35] showed neighborhoods with higher tree cover density seemed to lessen the
negative effect of traffic noise. In another study, Margaritis and Kang [36] considered the
correlations between green space-related morphology and noise pollution and observed
that at the urban and kernel scales, cities with higher green space coverage were found to
have lower day–evening–night noise levels. Mueller et al. [37] found reduced road traffic
noise annoyance in urban areas is associated with residential tree cover density. In another
study conducted in Gothenburg, Sweden, it was found that green areas were associated
with reduced exposure to air pollution and leaves reduce noise levels at frequencies that
are important for traffic noise [38].

Here, we conduct a spatio-temporal correlation analysis to better understand the
relationship between urban greenery and traffic noise in Sydney (see Figure 11). While
the analysis suggests a weak negative correlation, represented by the negative slope of the
best fitted lines, we could not find strong evidence to make a conclusion on the impact
of urban greenery on traffic noise mainly because of the limitations in the collected data.
Nevertheless, we observed a relatively stronger correlation in winter, when the density
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of the urban green canopy is lower, compared to summer. Generally, locations with an
estimated higher noise level have a lower measured greenery level.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 18 
 

that are also the two noisiest streets in the city center. From the south, George Street is also 

noisy, but it becomes quieter after the intersection with Bathurst Street. The north part of 

the Sydney CBD including Circular Quay, Dawes Point, and The Rocks is quieter than the 

other parts. Overall, the spatial distribution of traffic noise exhibits high similarity be-

tween the morning and afternoon peaks, although the former is slightly noisier than the 

latter (see Figure 10d). The level of noise is the lowest, as expected, during the off-peak 

period. 

  
(a) (b) 

  

(c) (d) 

Figure 10. Spatial distribution of estimated traffic noise in the Sydney CBD for (a) the morning 

peak, (b) the off-peak period, and (c) the afternoon peak; and (d) distributions of the estimated 

noise levels for different times of day. 

3.3. Spatio-Temporal Correlation between Urban Greenery and Traffic Noise 

The literature on urban environmental performance suggests the existence of a neg-

ative correlation between urban greenery and noise pollution. A study by Dzhambov et 

al. [35] showed neighborhoods with higher tree cover density seemed to lessen the nega-

tive effect of traffic noise. In another study, Margaritis and Kang [36] considered the cor-

relations between green space-related morphology and noise pollution and observed that 

at the urban and kernel scales, cities with higher green space coverage were found to have 

Figure 10. Spatial distribution of estimated traffic noise in the Sydney CBD for (a) the morning peak,
(b) the off-peak period, and (c) the afternoon peak; and (d) distributions of the estimated noise levels
for different times of day.



Sustainability 2021, 13, 605 12 of 16
Sustainability 2021, 13, x FOR PEER REVIEW 14 of 18 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Correlation between estimated traffic noise levels and urban greenery index across the 

Sydney CBD in summer (a,c,e) and winter (b,d,f). Analysis is performed for the AM peak period 

(a and b), PM peak period (c,d), and off-peak period (e,f). 

4. Conclusions 

The growing availability of less traditional, distributed, crowd-sourced, unstruc-

tured, and mobile phone-based data has enabled a wide range of efficient and inexpensive 

measurements of urban environmental performance including air quality, temperature, 

noise, canopy, and human mobility. While emerging data sources are becoming more 

widely used to understand the performance and characteristics of the urban environment, 

there are still many challenges and unresolved issues with regard to their collection and 

processing as well as their use in modeling and prediction. 

The paper demonstrates the applicability and advantages of emerging data sources 

in understanding and measuring the environmental performance of a city with a focus on 

urban greenery and traffic noise. Results show that street-level imagery data are a power-

ful emerging data source that can be used to quantify how well a city performs in its green 
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Sydney CBD in summer (a,c,e) and winter (b,d,f). Analysis is performed for the AM peak period
(a,b), PM peak period (c,d), and off-peak period (e,f).

4. Conclusions

The growing availability of less traditional, distributed, crowd-sourced, unstructured,
and mobile phone-based data has enabled a wide range of efficient and inexpensive
measurements of urban environmental performance including air quality, temperature,
noise, canopy, and human mobility. While emerging data sources are becoming more
widely used to understand the performance and characteristics of the urban environment,
there are still many challenges and unresolved issues with regard to their collection and
processing as well as their use in modeling and prediction.

The paper demonstrates the applicability and advantages of emerging data sources
in understanding and measuring the environmental performance of a city with a focus
on urban greenery and traffic noise. Results show that street-level imagery data are a
powerful emerging data source that can be used to quantify how well a city performs in its
green canopy coverage and map its spatial and temporal distribution. Results also show
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that crowd-sourced mobile phone-based data enable estimation and visualization of how
traffic noise emits and propagates throughout a city. The presented quantification and
visualization frameworks and techniques in this paper are versatile and can accommodate
other emerging data sources. For example, to acquire street view images, we could also
resort to social media photos (e.g., Instagram). We also emphasize that there are always
difficulties associated with collecting crowd-sourced data such as those from mobile phones.
While privacy is certainly one concern from the public, how to effectively promote and/or
incentivize the usage of certain applications and data sharing is another challenge to be
addressed.
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Appendix B

An imagery example of temporal variation in urban greenery from Google Street View.
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