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Abstract: Rivers located in high altitude mountainous areas provide a large number of water re-
sources and are also high-risk areas for seasonal snow melt floods. The accurate calculation and
simulation of snow melting processes can provide reliable data for flood disaster prediction. In
order to make the Soil and Water Assessment Tool (SWAT) model more suitable for high altitude
mountainous areas, the effect of the daily accumulated temperature on the precipitation pattern
and snow melting is fully considered. Applying the modified model to three mountain systems
with different latitudes in Xinjiang can not only improve our understanding of the characteristics
of snowmelt flooding but can also be used to test the applicability of the modified model. Through
comparison, it was found that the simulation accuracy of the modified model of the flood peak value
was improved by 56.19%. The correlation coefficient between the Normalized Difference Vegetation
Index (NDVI) and snowmelt increased from 0.27 to 0.68. This study provides a new method for
accurately understanding the process of snowmelt runoff in the mountainous area and provides new
insights into the effects of snowmelt runoff on vegetation growth at different latitudes.

Keywords: SWAT model; snowmelt; floods; accumulated temperature; NDVI

1. Introduction

Seasonal snow accumulation and snow melt are common and important natural
laws in high-altitude mountainous areas around the world [1,2]. Due to global climate
change [3–8], glaciers and snow cover in arid areas were shrinking faster and more sensitive
to climate change [9]. In arid and semi-arid areas, the contribution rate of snowmelt runoff
to rivers reaches more than 75% in spring [10]. Snowmelt is an extremely important
water resource and plays an exceedingly important role in the rational utilization of water
resources. However, while providing abundant water for rivers, it is also very likely to
cause snowmelt floods [11–13]. Xinjiang is a representative arid and semi-arid region
with a large latitude span and complex topographic conditions. The Altai Mountains,
Tianshan Mountains, and Kunlun Mountains are located at different latitudes from north
to south. There is a large amount of snow in the high altitude areas of these three mountain
systems [12,14–20], which provides important water sources for regional ecosystem stability
and food security. By studying the distribution of extreme hydrological events in Xinjiang,
Sun et al., found that the frequency of disasters in the northwest was significantly higher
than that in the southeast, and there was a downward trend to the southeast [21]. However,
snowmelt floods also cause a large number of deaths and property losses every year. With
the development of the Chinese economy, more and more attention has been paid to the
prevention and control of flood disasters, and many resources have been invested. Any
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effective disaster prevention needs to be based on accurate predictions. Therefore, it is
necessary to calculate and evaluate the amount of water released by snow and glaciers in
alpine regions.

Ecosystems in arid and semi-arid regions are relatively fragile, and the sparse vegeta-
tion in the mountains and numerous rocks demonstrate the sensitivity and vulnerability of
the ecological environment in these areas [22]. As one of the representative arid regions,
the sensitive response of ecosystem in Xinjiang to climate change has also attracted the
attention of scholars. As one of the representative arid regions, the sensitive response of
ecosystem in Xinjiang to climate change has also attracted the attention of scholars. Zhang
et al., found that major natural vegetation cover types in Xinjiang were sensitive to the
climate change over the past 18 years. Xinjiang has experienced the warming and wetting
trends (although not co-located) [23]. Due to the scarcity of precipitation, the main water
source for vegetation growth comes from the snow stored in the winter. The snowmelt
replenishes the soil moisture and provides sufficient moisture for the spring vegetation.
Few comparative studies have been conducted on the relationship between vegetation
growth and snowmelt runoff in alpine areas [24]. The characteristics of snowmelt runoff at
different latitudes and in different watersheds and the comparison with vegetation growth
can help us to better understand the effects of snowmelt runoff on vegetation growth in
different areas and can also make up for the lack of research in this area.

At present, in order to simulate snow melting runoff, many snowmelt models have
been developed, ranging from a simple temperature-index model such as degree-day
factor to a complete energy balance model [25,26]. A model of the thermal and mass
coupling transport in snow was proposed, and a sensitivity analysis of the parameters
in the model was carried out by Tuteja et al. [27]. Fernandez et al., established a snow
melt model based on the energy balance theory [28]. The energy balance of the snow
surface and the entire snow layer was used to predict the snow surface temperature and
the freezing depth and to accurately reproduce the development and melting process of
the seasonal snow cover [28,29]. Herrero et al., developed a new mass and energy balance
snowmelt point model and applied it to the Sierra Nevada Mountains, emphasizing the
impact of evapotranspiration on the snowmelt process [30]. As a classical and mature
hydrological model, the Soil and Water Assessment Tool (SWAT) model has been applied
to high-altitude mountainous areas for the calculation of snowmelt runoff. Debele et al.,
compared the performance of the simple snow melting calculation methods based on the
physical energy and temperature index of three locations on two different continents using
the SWAT model [25]. Fontaine modified the SWAT model by improving the hydrological
and atmospheric processes and applied it to the simulation of snow melting runoff in
mountain areas with high elevations [31]. Kazi et al., have evaluated the stream flow
modeling in a highly managed mountainous glacier watershed using temperature index
approach of SWAT without elevation bands, the results of implementing elevation bands
were better than without elevation bands [32]. The results showed slight improvement in
runoff simulation and significant improvement in simulated mass balance when consider-
ing elevation in the research of glacier mass balance simulation using SWAT distributed
snow algorithm [33]. Soni M et al., compared and accessed model simulated snowpack and
snowmelt at different elevation bands with snow survey data available for the Canyonville
reservoir watershed, SWAT indicated more precipitation falling as rain, increased and ear-
lier snowmelt, and a reduced snowpack leading to a change in the pattern of stream flow,
particularly during winter and early spring [34]. Three snowpack estimation approaches,
the lumped-parameter temperature index approach from the Generalized Watershed Load-
ing Function (GWLF) watershed model, a spatially distributed temperature index (SDTI)
model, and the spatially distributed NOAA Snow Data Assimilation System (SNODAS)
product were compared and tested by Elliot M et al. [35]. All three snowpack estimation ap-
proaches, performed well in estimating basin-wide snow water equivalent for most of the
basins studied. In order to assess the climate-change effects on stream flow, the simulated
stream flow from the calibrated Ground-water/Surface-water FLOW (GSFLOW) model
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and other basin characteristics were used as input to the one-dimensional Stream-Network
Temperature (SNTEMP) model to simulate daily stream temperature in selected tributaries
in the watershed [36].

However, few studies have been conducted on the differences between the calculated
snowmelt runoff in different latitude alpine regions and its relationship to the basin ecology
Olanrewaju et al., compared the evapotranspiration (ET) from the MODIS remotely sensed
ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated
spatial scales at different spatial scales. Based on the results of the study, the scale of 4 km2

for catchment-scale evapotranspiration is suggested in complex terrain [37]. During the
input of meteorological data in the SWAT model, the precipitation type was only input
as one type, and there was no distinction between rainfall and snowfall, which affected
the precision of snowmelt calculation and model simulation. Therefore, by increasing the
temperature judgment conditions, the form discrimination of rainfall and snowfall was
carried out first when the precipitation data was input. In this study, the accumulated
temperature condition and snow melting accumulated temperature condition were deter-
mined by adding a precipitation form, so the simulation of the snow melting process in
alpine mountainous areas provided by the model is more accurate. In order to compare
the differences in the snowmelt runoff in high-altitude mountainous areas at different
latitudes, the SWAT model of the modified snowmelt module was used to simulate and
compare the snowmelt runoff of the representative medium and small rivers in three major
mountain ranges in Xinjiang. The influence of precipitation condition of the rain and snow
separation on the runoff and hydrological processes in high altitude mountainous areas
was fully considered. Combined with the relationship between the amount of snowmelt
and the runoff and Normalized Difference Vegetation Index (NDVI), the differences in
vegetation growth in the watersheds were compared, and the impact of snowmelt runoff
on the regional ecology was quantitatively analyzed.

2. Materials and Methods
2.1. Description of the Study Area

Xinjiang is located in the arid and semi-arid region of Western China. It contains three
mountain ranges and two basins. The Altai Mountains are located in the northern part of
Xinjiang, the Tianshan Mountains are located in the middle, and the Kunlun Mountains
are located in the south. The Junggar Basin in Northern Xinjiang and the Tarim Basin in
Southern Xinjiang are the two major basins [15,20,38]. The terrain in each mountain system
is complex, and the high altitude areas contain large areas of snow cover. A representative
river basin was selected as the research object of each mountain system. The Daqing River
Basin (DQR) is located in the middle of the Altai Mountains. Its elevation is between
1271 m and 3622 m, and the watershed area is 1626.46 km2. The Kaiken River Basin (KKR)
is located in the eastern part of the northern slope of the Tianshan Mountains. Its altitude
ranges from 1498 m to 3964 m, and its drainage area is 382.18 km2. The Heizi River Basin
(HZR) is located on the southern slope of the Tianshan Mountains, with elevations of
1171 m and 4784 m and a basin area of 4619.76 km2. The Pishan River Basin (PSR) is
located on the northern slope of the Kunlun Mountains, with an area of 1953.46 km2 and
an elevation range of 1988–6291 m (Figure 1). These four rivers are medium and small
rivers in high elevation mountainous areas, and thus, they are representative watersheds
for snowmelt floods. In the non-snowmelt season, snowfall begins to accumulate in high
altitude mountain areas. In spring, the temperature increases and the snow melts, which
coincides with the high-frequency period of snowmelt floods.
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Figure 1. Locations of four rivers in the Xinjiang area.

2.2. Materials

The data collection and preparation were the first steps in the model-driven process.
In addition, the types of model data were mainly divided into basic data and observation
data. The basic data mainly include a digital elevation model (DEM), land use and land
cover data (LUCC), and soil type data, while the observation data mainly came from
the meteorological stations and hydrological stations in the basin. The 30 m DEM data
were obtained from the Shuttle Radar Topography Mission’s (SRTM) official website
(http://srtm.csi.cgiar.org/) and were applied to building the model. The spatial resolution
of the LUCC data and the soil type data is both 30 m. The data were obtained from
websites (https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-
sensing-and-landsat), the visual interpretation of imagery, and the China Soil Category
Data Network (https://geodata.pku.edu.cn/). The NDVI reflects the growth of vegetation.
The NDVI data were calculated using 8-day MOD09Q1 data (https://modis.gsfc.nasa.gov/
data/dataprod/mod09.php).

The basic information for the four rivers is shown (Table 1). According to the observa-
tion data collected from 2006 to 2011, the average daily temperature and the average daily
discharge of the DQR were 2.59 ◦C and 15.74 m3/s, respectively. The daily temperature of
the KKR was 10.95 ◦C according to the meteorological station data collected from 2006 to
2011. By calculating the hydrological observation data, the average daily discharge of the
basin was 4.54 m3/s. The average daily temperature of the PSR on the southern slope of
the Tianshan Mountains was 10.47 ◦C from 2008 to 2011, and the average river discharge
was 13.67 m3/s. The average daily temperature of the PSR in the Kunlun Mountains
was 13.65 ◦C from 2006 to 2011. The average daily runoff observation data show that the
average daily temperature was 16.18 m3/s.

http://srtm.csi.cgiar.org/
https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-sensing-and-landsat
https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-sensing-and-landsat
https://geodata.pku.edu.cn/
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
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Table 1. Basic information about four basins.

Name Area
(km2)

Watershed
Center Lati-

tude(Degree)

Average
Altitude (m)

Maximum
Temperature

(◦C)

Minimum
Temperature

(◦C)

Average Annual
Precipitation

(mm)

Average Daily
Discharge(m3/s)

Daqing River
Basin 1626.46 47.0 N 2447.0 9.75 −4.56 199.32 15.74

Kaiken River
Basin 382.18 43.5 N 2731.0 17.65 4.25 221.89 4.54

Heizi River
Basin 4619.76 42.0 N 2977.5 17.29 3.65 147.05 13.67

Pishan River
Basin 1953.46 36.5 N 4139.5 20.24 7.06 58.52 16.18

2.3. Methodology

The SWAT model is a conceptual, physically based, semi-distributed model developed
by the United States Department of Agriculture, Agricultural Research Service (USDA-
ARS) [39]. The original purpose of model development was to predict the long-term effects
of land management on water, sediment, and chemicals under the complex and variable
soil types, land use patterns and management practices in large watersheds [40]. There
are six modules integrated into the model, including the snow melting, surface runoff,
return flow, evapotranspiration, infiltration, underground runoff. The Digital Elevation
Model (DEM) is used as the basic data to divide the river channel. The land use and land
cover change data, soil type data, and meteorological data are the basic data-driven by
the model. In the calculation of the model, the Hydrologic Response Units (HRUs) are
divided according to the unique soil and land use types and slopes [25,31]. Each HRU is
calculated separately and finally collected into the sub-basin. In the snow melting module
of the SWAT model, the algorithm used is the degree-day factor algorithm. The influence
of temperature was fully applied to hydrological processes and melting processes [41]. The
SWAT model are also commonly used for pollutant migration assessment, water quality
assessment, and water resource management [42].

2.3.1. The Model Modification Method

In this study, the modification of the original SWAT model was mainly focused on the
determination of the precipitation patterns and snow melting conditions. In order to make
the SWAT model more suitable for high altitude mountainous areas and to highlight the
importance of the accumulated temperature to the precipitation patterns and snowmelt
conditions, a new accumulated temperature threshold was added to the determination of
the precipitation pattern (SFTMP_A), which divides the precipitation pattern into rainfall
and snowfall, as shown in Figure 2. When the maximum temperature and the daily
accumulated temperature (T_a) reach the set threshold at the same time, the precipitation
pattern was determined to be rainfall, while all other cases were determined to be snowfall.
In the snow melt calculation, the comparison of the snow melt using the maximum daily
temperature (T_m) alone could not highlight the characteristics of a snow melting flood, and
there was a certain deviation in the calculation of the amount of snow melt. The effect of the
accumulated temperature on snow melting can be fully considered by adding a new daily
accumulated temperature snow melting threshold based on the maximum temperature.



Sustainability 2021, 13, 1189 6 of 26
Sustainability 2021, 13, x FOR PEER REVIEW 6 of 26 
 

 

 

Figure 2. Research technology roadmap. 

The temperature during the day generally increases in the morning, reaches the max-

imum for the day at noon, and decreases gradually until the lowest temperature is 

reached. Therefore, the temperature changes throughout the day can be approximately 

regarded as a sinusoidal curve. The temperature (T) at any time of day can be expressed 

by Equation (1): 

𝑇 = (𝑇𝑚 − 𝑇𝑚𝑛) sin 𝑡 + 𝑇𝑚𝑛       0 ≤ 𝑡 ≤ 𝜋 (1) 

where t represents the corresponding radian value at any time during the 24-h day, and 

Tmn is the daily minimum temperature. When calculating the daily accumulated tempera-

ture, the integral method was used to calculate the accumulated temperature when the 

temperature was greater than 0 °C. There was no snowmelt when the temperature was 

less than 0 °C, so it was meaningless for the temperature integral of less than 0. When the 

minimum temperature was greater than 0 °C in a day, we used Equation (2) to calculate 

the accumulated temperature: 

𝑇 = ∫ (𝑇𝑚𝑥 − 𝑇𝑚𝑛) 𝑠𝑖𝑛 𝑡 + 𝑇𝑚𝑛  𝑑𝑡 0 ≤ 𝑡 ≤ 𝜋
𝜋

0

  (2) 

Figure 2. Research technology roadmap.

The temperature during the day generally increases in the morning, reaches the
maximum for the day at noon, and decreases gradually until the lowest temperature is
reached. Therefore, the temperature changes throughout the day can be approximately
regarded as a sinusoidal curve. The temperature (T) at any time of day can be expressed by
Equation (1):

T = (Tm − Tmn) sin t + Tmn 0 ≤ t ≤ π (1)

where t represents the corresponding radian value at any time during the 24-h day, and
Tmn is the daily minimum temperature. When calculating the daily accumulated temper-
ature, the integral method was used to calculate the accumulated temperature when the
temperature was greater than 0 ◦C. There was no snowmelt when the temperature was
less than 0 ◦C, so it was meaningless for the temperature integral of less than 0. When the
minimum temperature was greater than 0 ◦C in a day, we used Equation (2) to calculate
the accumulated temperature:

T =
∫ π

0
(Tmx − Tmn)sin t + Tmn dt 0 ≤ t ≤ π (2)
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When the minimum temperature was less than 0 ◦C for a day, but the maximum
temperature was greater than 0 ◦C, first, we determined the radian corresponding to the
time when the temperature was equal to 0 ◦C, and we only calculated the accumulated
temperature for the part of the day with a temperature of greater than 0 ◦C. The equation
used for this calculation is

T =
∫ π−sin−1( −Tmn

Tmx−Tmn )

sin−1( −Tmn
Tmx−Tmn )

Tmx sin tdt, sin−1(
−Tmn

Tmx − Tmn
) ≤ t ≤ π − sin−1(

−Tmn

Tmx − Tmn
) 0 ≤ t ≤ π (3)

2.3.2. Model Calibration, Validation, and Sensitivity Analysis

The most important and difficult problem in the study of runoff in high altitude
mountainous areas was verification, because the runoff observation in mountainous areas
was not perfect, and the available runoff observation data was difficult to obtain. In this
study, 2008–2011 was selected as the research periods, 2008 and 2009 were the warm-up
periods of the model, 2010 as the calibration period, and 2011 as the validation period.
The daily runoff simulation and comparative study were carried out on the four rivers at
the same periods. Some parameters which have great influence on snow melt and runoff
simulation are selected as key calibration targets shown in the Table 2.

Table 2. Important parameters in the model calibration process.

File Extension Parameter Description Range of Values

.bsn(New) SFTMP_A Snowfall accumulated temperature 0–40

.bsn(New) SMTMP_A Snowmelt accumulated temperature 0–40
.bsn SFTMP Snowfall temperature −20 to 20
.bsn SMTMP Snow-melt base temperature −20 to 20
.bsn SMFMX Maximum melt rate for snow during the year 0–20
.bsn SMFMN Minimum melt rate for snow during the year 0–20
.bsn TIMP Snowpack temperature lag factor 0–1
.bsn SNOCOVMX Minimum snow water content corresponding to 100% snow cover 0–500
.bsn SFTMP Snowfall temperature −40
.bsn SURLAG Surface runoff lag time 0.05–24
.gw ALPHA_BF Base flow alpha factor (days) 0–1
.gw GW_DELAY Groundwater delay (days) 0–500

.gw GWQMN Threshold water depth in the shallow aquifer required for return
flow to occur (mm) 0–5000

.gw SHALLST Initial water depth in the shallow aquifer (mm) 0–50,000

.gw GW_REVAP Groundwater “revamp” coefficient 0.02–0.2
.mgt CN2 SCS runoff curve number 35–98
.ohru OV_N Manning’s “n” value for overland flow 0.01–30
.ohru ESCO Soil evaporation compensation factor 0–1
.ohru EPCO Plant uptake compensation factor 0–1
.rte CH_N2 Manning’s “n” value for the main channel −0.01 to 0.3
.rte CH_K2 Effective hydraulic conductivity in main channel alluvium −0.01 to 500
.sol SOL_K Saturated hydraulic conductivity 0–2000
.sol SOL_AWC Available water capacity of the soil layer 0–1
.sub PLAPS Precipitation lapse rate −20 to 20
.sub TLAPS Temperature lapse rate −10 to 10
.sub CH_N1 Manning’s “n” value for the tributary channels 0.01–30
.sub CH_K1 Effective hydraulic conductivity in tributary channel alluvium 0–300
.sub SNO_SUB Initial snow water content 0–150

When the accuracy of the simulation results of the model was evaluated, the measured
data were compared with the simulated data. The corresponding evaluation parameters
and indicators were chosen and used for the evaluation. The Nash–Sutcliffe efficiency (NSE)
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and the percent bias (PBIAS) were used to test the accuracy of the simulation produced by
the model. The equation used to calculate the NSE is

NSE = 1 − ∑n
i=1 (Qsim,i − Qobs,i)

2

∑n
i=1 (Qobs,i − Qobs)

2 . (4)

The maximum value of NSE was 1. The closer the NSE to 1, the closer the result of the
model simulation to the measured value, and the higher the accuracy. The equation used
to calculate the PBIAS is

PBIAS = 100 × ∑n
i=1(Qsim,i − Qobs,i)

∑n
i=1 Qobs,i

. (5)

The PBIAS was used to measure whether the simulation results of the model were
overestimated or underestimated compared with the measured data. When the PBIAS was
greater than 0, the simulation results were overestimated, and when the PBIAS was less
than 0, the results were underestimated. The closer the PBIAS to 0, the higher the accuracy
of the simulation results, and the closer the results to the measured values. Qsim,i is the
model simulated value on the ith day; and Qobs,i is the observation value on the ith day.
Qobs was the average value of all of the observation data, i was any day in the simulation
period, and n was the total number of simulated days. In general, the two indexes were
used together to evaluate the accuracy of the model simulation results.

In the calibration of the parameters of the model, the Soil and Water Assessment Tool
Calibration and the Uncertainty Procedure (SWAT-CUP) [43–47] was used to simulate the
model hundreds or thousands of times in order to determine the optimal combination
of parameters [22]. The NSE and PBIAS indicators were used to evaluate the simulation
results, and a combination of satisfactory parameters was obtained. The global sensitivity
analysis method in the sequential uncertainty fitting (SUFI-2) [48–50] was used for the
parameter sensitivity analysis. The T-states and p-values were two important indicators
of the sensitivity analysis. The greater the absolute value of the T-states, and the closer
the p-values to 0, the more sensitive the parameters. Through this method, the degree of
influence of each parameter on the simulation results was determined, and the insensi-
tive parameters were deleted, the calculation efficiency and accuracy of the model were
improved, and the uncertainty of the parameters was minimized at the same time.

3. Results
3.1. The Performsnce of the Daily Model Simulation

In order to show the effect of the model modifications, the evaluation indicators of
the simulation results before and after the model modification were calculated for basins
with different elevations, as shown in Table 3. Two indicators, the NS and PBIAS, were
used to compare the simulation results of the four rivers in the calibration, validation, and
overall periods. In the DQR, the NS coefficient in the validation period was the smallest
(0.65). However, in the simulation results of the modified model, the value of the NS
coefficient increased to 0.76, which is a significant improvement. In the other two periods,
the NS coefficient was improved by the model modification. In three periods, the model
showed an underestimation before and after the modification. The maximum value of
the PBIAS was 37.36 in the validation period, but the accuracy was improved to 15.07 by
the modified model. In the KKR, the NS value was between 0.62 and 0.67 for the original
model simulation results, but through the modification, the NS value was increased to a
maximum of 0.82. During the overall and calibration periods, the model simulation results
showed an overestimation phenomenon, while it showed underestimation in the validation
period. The maximum PBIAS of the original model was 13.62 in the validation period.
Through the model modification, it increased to 7.94, and a PBIAS minimum of −4.05 was
achieved for the simulated results of the modified model. The minimum NS value of the
HZR also occurred in the validation period, which was 0.68 of the simulation result of the
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original model. Through the modification of the snow melting module, the NS value was
increased by 0.04. The PBIAS value reveals that the simulation result of the original model
was underestimated in three periods, and the simulation result of the modified model was
overestimated, but the PBIAS value of the modified model was significantly different than
the original model. Although the original model produced good simulation results in the
PSR in the Kunlun Mountains, the minimum NS coefficient was 0.74, and the minimum
PBIAS was 12.4, which also indicate underestimation. However, the modified simulation
results of the model have a significantly improved basis compared to the original, i.e., the
maximum value of the NS reached 0.88, and the minimum value of the PBIAS was 3.56.
Therefore, the modification significantly improved the accuracy of the simulation results.

Table 3. Changes in the evaluation indexes of the simulation results before and after the modification of the different basins.

NS PBIAS

Basins Overall
(2010–2011) Calibration (2010) Validation (2011) Overall

(2010–2011) Calibration (2010) Validation (2011)

Original Modified Original Modified Original Modified Original Modified Original Modified Original Modified

DQR 0.7 0.82 0.73 0.83 0.65 0.76 25.59 16.67 13.6 17.48 37.36 15.07
KKR 0.64 0.78 0.67 0.82 0.62 0.75 −12.06 −8.79 −11.22 −4.05 13.62 7.94
HZR 0.71 0.77 0.76 0.85 0.68 0.72 18.55 −9.95 20.95 −8.13 15.3 −12.43
PSR 0.74 0.86 0.75 0.88 0.75 0.82 13.68 3.56 12.4 2.06 15.23 5.38

The results of the model simulation on a daily scale were selected to compare the
simulation effects of the mountainous rivers at different latitudes before and after model
modification. First of all, the simulation results of the calibration and validation periods
of the DQR are shown in Figure 3(a1,a2). In the calibration period (2010), the runoff
gradually increased beginning at the end of April, and there were two flood events in
early May. However, the first flood event was neglected in the simulation of the original
model. The modified model was obviously superior to the original model in the process
simulation of the flood events. Although a certain amount of overestimation occurred in
the second simulation, overall the results were greatly improved. In June, the original
model produced underestimation in the overall runoff simulation, and some of the flood
events were neglected. In July, the runoff decreased rapidly, and the simulation results
of the original model overestimated and neglected the small flood events. However, the
modified model not only simulated the process of runoff reduction well but also showed
the smaller flood events in these two months. In terms of the validation rate (2011), there
was a large advance in the spring flood time. At the end of March, the runoff began to
increase significantly, and snowmelt floods occurred. However, the performance of the
original model for this process was not satisfactory. Starting in May, the frequency of the
flood events increased significantly. The original model underestimated the results, while
the modified model was well simulated.

Unlike the DQR, the snowmelt floods of the KKR mainly began in April. In addition,
during the whole snowmelt season, the peak value of the flood was less than 50 m3/s.
The results of the calibration comparison are shown in Figure 3(b1). In the simulation
of a snowmelt flood in spring, the original model directly skipped the flood process in
this stage, but after the modification, the size of the simulation was more reasonable.
When entering the summer, the overall results of the original model were significantly
underestimated. The simulation of the multi-flood peak produced by the modified model
was more accurate, which made up for the defects of the original model. During the
validation period Figure 3(b2), a number of consecutive snowmelt flood events occurred
starting in April. Only the individual flood time was performed, and most flood events did
not respond well and were usually underestimated. Both the performance of the snowmelt
flood in spring and the performance of the summer flood produced by the modified model
were closer to the measured value and had excellent performance.
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In the simulation results of the HZR, the snowmelt incident occurred later, and the
snowmelt flood at the end of May was identified. During the summer, several smaller flood
events occurred, which were not simulated well, while the modified model produced better
results, i.e., the simulation results were closer to the measured values. In the simulation
of the validation period’s Figure 3(c2) spring snowmelt flood events, the modified model
had obvious advantages, almost every flood process was simulated well, while the original
model produced significant underestimations, and the performance of the flood process
was inaccurate. In the summer, the original model underestimated the results overall,
while the modified model overestimated the flood process accurately.

The snowmelt event in the PSR also started at the end of April. In the calibration
period Figure 3(d1), for the simulation of the two large snowmelt floods in May, the original
model simply showed a stable increase in the runoff. After modification, the flood process
was well represented. Similar to other river basins, in the summer flood event simulation
process, the results of the original model were underestimated, and the flood peak was
not simulated well, and the modified model significantly improved the results. During
the validation period Figure 3(d2), the modified model performed well and improved on
the original model’s shortcomings. The original model did not accurately represent the
time and size of the flood process. In addition, the flood events in September could not be
performed, and the modified model simulation’s accuracy was improved.

3.2. Characteristics of Flood Process

In this section, the characteristic factors of the flood processes in the different basins
were analyzed, such as the peak discharge, the peak deviation, and the contribution rate to
the river channel. Statistical analysis of the flood peak deviation of each flood event was
also very important when verifying the effect of the model modification and comparing
and analyzing the snow melting flood characteristics of the different altitudes. The method
adopted was to treat all of the flood events in the calibration and validation periods as the
research object. The peak deviation of the flood was represented by the difference between
the measured and the simulated values. The deviation of each flood peak was counted. As
can be seen in Figure 4a, there were a total of 16 flood events in the DQR during 2010 and
2011, and the flood peak deviations of the simulation results before and after the model
modification were analyzed. For the simulation results of the original model, the maximum
flood peak deviation was 92.20 m3/s, and the average flood peak deviation was 32.76 m3/s.
For the simulation results of the modified model, the maximum flood peak deviation was
39.5 m3/s, and the average flood peak deviation was 8.55 m3/s. Through modification
of the model, the deviation of each flood peak was improved, and the accuracy of the
flood peak deviation in the DQR was increased by 72.98%. In Figure 4b, based on the
flood peak deviation statistics of 25 flood events in the KKR, the maximum peak deviation
occurred in the simulation results of the original model of the validation period in June,
with a maximum of 31.14 m3/s, and the average peak value deviation was 6.93 m3/s. By
comparing the simulation results of the models, it was found that the maximum peak
deviation of the modified model was 31.17 m3/s, the minimum value was only 0.07 m3/s,
and the average deviation was 4.78 m3/s. Compared with the simulation results of the
original model, the accuracy was improved by 31%. There were 17 flood events in the
HZR during the calibration and validation periods (Figure 4c). The overall flood peak
deviation was larger, and the maximum value was up to 399.46 m3/s. However, after the
modification of the model, the flood peak deviation of this flood event was reduced to
276.16 m3/s, which was an improvement of 30.87%. The average deviation of the original
model was 66.14 m3/s. After the modification, the average deviation of all of the flood
peaks was increased to 31.70 m3/s, and the accuracy was increased by 52.07%, which made
the simulation of the flood events closer to the measured values.
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Figure 4. Comparison of flood peak deviations in different basins (a), DQR in Altai Mountain; (b), KKR in Tianshan
Mountain; (c), HZR in Tianshan Mountain; (d), PSR in Kunlun Mountain).

Among the four rivers, the PSR had the most flood events (Figure 4d), up to 27, and
the maximum deviation of the peak flood (80.64 m3/s) occurred in summer. In the modified
model simulation results, the deviation decreased to 28.95 m3/s, which was a significant
improvement. In the original model, the average deviation of the flood peak value was
18.86 m3/s. Through the modification of the model, the average deviation was decreased
to 8.39 m3/s (by 55.49%). By comparing the flood peak deviation of the four rivers, it
was obvious that the overall flood peak deviation of the modified model was significantly
improved, especially during the period of high snowmelt flooding in spring.

3.3. The Relationship between Snowmelt and NDVI in Spring

In high-altitude mountainous areas, the snow melting and ice melting in the arid and
semi-arid areas were of great significance to the local ecology and production, including the
green vegetation in spring [51]. Snow melting and ice melting directly affect the vegetation
growth. NDVI extracted and calculated from MODIS can reflect the growth of vegetation
in spring [52,53]. Therefore, the correlation between vegetation NDVI and the amount of
melting water can indirectly verify the effect of the model modification and the accuracy
of the calculation from an ecological perspective, which can also prove the practicability
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of the model in different basins before and after modification. In arid and semi-arid high-
altitude mountainous areas, vegetation types were mainly alpine meadow with sparse
canopies [54–57]. Compared with Leaf Area Index (LAI), NDVI is more accurate and more
suitable for reflecting vegetation growth and verifying the accuracy of model calculation in
this area. In this study, the distribution of the NDVI values in spring in the four watersheds
and the relationship between the NDVI values and the snowmelt calculated using the
models were analyzed.

In high altitude mountainous areas, there is less precipitation in spring, and snowmelt
provides a large amount of the water required for vegetation growth. Therefore, snow melt
can be used as an important influencing factor in the evaluation and analysis of vegetation
growth. In order to better determine the relationship between the amount of snowmelt
and the NDVI, the average NDVI value per 8 days in the spring watershed was obtained
and compared with the corresponding amount of snowmelt (Figure 5). In the DQR, which
has the highest latitude, the amount of snowmelt calculated by the original model was
compared with the NDVI. The correlation between the two was not significant, and the
correlation coefficient was only 0.16. After the modification of the original model using the
degree day factor method, the correlation between the snowmelt calculated by the new
model and the NDVI was increased to 0.75, revealing a high correlation. For the original
model simulation results of the KKR, the correlation between the amount of snowmelt
and the NDVI was 0.25, which reveals a low correlation. Compared with the NDVI, the
amount of snowmelt calculated using the modified model had a correlation coefficient
of 0.63. In the HZR, on the southern slope of the Tianshan Mountains, the correlation
coefficient calculated by the original model was 0.31, while that of the modified model was
0.71, indicating a better correlation. In the PSR, in the Kunlun Mountains, the correlation
between the amount of snowmelt of the original model and NDVI was only 0.37, while
that of the modified model reached 0.64. Therefore, for the mountain systems at these three
different altitudes, the correlation between the amount of snowmelt and the NDVI was
significantly improved by the model modification, which demonstrates the necessity and
accuracy of the model modification.
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calculated by the modified model and NDVI of DQR, KKR, HZR, and PSR in Spring).

The distributions of the NDVIs of each basin from March to May in spring were
compared and analyzed in Figure 6. In the DQR, the vegetation regeneration in March
was mainly concentrated in a small area in the middle of the basin. In April, the vege-
tation gradually began to regenerate in the middle and lower reaches of the basin. By
May, both sides of the river and most of the middle and lower reaches of the river were
basically covered by regenerated vegetation. In March, the vegetation in the KKR was
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mainly distributed in the catchment area upstream of the basin. In April, the vegetation
regeneration accelerated and the vegetation area increased in some of the downstream
areas. The vegetation in the lower reaches of the basin increased in May, and the vegetation
area expanded. The same situation occurred in the upstream watershed. In the HZR, the
vegetation distribution in March and April was mainly in the upper reaches of the basin,
but in May, the vegetation returned, the vegetation area in the upper reaches of the basin
expanded, the vegetation distribution also appeared in the middle reaches of the river
convergence, and the new vegetation appeared in the downstream outlet area. Compared
with the other three basins, the vegetation regeneration time in the PSR obviously lagged
behind. The Pishan River, located in Kunlun Mountains, with least precipitation among
the four basins and was a typical representative of the rivers in the arid region. There
was less rainfall in spring and the water needed for vegetation greening was mainly from
melting snow in high altitude mountain areas [22,58,59]. The altitude was so high and
meteorological conditions were so complicated that the temperature began to rise, the
snow began to melt, and the river runoff increased until in April [60,61]. The vegetation
regeneration was started when water source was plentiful. Due to the altitude and complex
meteorological conditions, vegetation regeneration in Pishan River Basin was late and
obviously lagged behind [62]. The time of snow melt in each basin can be accurately located
by studying the time of vegetation regeneration in each basin. As the main water supply,
the amount of snow melt affects the vegetation regeneration and growth, and there is a
significant relationship between them. Therefore, the accuracy and rationality of the model
modification can be verified by establishing the correlation between NDVI and snow melt.
The NDVI data for May showed that the vegetation area had significantly expanded, the
vegetation regeneration had also accelerated, and there was a significant distribution of
vegetation in the upstream and middle reaches of the basin.
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Figure 6. Difference of vegetation growth in different latitude basins reflected by NDVI ((a1–d1), the
NDVI of DQR, KKR, HZR, and PSR in March; (a2–d2), the NDVI of DQR, KKR, HZR, and PSR in
April; (a3–d3), the NDVI of DQR, KKR, HZR, and PSR in May).

4. Discussion
4.1. The Modification of SWAT Model

In this study, small- and medium-sized rivers in high-altitude mountainous areas with
different dimensions were selected as research objects, which were used to verify the modi-
fication effect of the model in different dimensions and different watersheds. In addition,
the flood processes of these rivers, which were often neglected in areas lacking data, were
investigated [11,63,64]. It snows heavily starting in November each year [14,15,65–68], and
snow is stored every winter. The climate of the Kunlun Mountains is drier, but in high
altitude mountainous areas affected by airflow and topography, there is snowfall at high
altitude in winter [20,58]. As an important water source, these snow deposits provide
irreplaceable water sources for vegetation regeneration and agricultural production. When
the spring temperature rises rapidly, the snow in these high areas begins to melt quickly,
and the snowmelt flows into the rivers [29,69–71]. Due to the large altitude difference, snow
melting floods develop easily [72–74]. Therefore, the accuracy of the snowfall determines
the accuracy of the model calculation, which means that determining the precipitation
patterns was crucial.

In the original model, the daily average temperature was used as the basis for the
morphological discrimination of the precipitation data input [75,76]. Considering that the
area the original SWAT model was applied to was a plain area, this method of determination
is desirable [31,77–79]. In the high-altitude mountainous areas of Xinjiang, the temperature
difference during one day can be very large [59]. Due to the sparse surface vegetation
and the distribution of the rocky gravel, the temperature at noon rapidly increases and
reaches the highest temperature [80,81]. At night, the temperature quickly drops below
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zero. For a region with such a large temperature difference, the daily average temperature
was used as the precipitation condition for the temperature determination condition, which
cannot meet the accuracy requirement [81,82]. Therefore, in this study, the temperature
determination condition of the accumulated temperature was added to determine the
precipitation pattern.

When calculating the snowmelt, the conditions of the snow melting were determined.
The snow melting temperature threshold was set to determine whether there was snow
melting. Because of the high temperature at noon and the low temperature at night in high
altitude mountain areas, it was difficult to accurately calculate the snow melting conditions
using only the maximum daily temperature as the criterion for snow melting [83–85]. By
setting a new accumulated temperature threshold, the original model calculation was
satisfied, and the special climatic conditions and topographic conditions of the alpine
region were fully considered to make up for the shortcomings of the previous high-altitude
mountain model.

4.2. The Performance of the Model

The performance of the modified model was mainly based on the deviation in the
flood peak value. Among the three major mountain systems in Xinjiang, the high-altitude
mountainous areas were prone to snowmelt floods in spring. Flood disasters in areas
that lack data were often neglected [15,65]. By determining the precipitation pattern of
the model and the effect of the increasing accumulated temperature on the snow melting
process, the performance of the modified model during snowmelt and flood peak was
significantly improved. Statistical analysis was performed using the peak deviation of all
of the flood events for each river during the study period. For all of the spring flood events
in the four basins, the simulation results of the modified model indicate that the deviation
in the flood peak value was significantly improved. This was mainly due to the fact that
the effect of the accumulated temperature on snow melting was taken into consideration,
the snow melting conditions were no longer determined using only the daily average tem-
perature, and the daily maximum temperature and the snow pack temperature were taken
into account [10,28,30]. By increasing the threshold of the accumulated temperature, the
underestimation of snowmelt floods in high altitude mountainous areas can be eliminated
to some extent by the original model. In high-altitude mountainous areas, the ground
temperature has a direct impact on the melting of snow. This energy accumulation process
can reflect the influence of the temperature on the snowmelt [27,86]. This method can
determine the occurrence of snow melting well when the daily maximum temperature does
not reach the threshold of the snow melting temperature [87]. By adding the judgment
conditions of the accumulated temperature, the time of the snowmelt can be accurately
obtained, which provides a possibility for simulating the flood process with a high time
resolution. In the simulations of the individual summer flood events in the KKR and PSR in
the validation period, the performance did not reach the expected value. This was mainly
due to the following reasons. First, there may be delays in peak floods, but the deviation
statistics were only based on the simulated values of the day the data were measured [25].
Due to the cumulative effect of the accumulated temperature, snow melting may also occur
at night, which increases the amount of snowmelt the next day and delays the time of
the peak flood [88]. Second, it may be the choice of parameter combinations, because the
parameter combination selected periodically cannot fully meet the requirements of the
validation period calibration. However, in general, the model modification was excellent
and achieved the expected goal [89].

The four rivers selected for this study represent the flood characteristics of high
altitude mountainous areas in different latitudes in Xinjiang. These areas were mainly
investigated using the start time of the snowmelt flood, the frequency of occurrence, and
the size of the flood. In the DQR in the Altai Mountains, snowmelt floods usually begin at
the end of April and the beginning of May. This is mainly due to the significant increase in
temperature and the melting of snow in the Altai area at the end of April [14,90–92]. In the
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KKR on the northern slope of the Tianshan Mountains, snow melting mainly begins at the
end of March, and snow melting floods mainly begin at the end of March and the beginning
of April [18,93–96]. This was because the latitude of the Kaken River is lower than that
of the DQR, so its temperature begins to rise earlier in the spring [67,97]. In the HZR on
the southern slope of the Tianshan Mountains, the snow begins to melt in May, while
flooding begins in May and June. This was mainly due to the abundant water vapor and
precipitation in the high altitude mountainous areas on the southern slope of the Tianshan
Mountains [20,98]. Snowfall still occurs in March and April, and the temperature rise lags
behind. The PSR is located in the northern part of the Kunlun Mountains. Snow melting
floods also begin at the end of April in this region. Because of the sparse vegetation in the
Kunlun Mountains, the snow is covered with rock and gravel. In April, the temperature in
the basin increases, and the snow rapidly melts, causing a snow-melting flood [31,99,100].

It was not difficult to determine that the frequency of floods in the DQR was the lowest
among the four rivers. This was mainly due to the fact that the Altai Mountain has the
lowest average elevation of the three mountain systems, the climate changes are relatively
stable, and more snow falls than rain. Thus, even in summer, the frequency of mixed flood
occurrence was the smallest of these basins. The KKR and PSR located in the Tianshan
Mountains experience more frequent floods. In spring, snow melting floods are the main
cause, while in summer, there is more rainfall, which makes it easy for rainfall floods and
mixed floods to form. On the northern slope of the Kunlun Mountains, where the PSR
is located, precipitation is scarce, but there was still a high frequency of flood disasters.
This was mainly due to the sparse vegetation on the surface and the large temperature
difference between day and night, which was caused by the special surface cover. The
snow-melting floods form more easily and were the main type of flood in this basin [58].

In the comparison of the flood peak values of the snow melting floods in spring, the
highest average flood peak value (up to 54.76 m3/s) occurred in the DQR in the Altai
Mountains. This was because the Altai Mountains have the most snowfall in winter, and
most of the precipitation in the year occurs as winter snowfall. A large amount of snow
accumulates, the temperature in the spring increases, and the large amount of snow melt
forms a snowmelt flood. The minimum value was 19.81 m3/s in the KKR on the northern
slope of the Tianshan Mountains. This was mainly due to the fact that the basin was located
in the eastern part of the Tianshan Mountains and experiences less precipitation [18,80],
less snow in the winter, and less snow melting in spring, which made the peak value of
the snow melting floods smaller than those of other rivers. Of the summer flood events,
the river with the highest average peak value (201 m3/s) was the Heizi River Basin. This
was mainly due to the fact that based on the snow melt, the basin experiences the most
rainfall during the summer, which was the most likely the cause of the large mixed floods
and rainfall floods. The second was that the PSR had a peak value of 53.52 m3/s. This was
because, even though there was less precipitation in the summer, the abundant permanent
snow and glaciers at high altitudes melt as the temperature increases, which caused flood
events [83,101,102]. The minimum peak of the summer flooding (31.38 m3/s) still occurred
in the KKR.

In September, snowfall gradually increased in high altitude mountainous areas, but
the temperature was not stable, and the temperature difference between day and night
was very large [103,104]. The daily average temperature was only used to determine the
conditions of snowmelt in the original model. At high altitude mountain areas, ground
vegetation was scarce, mainly composed of rocks and sand, when the temperature rise at
noon, the snowpack began to melt and supply channel flow received the influence of the
accumulated temperature [14,105,106]. When daily average temperature was lower but
not the accumulated temperature, there were still a month of snowmelt replenishing river
runoff [107]. This can lead to an underestimate of river runoff over a period of time, such
as in September and October.
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4.3. Effect of Snowmelt on Vegetation Growth

In order to study the relationship between the amount of snow melt and vegetation
growth, the difference in vegetation growth at different latitudes in Xinjiang was analyzed.
In the DQR in the Altai Mountains, vegetation rejuvenation begins in March, increases
in April, and increases rapidly in May. Similar to the DQR, the KKR, which is located in
the eastern section of the Tianshan Mountains, also begins rejuvenation in March, with an
increase in April. By May, the vegetation has grown very well. However, the HZR in the
southern foothills of the Tianshan Mountains was not significant in March, and there was
only a small increase in April. In May, the vegetation growth was slower than that in the
DQR and the KR. The PSR in the Kunlun Mountains only begins to grow vegetation in May.
This difference was mainly considered to be the result of two aspects. First, the altitude of
the DQR and KKR was significantly lower than that of the HZR and PSR. When spring
comes, the melting snow at low altitudes melts quickly, which had an important impact on
vegetation rejuvenation and growth [17,62,68,108–110]. The second was precipitation. The
average annual precipitation in the DQR and the KKR was significantly higher than that in
the HZR and the PSR, which means that there is a great deal of snowfall and snow pack in
the winter, creating a larger water reserve and providing sufficient water for vegetation
rejuvenation [22,24,111,112].

As an important water source for vegetation growth and farming in the spring, snow
cover plays an irreplaceable role in the local ecosystem. Based on the NDVI values of the
four basins (Figure 3), the process of spring vegetation rejuvenation can be clearly seen.
By May, the area of green vegetation had expanded significantly [22,111,112]. This was
because, in high altitude mountainous areas, as the temperature increases, the snow began
to melt and the soil moisture was recharged, providing a water source for the greening
and growth of vegetation [24,62,110]. The snowmelt quickly entered the river and the river
runoff increased. In the lower reaches of the river basin, there was a large area of arable
land. The river water was diverted by the farmers to irrigate these crops, which increased
the vegetation area and accelerated the growth in May. Therefore, the relationship between
the NDVI of the spring vegetation and the amount of snow melt was closely related. It
was necessary to study the correlation between these two factors [22,24]. The relationship
between the amount of snowmelt and the NDVI calculated using the original model was
investigated in the PSR. R2 was only 0.37, showing a lower correlation. However, the
amount of snowmelt calculated using the modified model had a high correlation with
the NDVI, which was consistent with the actual situation, fully affirming the necessity of
model modification.

4.4. The Sensitivity and Uncertainty Analysis

In the process of model simulation, parameter calibration is indispensable. It is
mainly used to determine the parameter values used in model calculation [113]. The
optimal combination of parameters was determined through hundreds of runs [47,114].
In the study of the model modification, two parameters were added to determine the
precipitation pattern and the accumulated temperature of the snowmelt, i.e., the daily
accumulated temperature threshold of rainfall (SFTMP_A) and the daily accumulated
temperature threshold of snowmelt (SMTMP_A). The values of these two parameters in
different watersheds were determined through calibration shown in Table 4. In the DQR,
the value of parameter SFTMP_A was 24.24 ◦C, and the value of parameter SMTMP_A
was 18.35 ◦C. In addition, the sensitivity of the parameters was confirmed. The T-state
value of parameter SFTMP_A was 3.34, and the p-value was 0.06, while the T-state value
of parameter SMTMP_A was 8.34, and the p-value was 0.01, which indicated a strong
sensitivity. In the KKR, the determined values of SFTMP_A and SMTMP_A were 22.09 ◦C
and 19.46 ◦C, respectively. In the performance of the sensitivity analysis, the T-state of
parameter SFTMP_A was 4.05, and the p-value was 0.08, while the T-state of parameter
SMTMP_A was 8.86, and the p-value was 0.01. In the HZR, the value of SFTMP_A was
20.18 ◦C, and the value of parameter SMTMP_A was 17.5 ◦C. In the sensitivity analysis, the
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T-state of parameter SFTMP_A was 5.27, and the p-value was 0.04. The T-state of parameter
SMTMP_A was 9.05, and the p-value was 0.01. In the PSR, the value of parameter SFTMP_A
was 25.62 ◦C, and that of parameter SMTMP_A was 20.18 ◦C. The T-state and p-value of
parameter SFTMP_A were 3.28 and 0.07, respectively; while those of parameter SMTMP_A
were 7.55 and 0.02, respectively. The two new parameters showed strong sensitivity in the
four watersheds, indicating that the snow melting process was an important part of the
watershed, which reflected the rationality and importance of the new parameters.

Table 4. Parameter SFTMP_A and SMTMP_A information for global sensitivity.

SFTMP_A SMTMP_A

Basins Calibration
Value (◦C) T-States p-Value Calibration

Value (◦C) T-States p-Value

DQR 24.24 3.34 0.06 18.35 8.34 0.01
KKR 22.09 4.05 0.08 19.46 8.86 0.01
HZR 20.18 5.27 0.04 17.5 9.05 0.01
PSR 25.62 3.28 0.07 20.18 7.55 0.02

The uncertainty analysis of the model simulation results was also an important part
of the model-related research [48,89,115]. In this study, the uncertainty analysis was
discussed from three aspects: The model structure algorithm, the data source, and the
parameters [48,116,117]. The structure and algorithms of each model introduced uncer-
tainties, especially when applied to different study areas. The fact that the watersheds
selected in this study are located in high-altitude mountainous areas that lack data added
a significant amount of uncertainty. The different parameter values, different parameter
combinations, and different thresholds brought corresponding uncertainties [49,118]. As a
conventional algorithm to calculate daily accumulated temperature, there was also some
uncertainty. The change of daily temperature was considered to be relatively smooth, and
abrupt changes in temperature did not take into account. In this way, there were some
uncertainty in the daily accumulated temperature calculation, which is also one of the key
points to be improved in future work. The influence of climate change on vegetation NDVI
in Xinjiang has been studied by some scholars. The study shows that the climate in much of
Xinjiang experienced warming and wetting trends, and rainfall increased in mountainous
areas in summer [23,119,120]. Through field investigation, it was also found that in the
mountainous area of arid area, especially in the Kunlun Mountains, rainfall increased in
summer and vegetation area increased obviously. NDVI was introduced in this paper as
the verification of model modification. Therefore, in order to more accurately reflect the
relationship between vegetation growth and snow melt, the vegetation NDVI in Spring
was selected as the focus, which effectively excluded the influence of summer rainfall and
climate change. The relationship between vegetation NDVI and snow melt calculated by
the model can accurately reflect the accuracy of the model.

5. Conclusions

In this study, the original SWAT model was modified to determine the precipitation
pattern and the temperature conditions of the snow melting conditions, and the threshold
of the accumulated temperature was added to the model. In order to verify the applicability
of the modified model, it was applied to the small and medium rivers in three mountain
systems at different latitudes in Xinjiang, and the simulation results were compared and
verified. By modifying the model, the NS coefficient of the four rivers in the overall study
period increased by 14.29%, and the PBIAS increased by 44.25% on average.

As a direct result of the model modification, the amount of snowmelt can directly
reflect the necessity of the snowmelt module modification. Through this modification,
the calculated amount of snowmelt in the DQR increased by 12.67%, and the calculated
contribution rate of the snowmelt to the channel increased by 25.31%. In the KKR, the
calculated amount of snowmelt in the spring increased by 37.05%, and the calculated
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contribution of the snowmelt to the channel increased by 18.65%. In the HZR, the calculated
amount of snowmelt increased by 43.38%, the calculated contribution rate increased by
28.29%, the calculated snowmelt volume of the PSR increased by 70.12%, and the calculated
recharge of the river channel increased by 35.84%.

Through the modification of the model, the deviation in the flood peak value in the
DQR was decreased by 71.56%, the precision of the results for the KKR was improved by
31.00%, the deviation of the flood peak value in the HZR was decreased by 52.07%, and
the deviation of the peak value in the PSR was decreased by 70.12%. The results of the
modified model are closer to the measured flood peak values.

Combined with the relationship between the amount of snowmelt and the NDVI, it
was found that the vegetation in the northern part of the Tianshan Mountains and the
high-altitude mountain areas of the Altai Mountains rejuvenates earlier than that in the
southern part of the Tianshan Mountains and the Kunlun Mountains, and the vegetation
growth in the spring was also more significant. It was mainly caused by the elevation of
the basin and the amount of precipitation in winter. In the low-altitude areas, there was
more snowfall and snowpack in the winter. In the coming spring, the snow melts earlier,
and the snowmelt provides sufficient water for the rejuvenation of vegetation.

Therefore, the modified model had a higher accuracy in the calculation of snowmelt,
the recharge of the river, the performance of the flood peak value, and the relationship
with the ecosystem. This study provides a new method for accurately investigating snow
melting process, hydrological process, and ecological-related research in small and medium-
sized rivers in high-altitude mountainous areas, which provides a technical basis for the
prevention and control of flood disasters in mountainous areas and also provides new
insights into the effects of snowmelt runoff on vegetation growth at different latitudes.
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