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Abstract: Critical imbalances and threshold exceedances can trigger a disruption in a network
of interdependent systems. An insignificant-at-first-glance shock can induce systemic risks with
cascading catastrophic impacts. Systemic risks challenge traditional risk assessment and management
approaches. These risks are shaped by systemic interactions, risk exposures, and decisions of various
agents. The paper discusses the need for the two-stage stochastic optimization (STO) approach
that enables the design of a robust portfolio of precautionary strategic and operational adaptive
decisions that makes the interdependent systems flexible and robust with respect to risks of all kinds.
We established a connection between the robust quantile-based non-smooth estimation problem in
statistics and the two-stage non-smooth STO problem of robust strategic–adaptive decision-making.
The coexistence of complementary strategic and adaptive decisions induces systemic risk aversion
in the form of Value-at-Risk (VaR) quantile-based risk constraints. The two-stage robust decision-
making is implemented into a large-scale Global Biosphere Management (GLOBIOM) model, showing
that robust management of systemic risks can be addressed by solving a system of probabilistic
security equations. Selected numerical results emphasize that a robust combination of interdependent
strategic and adaptive solutions presents qualitatively new policy recommendations, if compared to
a traditional scenario-by-scenario decision-making analysis.

Keywords: interdependent systems; systemic risks; two-stage non-smooth stochastic optimization;
quantile-based risk constraints; robust strategic and adaptive decisions

1. Introduction

Increasing interdependencies among systems involving interactions between man,
nature, and technology resemble a complex chain network connected through supply–
demand relations. Disruption of such networks can trigger systemic risks associated with
critical imbalances and exceedances of vital thresholds, affecting food, energy, water, and
environment (FEWE) security at various levels, with possible global spillovers. Risks of
disruptions and failures in such systems may be unlike anything that has been experienced
in the past. These risks can be induced by human decisions, in combination with natural
shocks. For example, an extra load in a power grid triggered by a power plant or a
transmission line failure can cause cascading failures with catastrophic systemic outages [1].
In financial networks, an event at a company level can lead to severe instability or even
to a crisis similar to the global financial crisis 2008. A hurricane, in combination with
inappropriate dams’ maintenance and land-use management, can result in human and
economic losses, similar to those induced by Hurricane Katrina [2]. Another example relates
to an increase of biofuels production, which affects crops and food prices, destabilizes
food and water provision, and worsens environmental conditions [3,4]. The notion of
systemic risks was introduced by Kaufman and Scott [5] in relation to financial systems.
The definition has been adopted for other natural and anthropogenic systems, e.g., power
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grids and critical infrastructures [6], biodiversity [7], financial and insurance systems [8–10],
and other natural and anthropogenic systems [11,12].

Systemic risks in interdependent FEWE systems can be defined as the risks of a sub-
system (a part of the system) threatening the sustainable performance and achievement of
FEWE security goals. Thus, a shock in a peripheral subsystem that is induced (intention-
ally or unintentionally) by an endogenous or exogenous event can trigger systemic risks
propagation with impacts, i.e., instability or even a collapse, at various levels. The risks
may have quite different policy-driven dependent spatial and temporal patterns. While
standard risks analysis and assessment can rely on historical data, systemic cascading risks
in FEWE systems are implicitly defined by the whole structure and the interactions among
the systems, in particular costs, production and processing technologies, prices, trade flows,
risk exposure, FEWE security constraints, risk measures, and decisions of agents.

Prediction of systemic risks in integrated natural and anthropogenic policy-driven
FEWE systems is a rather tedious task. The main issue in this case is robust management of
the risks, which can be achieved by equipping the systems with precautionary and adaptive
strategies enabling the systems sufficient flexibility and robustness to maintain sustainable
performance and fulfill joint FEWE security goals independently of what systemic shock
occurs [13,14]. In front of uncertainties, the strategies (decisions) can be of the two main
types: the ex-ante strategic precautionary anticipative actions (engineering design, policy
setting, resource allocation, technological investments, and water and grain reserves)
and the ex-post adaptive adjustments (marketing, inventory control, subsidies, prices,
and costs) that are made after making observations and receiving additional information
about uncertain system parameters. The anticipative and adaptive measures can reduce the
tightness in various supply–demand relations [15] and lessen chances of critical imbalances,
exceedances of vital thresholds, which could otherwise lead to systemic failures and the
lack of FEWE security.

A portfolio of robust interdependent ex-ante and ex-post strategies can be designed
by using a two-stage stochastic optimization (STO) approach incorporating both types of
decisions (see, e.g., References [16,17]). The two-stage STO has been applied in studies
for dealing with systemic interdependent risks, e.g., for integrated catastrophic risk man-
agement [18–23], for agricultural risks management [24–26], for energy security manage-
ment [27–30], for robust operation of multipurpose reservoirs [31], and for climate change
risk analysis [32]. In this paper, we discuss the implementation of the two-stage STO
approach within a multi-regional, multi-sectorial recursive-dynamic, partial-equilibrium
Global Biosphere Management (GLOBIOM) model for managing systemic risks and FEWE
security in land-use systems (see Section 3 and References [33,34]). The model includes
complex supply–demand chains established between regions, sectors, producers, and
consumers, requiring a proper attention to the emergence and management of the sys-
temic imbalances. In the case of a single region (or sector) model, as it is discussed in
Section 2, the supply–demand imbalances and the risks are connected with possible costs
for treating two situations: dealing with shortage and excess of production. When there
is more than one region or sector connected through joint supply–demand relations and
resource constraints, the systemic risks of imbalances and the associated costs dependent
on the parameters characterizing both regions (sectors), e.g., region-specific risk exposure,
production potentials, investments, operational costs, and feasible strategic (precaution-
ary) and adaptive (operational) decisions. The problem of managing systemic risks in a
multi-regional and multi-sectorial model GLOBIOM is a much more challenging task. An
example of an agricultural supply chain in GLOBIOM involves, e.g., the following three
main stages: crop production, from production to processing plant (different processing
technologies), and from the plant to clients (regions, sectors, producers, and consumers),
in the form of crops, biomass, and crop- and forest-related biofuels. Systemic risks can
be triggered by stochastic crop yield (the model may also incorporate stochastic costs,
resource, e.g., water availability or/and requirements, etc.) shocks. Section 3.1 argues
that managing systemic risks in FEWE systems requires the mobilization of the existing
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and the creation of additional strategic and adaptive activities and measures to equalize
supply and demand in complex supply–demand chains at various spatiotemporal levels.
The imbalances are represented by means of expected surpluses and shortfalls (deficits)
defining the systemic risks and characterizing the demand for additional strategic and
operational measures to reduce or eliminate the imbalances. Management of systemic
imbalances can be addressed by solving a system of probabilistic security equations as it is
discussed in this paper (see Sections 2–4).

The paper has the following structure. Section 2 discusses the notion of robustness
in statistics and establishes a connection between the robust quantile-based non-smooth
estimation problem in statistics and the two-stage non-smooth stochastic optimization
(STO) for robust strategic–adaptive decision-making in the presence of uncertainty. The
term “robust” was introduced in statistics [35] to identify statistical methods, which are
not unduly affected by “bad” observations or outliers. The mean is not robust to outlier,
whereas the median or quantile-based estimate is robust [36–38]. The robust quantile-
based estimation problem is closely related to stochastic minimax problems of FEWE
security analysis and two-stage strategic–adaptive systemic risk management. In the
two-stage STO problems, the risk aversion emerges due to the coexistence of ex-ante
strategic and ex-post adaptive decisions in the form of Value-at-Risk (VaR) quantile-based
risk constraint [13,14,18–23]. A basic two-stage production planning model with the two
types of decisions, strategic and adaptive, to minimize the risks of systemic imbalances
in supply–demand relations is discussed in Section 2.2. The strategic ex-ante scenario-
independent first-stage decisions are taken before uncertainty is resolved and operational
ex-post scenario-specific second-stage decisions are made after the values of stochastic
parameters become available, i.e., after learning additional information. It is shown that the
adaptive second-stage decisions depend non-smoothly (because of max or min operators)
on the first stage strategic decisions (path-dependencies) and on the uncertainty scenarios,
providing strong cross-period random interactions among decisions. Similar models
are relevant for planning energy (bio-based for heat and power generation) capacity
investments under stochastic biomass demand, for planning agricultural technologies
(e.g., irrigation or storage capacities) or hydropower-production-capacity expansion under
stochastic water demand [39], and for many other situations (see References [24–31] and
references therein).

The idea of the robust two-stage strategic–adaptive planning is incorporated into
a global land-use model GLOBIOM, showing that management of systemic risks in a
large-scale, multi-regional, and multi-sectorial model can be addressed by solving a system
of probabilistic security equations. A two-regional (two-sectorial) fragment of GLOBIOM
in Section 3.1 demonstrates that systemic risks arise as a result of joint resource and
security constraints, risks exposures, and decisions of various agents. The general two-
stage strategic–adaptive GLOBIOM is formulated in Section 3.2. The model suggests a
robust combination of complementary strategic and adaptive decisions. Section 4 discusses
selected numerical results. In particular, robust grain storage is an important measure to
relax tight supply–demand relations, enabling systemic flexibility, smoothing production
imbalances, and meeting security goals at regional and global levels. Moreover, robust
storage (grain and water reserves) allows to avoid unwishful land expansion and costly
investments, e.g., in additional irrigation technologies. Section 5 summarizes the main
conclusions.

2. Robust Decision Analysis: Strategic and Adaptive Decisions
2.1. Robustness Concept

In order to use the notion of “robust decisions” for systemic risk and security manage-
ment in interdependent systems, this section briefly discusses the concept of “robustness”
in statistics and general decision-making.



Sustainability 2021, 13, 857 4 of 16

2.1.1. Robustness in Statistics

The term “robust” was introduced in statistics [35] to identify statistical methods,
which are not unduly affected by “bad” observations or outliers. In the presence of
outliers, classical estimation methods, such as least square analysis, regression, and vari-
ance/covariance analysis, may have poor performance. In the case of Big Datasets, analysis
of outliers is important because their rejection may delete important and relevant observa-
tions. Huber [35] defined robustness based on a probabilistic minimax approach optimizing
the worst that can happen in some probabilistic sense. Therefore, robust statistical analysis
and estimation problems rely on non-smooth minimax stochastic optimization principles.
Optimal solution minimizing the quadratic function is the mean value of a random variable,
ω, whereas the median—and more generally a quantile—minimizes function:

M(x) = E(x−ω)2 =
∫

(x−ω)2P(dω) (1)

Q(x) = Emax{α(x−ω), β(ω− x)} =
∫

max{α(x−ω), β(ω− x)}P(dω) (2)

where max{α(x−ω), β(ω− x)} is a non-smooth random function, and x belongs to a set of
feasible decisions, X and x ∈ X. The probability space (Ω, F, P) is defined by the stochastic
variables, ω and ω ∈ Ω; the event space, F; and the probability measure or probability
distribution, P(dω). Parameters α, β > 0 are costs (penalties) associated with over- or
under-estimation, ω. In general, the costs (cost functions) can be stochastic and depend, for
example, on ω. Minimization of (2) is a stochastic minimax problem. Both functions M(x)
and Q(x) are convex. Let us assume that Q(x) is a continuously differentiable function,
i.e., P has a continuous density. If so, then we get the following:

Q′(x) = αP[ω < x]−βP[ω ≥ x] = 0 (3)

Moreover, the solution, xq, of the problem (2) satisfies the following equation:

P[ω ≥ x] = q, q =
α

α + β
.

For α = β Equation (3) defines the median. Solution xq minimizes also function

x + (1/q)Emax{0, ω− x}, q =
α

α + β
, (4)

which follows from the equivalent rearrangement of function Q(x) in the form Q(x) = αx +
(α + β)Emax{0, ω− x}− αEω. Model (2) is an important stochastic minimax problem used
in the security analysis and two-stage strategic–adaptive risk management (Section 2.2).
According to (3,4), the robust solution, xq, is characterized by quantiles and costs α and β,
which is also discussed in Sections 2.2 and 3. In the case when Q(x) is not continuously
differentiable and P does not have a continuous density function, optimality condition (3)
has to include subgradients [40–42] of function (2). Within a set of solutions of Equation (3),
the robust decision, xq, is defined as the minimal x satisfying equation P[ω ≥ x] ≤ q.

2.1.2. Robust Decision-Making under Uncertainty

For the analysis of complex systems, various performance indicators, fi(x, ω) and
i = 0, m, can be used (see, e.g., References [18–32,43–45]) to evaluate robustness of decisions
x. For example, if x defines production by different crop production systems, then fi(x, ω)
can indicate the level of water/air/soil pollution or food calories per person for each
combination of feasible production level, x, and plausible ω. The problem of robust
decision-making is to find such production, x, that the goal function f0(x, ω) (net profits or
costs) is maximized (or minimized) and the indicators, fi(x, ω) and i = 0, m, identifying
required norms, e.g., environmental or food security, are fulfilled for all scenarios, ω. This
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leads to an STO model formulated as optimization (maximization or minimization) of an
expectation function:

F0(x) = E f0(x, ω) =
∫

Ω
f0(x, ω)P(dω) (5)

It is subject to the following constraints:

Fi(x) = E fi(x, ω) =
∫

Ω
fi(x, ω)P(dω) ≥ 0, i = 0, m (6)

where x ∈ X ⊆ Rn and ω ∈ Ω represent decisions and uncertainties. Decision-making
problems (5) and (6) become a problem of robust decision-making if random indicators
fi(x, ω) and i = 0, m are represented in the form of non-smooth quantile-based indicators
as in (2), reflecting, for example, critical thresholds or imbalance (shortfall or excess),
signaling a systemic failure. In the case of discontinuous functions, fi(x, ω), expected
values, Fi(x), of constraint (6) often represent the risks of different parts (i = 0, m) of
the system characterized by probabilistic chance constraints: P[ fi(x, ω) ≥ 0] ≥ 1 − pi,
i = 1, m. Parameter pi defines the level of safety or security (see, e.g., References [18–31])
of subsystem i = 1, m. For examples, if pi is equal to 10−3, pi = 10−3, it means that
supply–demand balances (reserves, thresholds, norms, standards, etc.) can be violated
only once in 1000 years. Let us denote a quantile of fi(x, ω) by Qi(x), i = 0, m. Robust
version of STO models (5) and (6) can be formulated as follows: maximize

Q0(x) + µ0Emin{0, f0(x, ω)−Q0(x)} (7)

It is subject to the following constraints:

Qi(x) + µiEmin{0, fi(x, ω)−Qi(x)} ≥ 0 (8)

where µi > 1 are parameters regulating the deviation of fi(x, ω) below critical quantiles,
Qi(x), and the mathematical expression Emin{0, fi(x, ω)−Qi(x)} indicates the expected
shortfall. The straightforward use of Qi(x) destroys concavity of functions, Fi(x). To avoid
this, according to model (2) and Equations (3) and (4), the model (7,8) can be equivalently
rewritten as Equation (4): maximize w.r.t. (z, x) function

z0 + µ0Emin{0, f0(x, ω)− z0} (9)

It is subject to the following constraints:

zi + µiEmin{0, fi(x, ω)− zi} ≥ 0, i = 1, m. (10)

The models (9) and (10) are both a concave STO problem if functions fi(·, ω) are
concave. In the Proposition below, we show that components z∗i (x), i = 1, m, solvings (9)
and (10) w.r.t. z = (z0, z1, . . . , zm) are quantiles Qi(x). Therefore, models (9) and (10) are
robust versions of models (5) and (6), where mean values, E fi, are substituted by quantiles
of indicators, fi, with a security (safety) levels, µi, controlling their variability. The models
(9) and (10) can also be viewed as concave versions of STO models with probabilistic safety
constraints.

Proposition (Quantiles of fi(x, ω)). Assume fi(x, ·), i = 0, m, have continuous densities,
µi > 1, (z∗, x∗) is a solution of models (9) and (10) and λ∗ =

(
λ∗1 , . . . , λ∗m

)
≥ 0 is a dual solution.

Then, for i = 0 and active constraints, i = 0, m:

P[ fi(x∗, ω) ≤ z∗i ] = 1/µi, i = 0, m. (11)
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Proof. Let φi(zi, x, ω) := zi + µimin{0, fi(x, ω)− zi}. According to the duality theory it
follows that z∗i maximizes. �

Eφ0(z0, x∗, ω) + ∑m
i=1 λ∗i Eφi(zi, x∗, ω),

where Emin
{

0, fi(x∗, ω)− zi
}

defines the expected shortfall between fi(x∗, ω) and zi,
i = 0, m. If λ∗i is positive, λ∗i > 0, then z∗i maximizes Eφi(zi, x∗, ω), i = 0, m. There-
fore, Equation (9) follows from (4) for i = 1, m. From the complementary condition,
∑m

i=1 λ∗i Eφi(z∗i , x, ω) = 0, and Formula (3) follows Equation (11) for i = 0.
Let us also not that the variability of outcomes, fi(x, ω), can be controlled by using a

vector of quantiles, zi = (zi0, zi1, . . . , zil), generated as in (9,10), by performance indicators
∑l(zil + µilmin{0, fi(x, ω)− zil}), i = 0, m, and 1 < µi1 < µi2 < · · · . Based on Equa-
tion (11), it is possible to say that the models (9) and (10) are defined by VaR (probabilistic
chance constraints) and CVaR (expected shortfalls) risk measures (e.g., see Reference [46])
controlling security/safety of the overall system, i.e., a systemic risk. Specifically, the
term µiEmin{0, fi(x, ω)− zi}, i = 0, m, in (9,10), emerging through the problem’s trans-
formation with chance constraints (11), is essentially the expected shortfall or CVaR risk
measure. Robust quantile-based models (7–10) can always be formulated in terms of the
two-stage STO with strategic ex-ante first-stage solutions x, complemented with scenario-
dependent second-stage solutions to adaptively adjust solutions x to each scenario ω (see
Sections 2.2 and 3). Let us consider a basic two-stage STO model for production planning,
enabling us to cope with systemic risks of imbalances in supply–demand relations.

2.2. Robust Two-Stage Strategic–Adaptive Production Planning Model, Critical Quantiles, and
Security Constraints

This section illustrates how the concept of a two-stage stochastic optimization and
robust strategic–adaptive decisions can assist robust decision analysis and system’s security
management. Consider a basic model, which may correspond to a problem of a decision
maker (regional planner) concerned with investments into agricultural production tech-
nologies (irrigation and storage), bio-based electricity production facility, water-reservoir
infrastructure, or any other long-term and costly project associated with possible irre-
versibility costs [47]. Assume there is only one producer (region) operating in uncertain
environment and this producer needs to satisfy some demand. One of the variables (or
both variables) can be stochastic. In this section, let us consider a very simple relation
between the production capacity, x, and the stochastic demand, ω.

The imbalance between the demand and supply can induce an exceedance of a vital
systemic threshold and, as a result, a systemic failure. Planning production, x, before exact
information on the level of stochastic demand, ω, is available can result in two situations:
(a) If the production is lower than the demand, then the producer can potentially fulfill
the demand by storage withdrawal (“borrowing”) at price α > c. If the demand is lower
than the production, x, the producer can store the excess production at price β < c. The
shortage and the excess production indicate systemic imbalances and risks, which require
additional actions and costs for borrowing and storing. In general, costs α and β can be
interpreted as penalties for not having an adequate capacity, x.

Let us denote the shortage or excess of production by y+ = ω − x and y− = x− ω,
respectively. The balance equation for a given ω can be written as x = ω + y+ + y−, and
the total cost for the production, borrowing, and storing is defined as follows:

f (x, ω) = cx +

{
α(ω− x∗) = αy+, i f ω ≥ x
β(x−ω) = βy−, i f ω < x,

(12)

where α is the unit shortage cost and β is the unit storage cost (holding cost). The problem
is to find the production level of x∗ that is optimal (in a sense) for all foreseeable demands,
ω, rather than a scenario-specific production x → x(ω ), when for each stochastic scenario,
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ω, the production level is x = ω. For the production model with cost function (12), the
problem of robust planning minimizes the expected costs function:

F(x) = E{ f (x, ω)} = cx + α
∫

ω≥x
(ω− x)P(dω) + β

∫
x≥ω

(x−ω)P(dω) (13)

This can also be written as a stochastic minimax problem:

F(x) = cx + E{max[α(ω− x), β(x−ω)]} = cx + E
{

max
[
αy+, βy−

]}
. (14)

The optimality condition for the optimal first-stage production level, x > 0, F′(x) = 0,
yields the following equation:

P[ω ≤ x] =
α− c
α + β

. (15)

The optimal production level, x∗p, is the quantile ωp, which satisfies the safety con-
straint (15) for p = α−c

α+β . From (15), the probability that the production is higher than
the demand is defined by the four main parameters: the probability distribution of the
demand, the production (investment) costs, c, and the operational costs α and β associated
with managing scenario-specific production shortages or surpluses, y+ and y−. The op-
timal second stage solution y∗(x∗, ω) is defined as y∗(x∗, ω) = max[α(ω− x), β(x∗ −ω)].
Equation (15) means that the level of production x∗ will satisfy or even be greater than
stochastic demand at a given probability, p, defined by the investment costs and the oper-
ational costs associated with adaptive actions towards managing production excess and
shortage. Although not explicitly, risk aversion is introduced in the model through the
second-stage decisions. Thus, strategic decisions, x∗, cover only a slice of demand ω while
the rest is a adapted ex-post. Therefore, the solution of the two-stage strategic–adaptive
stochastic problem fulfills the production security level. The indicator P[ω ≤ x] defines
the Value-at-Risk (VaR), i.e., the probability and the critical quantile of ω, which cannot be
fulfilled by strategic decisions.

3. Two-Stage Strategic–Adaptive GLOBIOM Model

Section 2.2 illustrates the concept of a robust two-stage strategic–adaptive decision-
making with a basic model of a single producer (region, system) facing risks, associated
with production–supply imbalances. In the example, regional systemic security depends
on the regional feasible decisions x and y, the representation (e.g., by means of a probability
distribution or probabilistic scenarios) of the stochastic demand, and investment and
operational costs.

In this section, we formulate a two-stage strategic–adaptive large-scale, multi-regional,
multi-sectoral GLOBIOM model [33], using similar quantile-based robustness principles as
in (3,4). In GLOBIOM, the key variables, i.e., costs, prices, production portfolio, distribution
of systemic shocks, etc., depend endogenously on complex supply–demand chains included
in the model. Systemic disturbances in GLOBIOM are triggered by different scenarios ω of
potential crop yield shocks.

3.1. Two-Regional GLOBIOM: Systemic Risks, Risk Exposure, and Risk Sharing

Before formulating the general two-stage strategic–adaptive GLOBIOM model, let
us use its two-regional (two-sectorial) fragment to discuss the issues of potential systemic
imbalances, cooperation, and risk sharing. We aim to demonstrate that systemic risks
emerge as a result of systems’ interactions, joint resource and security constraints, risks
exposures, and decisions of various agents. In this case, a risk-free region (not exposed
to exogenous shocks) can become risk-exposed through joint constraints and goals. For
illustrative purposes, the demand, d, is assumed to be deterministic. In the general model,
the demand is stochastic and depends on shocks and demand-price elasticities. Production
capacities of regions are defined by xi and ci are production costs, I = 1,2. Regional
production technologies include a backup technology y ≥ 0 characterizing a potential
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production shortfall. Price b of technology y can be interpreted as a cost (or penalty) of
not having sufficient capacities xi, I = 1,2, to fulfill the demand. Assume c1 < c2 < b, i.e.,
production in the first region is the cheapest. There is no production depletion due to
uncertainties, a1, a2 = 1. The goal of a region without uncertainties is formulated as to find
such xi that minimize the cost function:

c1x1 + c2x2 + by (16)

S.t.
a1x1 + a2x2 + y > d (17)

where capacities x1 and x2 have to fulfill the joint demand constraint (17). The optimal
solution of this deterministic problem is x∗1 = d, x∗2 = 0, y∗ = 0, i.e., only the most efficient
region/sector/activity is involved in production.

In the presence of uncertainty, the level of production (outputs) x1, x2 of both regions
can be reduced (dependently or independently) by distortions a1, a2, 0 ≤ ai < 1, i = 1, 2,
e.g., yield shocks, (in)efficiencies, and resource shortage (biomass, water, and solar or wind
energy). Systemic imbalances (risks) are induced through joint supply–demand constraints.
Similar to Section 2.2., production shortfall can be potentially covered by the adaptive
ex-post scenario-dependent decisions y(ω) ≥ 0, e.g., storage withdrawals or imports. The
variability of y(ω) defines the level of production and food security.

The robust two-stage strategic–adaptive problem is formulated as a problem of mini-
mization of the total expected cost:

c1x1 + c2x2 + bEy(ω) (18)

It is subject to production security constraints, as follows:

a1(ω)x1 + a2(ω)x2 + y(ω) ≥ d (19)

For all scenarios ω. If supply a1(ω)x1 + a2(ω)x2 is less than demand d, the difference
y(x, ω) = d− a1(ω)x1 − a2(ω)x2 indicates the supply shortage. The constraint (19) intro-
duces path-dependencies, interactions, and trade-offs among the strategic and the adaptive
decisions. The problems (18) and (19) can be formulated as a non-smooth stochastic
minimax problem: minimize

F(x) = c1x1 + c2x2 + bEmax{0, d− a1(ω)x1 − a2(ω)x2}

where bEmax{0, d− a1(ω)x1 − a2(ω)x2} is the expected shortfall cost when the demand,
d, is greater than random supply a1(ω)x1 + a2(ω)x2.

Robust strategic decisions, x∗1 and x∗2 , satisfy quantile-based risks constraints defined
by stochastic variables a1(ω) and a2(ω), decisions x =

(
x1, x2

)
, security constraints (19),

and the costs functions. To illustrate this, assume that a1(ω) < 1 and a2 = 1, i.e., only
first region experiences stochastic shocks and production depletion. In the presence of
shocks, ai(ω), the less efficient second region (c1 < c2) can become the key player fulfilling
the constraint (19). Assuming that function F(x) has continuous derivatives, the optimal
positive solutions x∗1 > 0 and x∗2 > 0 can be found when Fx1(0, 0) = c1 − bEa1(ω) < 0 and
Fx2(0, 0) = c2 − b < 0. If c1 − bEa1(ω) > 0, region 1 will not participate in the production.
The security requirement (19) will be managed only by region 2. Both regions will stay
active only if c1− bEa1(ω) < 0, Ea1(ω) defines the expected value of a1(ω). It is interesting
to note that region 2 always participates in production because c2 − b < 0. Its production
level, x∗2 > 0, is defined by the following probabilistic equation:

P[d− a1(ω)x∗1 ≥ x∗2 ] = c2/b (20)

From Equation (20), it follows that the optimal production level, x∗2 , of the second
risk-free region is defined by the quantile of the probability distribution, characterizing
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shocks, a1(ω), in region 1. The strategic ex-ante scenario-independent decisions, x∗, can
manage only a part of risks, defined by the ratio of costs, c2/b. The other part of the
risks, i.e., the production shortage, has to be managed by adaptive ex-post scenario-
dependent decisions. Thus, the risk-free region 2 becomes exposed to systemic risks
characterized by the interdependencies between the demand (d), shocks (ai(ω)), cost
functions (ci and b), robust decisions (x∗1 and x∗2), and the security constraint (19). These
risks can be regulated by parameters c1 and c2 on local (regional) levels, and b and d on
global (national and international) levels. Equations of type (20) are known as chance (or
probabilistic) constraints [48], safety or reliability constraints [17], or Value-at-Risk (VaR)
constraints [18–22]. Similar probabilistic equations are solved to manage systemic risks in
a large-scale multi-regional, multi-sectorial GLOBIOM in Section 3.2.

3.2. Robust Systemic Risks Management in a Two-Stage Strategic–Adaptive GLOBIOM

The supply-and-demand relations in the general GLOBIOM are represented by much
more complex supply–demand chains than in the two-regional model of Section 3.1. GLO-
BIOM is a multi-regional, multi-sectorial recursive-dynamic, partial-equilibrium model
designed to address various land-use-related topics, such as bioenergy production poten-
tials and policy impacts, sustainable agricultural production and climate change adaptation,
implications of deforestation, etc. The market equilibrium is solved by maximizing the
sum of producer and consumer surplus subject to resource, technological, political, and
FEWE security constraints. The demand for high-value, high-quality commodities like
crops, fruits, vegetables, livestock products, fisheries, and oils is growing with increasing
population and changing consumption preferences. Producers in different regions and
management systems (intensive, mixed, and traditional) are trying to diversify and adjust
their production portfolios and management technologies accordingly. The model accounts
for about 18 most important crops, a range of livestock production activities, forestry
commodities, first- and second-generation bioenergy, and water. GLOBIOM endogenously
calculates demand and supply quantities, bilateral trade flows, and prices for commodities
and natural resources at 10-year-step intervals, from 2000 up to 2050.

The model includes about 37 major world regions. Each region is represented by a set
of feasible agricultural, bioenergy, and forestry sectors management practices; production
and processing technologies; supply chains; costs; efficiencies; production and market
uncertainty; and risks. Region-specific goals and constraints allow for policy analysis of
land-use competition and land-use changes driven by increasing demand and changing
consumption preferences for food, feed, water, and biofuels [49–54], at global and regional
levels. The main land uses comprise agricultural land, grassland, natural and managed
forest, fast-rotation forest plantations, and natural land. This gives planners a basis for the
analysis of future land-use options and for identifying possible shortfalls in food, feed, and
biomass production/supplies.

The model incorporates FEWE security constraints. The food security constraint
defines the necessary energy intake (in kilocalories per capita), feeds security constraint
requires that feeds produced for livestock from crops, grass, and byproducts confirm the
livestock dietary requirements in energy (in megacalories per livestock unit). Biofuel
production targets, i.e., biofuels (energy) security constraint, have to be fulfilled from
crops, woody biomass, and agricultural residues, i.e., the joint constraint on the biofuels
production from the first- and the second-generation biofuels. Because of uncertain produc-
tion, the joint food/feed/biofuel security constraints introduce competition for the natural
resources (land and water) and the trade-offs between the allocation of the resources to
resource-based sectors, producers, and consumers. Land-based agriculture and forestry
sectors depend on each other through joint bioenergy targets [33,34], which can induce
systemic risks similar to the model in Section 3.1. The energy biomass can be converted
through various processes characterized, in general, by uncertain transfer and conversion
coefficients, resource utilization, etc. A formal description of GLOBIOM model can be
found in References [33,34].
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The goal function of the two-stage strategic–adaptive GLOBIOM model is to maximize
the total expected producer and consumer surpluses (21) with respect to decision variables
(x, y(ω)) subject to food, energy, water, and environmental security constraints (22):

F(x) = Eω f (x, y(ω), ω) =
∫

f (x, y(ω), ω)P(dω) (21)

It is under the following constraints:

gi(x, y(ω), ω) ≤ 0, i = 1, m. (22)

Uncertainty, ω, can be represented by a finite set of probabilistic scenarios, ωs, s = 1, S,
which allows us to reformulate models (21) and (22) as the problem of maximizing goal
function:

∑S
s=1 ps f (x, ys, ωs) (23)

It is subject to the following constraints:

gi(x, ys, ωs) ≤ 0, i = 1, m, s = 1, S. (24)

Scenarios ω1, ω2, . . . , ωS and respective probabilities p1, . . . , pS, ∑S
s=1 ps = 1 can

be derived from historical observations, from simulation models (e.g., EPIC model [54]),
or/and expert opinions. If information is not available, it is possible to assume that ps,
s = 1, S, are uniformly distributed, ps = 1/S.

Constraints (24) can be fulfilled only for some scenarios. Let us introduce auxiliary
decision variables zis ≥ 0, fulfilling equations:

gi(x, ys, ωs) ≤ zis (25)

Variable zis identify the “lack” of security. It can be viewed as systemic imbalances
(shortages and shortfalls) at regional (and global, ∑ zis) levels, requiring additional actions
regarding introduction of more advanced production chains, production technologies,
investments, and insurance mechanisms. Thus, the adaptive decisions, ys, can be viewed
as already existing measures and actions (adaptive decisions), whereas decisions zs identify
the “demand” for additional technologies and measures that must be implemented to
ensure a required regional and global systemic security level. Introducing the new capacity
zs, we consider the problem of maximizing function:

∑S
s=1 ps f (x, ys, ωs)−∑S

s=1 ps(πs, zs), (26)

with respect to x, ys, and zs = (z1s, . . . , zms), subject to security constraints (25), where
πs = (π1s, . . . , πms) ≥ 0 are vectors of weights or penalties, defining losses associated with
insecurity, costs of threshold exceedance, etc.; (·, ·) denotes a scalar product of vectors. If
optimal solutions x∗, y∗s , and z∗s of models (25) and (26) have some z∗s 6= 0, then Equation
(24) is not satisfied for all scenarios. Security level of the models (25) and (26) can be
regulated by parameter πs. A larger πs imposes stronger security requirements. Similar
to model in Section 3.1., the security requirements can have the form of probabilistic
constraints ([18,22–26,29–31]):

P[gi(x, y(ω), ω)− g∗i ≥ 0] ≥ γi (27)

where g∗i is a targeted level of indicator gi(x, y(ω), ω), for example, food or feed require-
ments, environmental norms, and bioenergy mandates. Parameter γi regulates the security
level specifying the desirable probability of fulfilling the constraint (27). The probabilis-
tic constraints are often substituted (see, e.g., References [19,22,24,25]) by the expected
shortfall functions:

Emax{0, gi(x, y(ω), ω)− g∗i } (28)
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Vector zs = (z1s, . . . , zms) in (26) can be defined explicitly as zis = max{0, gi(x, ys,ωs)−
g∗i } and the problem (25,26) is reformulated as maximizing:

∑S
s=1 ps f (x, ys, ωs)−∑m

i=1 ∑S
s=1 psπismax{0, gi(x, ys, ωs)− g∗i }, (29)

or equivalently as maximizing function (26), as in the following:

∑S
s=1 ps f (x, ys, ωs)−∑S

s=1 ps(πs, zs) (30)

Under constraints:

zis ≥ gi(x, ys, ωs)− g∗i , zis ≥ 0, i = 1, m, s = 1, S. (31)

The global systemic risks in the general multi-regional multi-sectorial GLOBIOM
model are related to critical imbalances and violation of security constraints (24,25) reg-
ulated by vector zs and parameter πs in (26). Random variable πsz∗s measures the risks
of violation security constraint (24), whereas the random sum ∑ πsz∗s characterizes total
(global) systemic risk.

Let us consider a general formulation of the goal function (29):

F(x) = E
[

f (x, y(ω), ω)−∑m
i=1 πi(ω)max{0, gi(x, y(ω))− g∗i }

]
. (32)

Assuming that F(x) has continuous partial derivative Fxj(x∗), we obtain the optimal
condition of systemic risk equilibrium: if x∗j > 0, then

Fxj(x∗) = cj −∑m
i=1 πiaijP[gi(x, y(ω), ω) ≥ g∗i ] = 0. (33)

Thus, global systemic risk indicators P
[
gi(x, y(ω), ω) ≥ g∗i

]
and the corresponding

robust complementary strategic ex-ante and adaptive ex-post solutions (x, y(ω), z(ω))
are derived by solving a system of linear Equation (33) with respect to these indicators
(similar to the two-regional probabilistic Equation (20)). It is not possible to derive these
indicators analytically. Therefore, in the next section, we discuss selected numerical results,
in particular, histograms of global storage withdrawals ∑ zis hedging regional and global
production shortfalls and systemic risks by relaxing tight supply–demand relations in a
complex multi-regional multi-sectorial GLOBIOM model.

4. Selected Numerical Results: Strategic and Adaptive Decisions

In the two-stage strategic–adaptive GLOBIOM, land allocation to different land-use
systems is a strategic ex-ante decision. Other strategic decisions are water and grain
storage capacities. Decisions regarding bilateral trade flows, and water and grain storage
withdrawals are operational-scenario-dependent decisions. They help strategic decisions
to adjust to each shock scenario.

Selected numerical experiments demonstrate the differences between the two alter-
native cases of GLOBIOM-based analysis. In the first case (C1), the GLOBIOM model
generates results corresponding to various crop yield scenarios. This means that approach
C1 calculates scenario-dependent decisions regarding crop and technological portfolios,
which can be quite different for different yield scenarios. A scenario-by-scenario approach
does not incorporate trade-offs between strategic and adaptive decisions, as was discussed
in Section 3. Practical implementation of scenario-dependent decisions can lead to high re-
versibility costs [39] and magnify systemic imbalances and risks, if an other-than-expected
uncertainty scenario occurs.

The second case (C2) involves the two-stage strategic–adaptive GLOBIOM for robust
planning under uncertainty and inherent risks. In C2, land allocation between land-use
systems corresponds to strategic ex-ante scenario-independent decisions. The strategic
decisions are “corrected” by adaptive ex-post scenario-specific decisions (trade, storage
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withdrawals, and prices) after the information about the actual scenario becomes avail-
able. The combination of the interdependent strategic and adaptive decisions ensures the
systems flexibility and preparedness through robust coordination of systems responses
to risks of various kinds. The robust combination of the strategic and adaptive decisions
minimizes the total costs associated with both types of the decisions, in particular, with
adaptive operational actions in response to emerging systemic disturbances, triggered by
each crop yield shock. By varying parameter π in (26), and depending on endogenously
calculated trade costs, it is possible to investigate regional potential for the required level
of regional self-sufficiency, i.e., region-specific reliance on domestic production and storage
vs. international trade.

Robust storages calculated with C2 introduce flexibility in supply–demand relations.
Storages are important to avoid large and often irreversible investments into strategic
decisions, e.g., for expansion of agricultural land or irrigation systems. Figure 1 presents
histograms of storage withdrawals for selected grain and oilseed commodities.

Figure 1. Distribution of global storage withdrawals for selected crops ((a) rice, (b) barley, (c) rape,
and (d) sunflower). Withdrawals characterize global systemic risks of supply–demand imbalances.
“Frequency” on the vertical axis defines the absolute number of withdrawals; the value of withdrawals
is defined on the horizontal axis (in thousand tons). The percentage of total withdrawals at or below
the value on the horizontal axis is defined as “cumulative”.

Robust reserves (Figure 1) are within reasonable ranges, if compared to global grains
production [55]. It is worth mentioning that rape and sunflower seeds are highly demanded
for biofuel production. Strict biofuel targets and other possible constraints, such as (24) or
(25), increase prices of all agricultural commodities used for direct and indirect consump-
tion. Relaxing biofuel obligations by the amount equivalent to the rape and sunflower
reserves in Figure 1 can considerably decrease the prices for all agricultural commodi-
ties. Contrary to the historical disequilibrium stock-to-use ratio, stochastic GLOBIOM can
evaluate robust reserves necessary to reduce the prices to acceptable levels.

Figure 2 presents the percentage of total land allocated to different land-use systems,
calculated with the two-stage strategic–adaptive GLOBIOM (C2): if GLOBIOM is run
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with average yield scenario (average yield scenario, C1) and if GLOBIOM is run with
extreme shock scenario (2000 yield shock scenario, C1). In C2, the robust interdependent
strategic and adaptive decisions minimize the reversibility costs, and, therefore, the C2
settings recommend more sustainable actions. For example, the decisions in C2 approach
focus on natural ecosystems preservation more than in the C1 approach. It is suggested
to slow down the increase of managed forests resulting from natural forest conversion.
The grassland, as an important source of feeds, should also be saved from conversion (see
panels b and c in Figure 2). If needed, all land conversions can occur within suitable natural
land (Figure 2, panel f). Instead of dedicating agricultural land, biofuels can be produced
and biofuel mandates fulfilled through increasing the share of planted forest (Figure 2,
panel e).

Figure 2. Land in different land-use systems, in percentage terms, corresponding to the results of
two-stage strategic–adaptive Global Biosphere Management (GLOBIOM) model (C2); if GLOBIOM
is run with average yield scenario (average yield scenario, C1); if GLOBIOM is run with extreme
shock scenario (2000 yield shock scenario, C1). Simulation year is identified on the horizontal axis
and the percentage is on the vertical axis.

5. Concluding Remarks

The main issue discussed is that growing interdependencies between FEWE systems
increase their vulnerability, especially if the systems are governed by incoherent policies.
Any insignificant-at-the-first-glance-shock, e.g., due to weather variability or inadequate,
say, biofuel, policies may induce systemic risks that implicitly depend on the whole struc-
ture of the systems, in particular, costs, technologies, prices, trade flows, risk exposure,
security constraints and targets, risk measures, and decisions of agents. The paper dis-
cussed the two-stage STO approach for robust strategic–adaptive management of systemic
risks associated with critical imbalances and vital threshold exceedances, affecting FEWE
security in complex interdependent systems. We discussed the notion of robust quantile-
based estimation in statistics and establish the connection between the robust estimation
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and the two-stage non-smooth STO for robust strategic–adaptive decision-making in the
presence of uncertainty and risks. To illustrate the emergence of systemic risks, we for-
mulated a basic two-stage production planning model with the two types of decisions
(strategic and adaptive), to minimize the risks of systemic imbalances in a supply–demand
relation. A two-regional (two-sectorial) version GLOBIOM model illustrates that systemic
risks are induced by complex systemic interdependencies, including the distribution of
risks shaped by decisions and by the security constraints. In the two-stage STO model, the
risk aversion is induced by the coexisting interdependent strategic ex-ante and adaptive ex-
post decisions, in the form of quantile-based probabilistic security equations. The general
multi-regional, multi-sectorial two-stage strategic–adaptive GLOBIOM model enables us
to manage systemic risks by implicitly solving the multidimensional probabilistic security
equation, Equation (33). Strategic decisions comprise land allocation by different land uses,
land-management technologies, and storage capacities. Adaptive (operational) decisions
are trading, demand and price adjustments, and storage withdrawals. Selected numerical
results illustrate that the exposure to production and market risks motivates the reliance
on domestic grain storages to buffer production shortfalls and meet security requirements
at regional and global levels. The two-stage strategic–adaptive GLOBIOM reveals tight
supply–demand relations in the systems and identifies robust measures, to relax them,
especially in the presence of systemic risks, when trade partners are isolated or tightened
by trade bans, and strict constraints and regulations, e.g., on biofuel mandates or green
deal policies. The results demonstrate that robust storages (grain and water reserves) may
prevent from unwanted land expansion and from undertaking costly investments, e.g., in
additional irrigation technologies. The two-stage strategic–adaptive GLOBIOM derives
a robust combination of preventive strategic and adaptive operational decisions, which
allow for qualitatively different policy recommendations, if compared to a traditional
scenario-by-scenario decision-making analysis.
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