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Abstract: The current COVID-19 pandemic and the preventive measures taken to contain the spread
of the disease have drastically changed the patterns of our behavior. The pandemic and movement
restrictions have significant influences on the behavior of the environment and energy profiles.
In 2020, the reliability of the power system became critical under lockdown conditions and the
chaining in the electrical consumption behavior. The COVID-19 pandemic will have a long-term
effect on the patterns of our behavior. Unlike previous studies that covered only the start of the
pandemic period, this paper aimed to examine and analyze electrical demand data over a longer
period of time with five years of collected data up until November 2020. In this paper, the demand
analysis based on the time series decomposition process is developed through the elimination of the
impact of times series correlation, trends, and seasonality on the analysis. This aims to present and
only show the pandemic’s impacts on the grid demand. The long-term analysis indicates stress on the
grid (half-hourly and daily peaks, baseline demand and demand forecast error) and the effect of the
COVID-19 pandemic on the power grid is not a simple reduction in electricity demand. In order to
minimize the impact of the pandemic on the performance of the forecasting model, a rolling stochastic
Auto Regressive Integrated Moving Average with Exogenous (ARIMAX) model is developed in
this paper. The proposed forecast model aims to improve the forecast performance by capturing
the non-smooth demand nature through creating a number of future demand scenarios based on
a probabilistic model. The proposed forecast model outperformed the benchmark forecast model
ARIMAX and Artificial Neural Network (ANN) and reduced the forecast error by up to 23.7%.

Keywords: load forecasting; COVID-19; energy analysis and management; power grid operation

1. Introduction

The current COVID-19 pandemic has affected every aspect of life and dramatically
changed the patterns of our behavior. The economic, social, and health-related impact of the
COVID-19 pandemic on households and businesses has been significant. Many countries
around the world issued multiple levels of restrictions to contain the spread of COVID-19.
Initial measures included schools and universities closing, a nationwide curfew, and work-
ing from home for office employees, while factories could work with a limited number of
staff, or they stopped their production. The pandemic and government restrictions have a
significant influence on the behavior of the environment and energy profile behavior [1–3].
The reduction in the households’, businesses’, and factories’ activity globally has signifi-
cantly decreased the greenhouse gas emissions and the energy demand [4,5]. For example,
New York and California independent system operators reported 10% and 12% reduction
in electricity demand, respectively, after the curfew order [1,2]. Similarly, a 10% electricity
demand reduction in Europe was introduced in [5]. As economies try to recover from the
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COVID-19 pandemic and the initial measures, many companies and factories struggled
to pay salaries or retain employees. Furthermore, the unemployment level has increased
due to the COVID-19 pandemic, particularly in the informal business sector. Therefore,
the impact of COVID-19 will continue and will have a long-term effect on various aspects of
our lives. Thus, it is important to study and analyze the impact of the COVID-19 pandemic
on electricity demand patterns and load forecasts [1–3,5]. In this article, we investigate
the new electricity demand and forecast error pattern in Jordan caused by the COVID-19
pandemic.

Understanding electricity demand changes and their impacts on load forecasting is
important to maintain reliable operation of the electrical grid. The reliability of the power
grid system depends less on the total energy consumption than on variability and nature of
the electricity demand and generation [6,7]. Highly stochastic behavior and large changes
in electricity demand create more challenges for the power grid operators to maintain
demand supply balance, especially with high forecast error levels [8,9]. Recently, a number
of studies were published after the curfew orders were issued [1–5] that generally described
the demand behavior without examining the seasonal and weather trends’ impact on the
demand, and ignoring these factors would bias the analysis. In contrast to electricity
demand, there is a lack of studies investigating the impact of the COVID-19 pandemic on
the power network reliability and load forecasting.

In general, electrical demand has significant signs of seasonal and daily peak patterns.
For example, peak demand in the residential sector has been discussed by [10,11] and
researchers have shown that the peak demand usually occurs on hot summer and cold
winter days when air conditioning and electrical heaters start to be used, respectively.
However, there are many terms that may affect the level of peak demand and peak peri-
ods, such as increasing population, economic situations, and any special events [12,13].
The strong explanatory relationships between electricity demand and variables, such as
weather conditions and seasonality patterns, can help to generate accurate forecasts [13,14].
Therefore, it is significant to find any specific trends or seasonality in the time series,
which can improve the performance of the forecast model [15,16]. For example, the previ-
ous hour and day demand were used as an external variable in the Adaptive Neuro-Fuzzy
Inference System (ANFIS) model [15], and in another paper [16], the type of day (weekday,
weekend, holiday), the average daily temperatures, and the previous half-hourly demand
were selected to be the input variables for Bayesian deep learning and gradient boosting
model. The electricity demand in Jordan usually follows a seasonal trend with two-peak
patterns. However, the seasonal peak demand (winter and summer) alternates from year to
year based on the electricity prices and weather conditions [17,18]. Therefore, most studies
were published to present the future demand and peaks in Jordan which only considered
the long-term forecast (yearly forecast) [17–19], and there are a limited number of studies
that discussed and presented the short-term forecast [20,21]. For example, Arfoa [18]
used a least squares method and Abu Al-Foul [19] used Artificial Neural Network(ANN)
to forecast the average yearly demand over nine years in [18] and fifteen years in [19].
The forecast profile in [18] shows an increasing trend over 2020 and the subsequent years.
However, this is was not the case due to the COVID-19 pandemic. Momani et al. [21] used
ANN and the Auto Regressive with Exogenous (ARX) model to forecast the hourly demand
over three days. The research in [21] used the temperature, humidity, and pervious load as
exogenous variables to develop ANN and ARX models. However, these studies did not
investigate the relationships between the demand and the different exogenous variables
and calendar terms.

In this article, we analyze data from the National Electric Power Grid Co (NEPCO)
over a five-year period until the end of November 2020 to investigate the electricity demand
trends. The data were collected from three main areas in Jordan: The city center, Ashrafiah,
and Rashadieh. The main reason for this shortlist is to cover all types of electricity consump-
tion: commercial, household demand, and factories. Furthermore, this shortlist covers three
large regions to avoid uncertainty in the data. The uncertainty of the electrical demand
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is discussed by analyzing the data and determining the outliers in the box plot, as the
most common visual representation to show the demand data in statistics. In addition,
the uncertainty in the proposed forecast model is presented by analyzing the distribution
of the forecast error.

In order to investigate the impact of the COVID-19 pandemic on electricity demand
consumption, the increasing annual population, weather, and seasonal factors need to be
extracted and eliminated. This is mainly to isolate the impact of the COVID-19 pandemic
on Jordan’s electricity power demand. Therefore, we forecast the electricity demand con-
sumption (half-hourly, daily, and monthly) over 2020 without considering the COVID-19
pandemic (counterfactual scenario) by using different forecasting models and then compare
the forecast results with the actual electricity consumption. In addition, we develop a
probabilistic forecast model, the stochastic Auto Regressive Integrated Moving Average
with Exogenous (ARIMAX) model, to consider and handle the impact of the COVID-19
pandemic by using reliable counterfactual demand scenarios. This work aims to analyze
the impact of the COVID-19 pandemic on the electrical power grid, using three areas in
Jordan as a case study. The added value and the key novelty of this paper revolve around
the interconnectedness of the demand analysis and probabilistic load forecasting during the
COVID-19 pandemic, considering the new demand and behavioral and cultural changes.
The main objectives and contribution of this article are:

• To predict the electrical demand of three different areas by using a novel probabilistic
prediction model, which aims to minimize the impact of the demand uncertainty and
variability due to the COVID-19 pandemic.

• Examine the impact of the COVID-19 pandemic as an exogenous variable on the
forecast model’s performance.

• To analyze the yearly and daily electricity demand before and after the COVID-19
pandemic and thoroughly isolate the impact of the COVID-19 on Jordan’s electricity
power demand.

• To analyze the electricity demand and peak variations due to the COVID-19 pandemic.

The remaining sections of this paper are organized as follows: the electricity demand
trends and the analysis of the collected data are presented in Section 2. In Section 3,
the methodologies of the proposed forecast models are described and then the forecasts
results are discussed in Section 4. Finally, a summary of this paper and potential future
work is introduced in Section 5

2. Electricity Demand Trends

Generally, the electrical demands at high and medium voltage levels have a smooth
load demand profile and strong explanatory relationships with exogenous variables,
such as weather conditions and time-series trends. The current COVID-19 pandemic
has affected the load demand profile, which became more volatile and less predictable
compared to the load profiles over previous years. The non-smooth and stochastic nature
of the load demand during and after the initial measures to contain the spread of COVID-19
increases the difficulties of generating accurate demand prediction profiles compared to
previous years. In Jordan, 14 defense orders have been issued between 15 March and 30
April 2020 to contain the spread of the COVID-19 pandemic [22–24]. These orders included
a nationwide curfew and movement restrictions. The commercial, industrial, and educa-
tion sectors suspended operations during the curfew and demand for services and goods
significantly decreased [22–24]. From 1 May 2020, the government in Jordan began to
ease lockdown measures by allowing movement under specific restrictions and gradual
reopening of the economy. However, the private business sector (companies, factories,
and commercial sectors) struggled to pay salaries or retain employees, which increased
the unemployment level [22–25]. As previously discussed in Section 1, the impact of this
pandemic will continue and will have a long-term effect on the load demand profile and
various aspects of our lives. Motivated by the non-smooth and stochastic behavior of the
load demand and the lack of analyzing and understanding of the load demand behavior



Sustainability 2021, 13, 1435 4 of 22

under the effect of the COVID-19 pandemic, this section aims to explore and understand
the characteristics of the load demand. This understanding is important for generating
an accurate forecast profile and increasing the reliability of the power grid. In this paper,
the smart meter data for three main areas in Jordan (city center, Ashrafiah, and Rashadieh)
were collected over five years from January 2016 to October 2020. The collected load
demand data represent the demand behavior based on a half-hourly time resolution over
24 h. The collected data for the load demand are used to generate the results presented in
this article. In order to investigate the seasonality trends and the COVID-19 pandemic’s
influence on the load demand profile, time series analysis of the load demand profile is
used in this section. The time-series analysis aims to find patterns or cycles in the load
demand profiles considering the COVID-19 pandemic, based on the following:

• Seasonal analysis: to present and investigate the demand behavior based on the
monthly, weekly, and daily demand cycles over a five-year period.

• Autocorrelation analysis: to investigate the demand behavior patterns which are not
under the influence of seasonal cycles.

2.1. Seasonal Analysis

In this section, the load demand profiles are presented to explore monthly, weekly,
and daily demand cycles over a five-year period. The monthly load demand trends over five
years in the city center, Ashrafiah, and Rashadieh are shown in Figure 1. In general, the load
profiles in Figure 1 show a high correlation and monthly trend over the five-year period.
The monthly load demand has an overall decreasing trend during and after the nationwide
curfew and movement restrictions period in March–May 2020. This is mainly related to the
fact that the current COVID-19 pandemic has affected every aspect of life and dramatically
changed the patterns of our behavior. In Jordan, multiple levels of restrictions were issued
during the period between March and May 2020 to contain the spread of COVID-19. Initial
measures included schools and universities closing, a nationwide curfew, and working
from home for office employees, while factories could work with the limited number
of staff, or they stopped their production. The pandemic and government restrictions
have significantly influenced [22–24] the behavior of the environment and energy profiles
behavior. The economic and social impact of the COVID-19 pandemic on households
and businesses in Jordan during this period was significant, which led to reducing the
demand consumptions. The load profile for Rashadieh, an indusial factory, showed that
the demand dramatically decreased to 0 KWh during the lockdown period and continued
to decrease compared to previous years. The reduction in factories’ activity in Jordan
due to the nationwide curfew significantly decreased the greenhouse gas emissions and
the energy demand. However, the demand profile for Rashadieh increased in July 2020
compared to previous years after the movement restriction began to be eased and the
economy tried to recover from the COVID-19 pandemic and the initial measures [22–24].
In addition, the monthly trend does not seem to be correlated for other areas (city center
and Ashrafiah) to that of the same period in 2016 to 2019. Figures 2 and 3 compare the
weekly and daily electricity demand in the city center, Ashrafiah, and Rashadieh for
March to May over five years (2016–2020). The load profiles show that electricity demand
appeared to decrease after Jordan issued the nationwide curfew and movement restrictions
orders [22–24]. However, the weekly and daily demand trend for the city center and
Ashrafiah, as commercial and household sectors, is not consistent with a reduction during
the last three weeks of May due to easing of lockdown measures. Overall, the seasonal load
profiles indicated that there is a seasonal trend in the data, and it would not be accurate to
only attribute the demand reduction to the pandemic. The new demand behavior due to
the pandemic and the demand analysis will only become clear after removing the seasonal
and weather effects.
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Figure 1. The monthly electricity demand (KWh) in Jordan over five years and during the ongoing pandemic: (a) city center;
(b) Ashrafiah; (c) Rashadieh.

Figure 2. Cont.
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Figure 2. The weekly electricity demand (KWh) in Jordan during the movement restriction orders during the ongoing
pandemic period over five years: (a) city center; (b) Ashrafiah; (c) Rashadieh.

Figure 3. Cont.
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Figure 3. The daily electricity demand (KWh) in Jordan during the movement restriction orders during the ongoing
pandemic period over five years: (a) city center; (b) Ashrafiah; (c) Rashadieh.

The half-hourly electrical demand during the ongoing pandemic period (March, April,
and May) over five years is shown in Figure 4. Each box plot in Figure 4 shows the
distribution of half-hourly electrical demand. In 2020, the median half-hourly electrical
demand for the city center was around 180 MWh, and it was the lowest compared to
previous years. This is mainly related to the fact that the current COVID-19 pandemic
has changed the patterns of our demand behavior. In addition, the movement restrictions
which were issued in Jordan during the period between March and May 2020 to contain
the spread of COVID-19 [22–24] lea to reducing the demand consumption. However,
the box plot of 2020 overlaps with other years when the government in Jordan began
to ease lockdown measures during May 2020 [22–24], as seen in Figure 4. Furthermore,
the maximum half-hourly electrical demand in 2020 was around 320 MWh, and it was the
lost maximum compared to previous years. The reduction in the maximum half-hourly
demand in 2020 was 39%, 37%, 34%, and 33% compared to 2016 to 2019, respectively.
The half-hourly electrical demand values, as shown in Figure 4, are distributed between
5 and 55 MWh, which gives a wide range of possible electrical demand scenarios and
illustrates the uncertainty in the demand. In Figure 4, the outlier points are increased
during 2020, which presents a larger uncertainty level associated with the changing demand
consumption behavior due to the current COVID-19 pandemic.

Figure 4. An example, box plot of the half-hourly electricity demand (KWh) in Jordan (city center) during the movement
restriction orders during the ongoing pandemic period over five years.



Sustainability 2021, 13, 1435 8 of 22

2.2. Autocorrelation Analysis

The previous analysis shows a sign of daily, weekly, monthly, and yearly seasonal-
ity over the electrical demand time series. Therefore, this section aims to find the time
correlation in the electrical demand time series and then remove it, to show only the de-
mand reduction related to the pandemic. In order to select any correlation between the
electrical demand points in the time series, the partial autocorrelation function (PACF)
was calculated, as shown in Figure 5. The PACF shows the correlation, corr, between the
electrical demand time series at Lt for up to a specific number of lags. The PACF can be
mathematically described as in Equation (1) [25,26]. The PACF analysis aims to find the
relationship between the two time series points without considering the effect of all time
points (lags) in between. In contrast, the autocorrelation function (ACF) is used to find
the correlation between the demand time series for different lags (seasonal or calendar
patterns). However, the previous demand analysis shows a lack of seasonality in 2020
during the COVID-19 pandemic compared to previous years. Therefore, PACF is used
in this section to find any special demand trends, which are not seasonal. To find any
correlation or patterns between the time-series points, the partial autocorrelation function
(PACF) was calculated over 500 time lags, this is shown in Figures 3–10. The PACF can
help to find intra-day and longer correlations that repeatedly occur. The PACF, as shown
in Figure 5, presents the correlation between the electrical demand time series and the
lagged points, at, say, lag k, after removing all time series points (1, 2, ..., k − 1) between
them [27,28].

PACFk = corr (Lt, Lt−k|Lt−1, . . . ., Lt−k−1 ). (1)

The significant values of the PACF occurred and repeated at lags 4, 12, and 24 for
monthly demand. This shows clear signs of seasonality every 4 months (season) and every
year (12 and 24 months). In Figure 5b, the PACF plot for weekly profiles for the March,
April and May period over five years shows that significant values occurred and repeated at
a number of lags—1, 8, 12, 26, 30 and 40—which showed a clear sign of patterns from week
to week, the same week in the previous month and the same week from the previous year.
In Figure 5c,d, the PACF plot for daily and half-hourly profiles shows significant values
repeated for a number of lags, showing signs of daily pattern and seasonality. Furthermore,
the distribution of PACF lags showed a large spike (main lag) that was followed by a
damped wave which presented a moving average term. In general, the PACF plot in
Figure 5 shows a cut off after lags 5, 1, 40 and 50 for monthly, weekly, daily, and half-hourly
demand, respectively. It also shows other significant PACF lags on longer lags, for example
between lag 200 and lag 300 for daily demand. However, the distribution of the significant
lags does not present a clear seasonality. The significant longer lags between lag 200 and lag
300, as shown in Figure 5c, were randomly distributed with no sign of a large main spike
followed by a damped wave, which can present a moving average trend. These randomly
distributed lags are likely random salience due to the new events and the impact of the
COVID-19 pandemic on the demand profile. Furthermore, the early correlation lags could
be due to the demand behavior with tasks that take more than a single time step to complete.
Hence, the collected dataset during the COVID-19 pandemic period and PACF plot depicts
random behavior and indicates a lack of clear seasonality.
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Figure 5. An example partial autocorrelation function (PACF) plot for the electrical demand time series for (a) monthly,
(b) weekly, (c) daily, and (d) half-hourly demand in Jordan (city center) during the movement restrictions orders during the
ongoing pandemic period over five years.

The electrical demand time series with trends or seasonality will affect the analysis
of the time series at different time points. In order to eliminate the trends or seasonality
impact on the electrical demand time series and to perform accurate analysis of the COVID-
19 pandemic’s effects, a stationary electrical demand time-series needs to be generated.
The stationary time series will have no trends or seasonality in the demand series. In this
section, to generate a stationary electrical demand time series, a seasonal differencing
technique will be used. Seasonal difference aims to find the difference between a demand
value and the previous demand value from the same season or previous period, as described
in Equation (2) [29]. The seasonal differencing process helps to stabilize the mean of the
electrical demand time series by eliminating the seasonal and trend effects on the time series.

L̂t = Lt − Lt−s. (2)

where L̂t is the differenced series and s is the number of lag seasons or trends. The seasonally
differenced profile for the city center electrical demand time series is presented in Figure 6.
The differenced series in Figure 6 for monthly, weekly, daily, and half-hourly profiles showed
a pattern of demand reduction during 2020 compared to previous years. This is mainly
related to that the multiple levels of restrictions, which were issued in Jordan during March
and April 2020 [22–24]. The initial measures included schools and universities closing,
a nationwide curfew, working from home for office employees, and factories working with
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the limited number of staff or stopping their production, which affected and dramatically
changed the patterns of our demand behavior. The economic and social impact of the
COVID-19 pandemic on households and businesses in Jordan during this period was
significant, which led to reducing the demand consumption. Generally, the impact of the
COVID-19 pandemic on electricity demand consumption is presented in this section after
removing the seasonality terms, and it showed a strong decline in electricity consumption.

Figure 6. Cont.
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Figure 6. An example for differenced demand series plot for (a) monthly, (b) weekly, (c) daily, and (d) half-hourly demand
in Jordan (city center) during the movement restrictions orders period over five years.

2.3. Peak Demand Analysis

Analysis of the daily electrical demand data for the city center, as an example, is pre-
sented in Table 1 to present various statistics of the demand data including the maximum,
minimum and average values at daily resolutions. A comparison of the daily electrical
demand over five years during the movement restrictions orders period (March, April,
and May) shows that the maximum, minimum, and average demand in 2020 significantly
decreased compared to previous years. For illustration, the peak demand decreased to 1293
MWh in 2020 compared to 2098 MWh in 2016 and 1768 MWh in 2019. The peak demand in
2020 was reduced by 30% and 25% compared to 2017 and 2018, respectively. Furthermore,
the minimum and average demand in 2020 was also decreased compared to previous years.
For example, the minimum demand in 2020 was 765 MWh compared to 1219 and 1029
MWh for 2018 and 2019, respectively. The average demand in 2020 was reduced by 40%
and 37% compared to 2019 and 2017, respectively. In Jordan, the peak demand and demand
behavior were directly affected during the initial measures period (March to May 2020),
which led to a reduction in the electricity consumption. In addition, as economies tried
to recover from the COVID-19 pandemic and the initial measures, many companies and
factories in Jordan struggled to pay salaries or retain employees. Furthermore, the unem-
ployment level has increased due to the COVID-19 pandemic, particularly in the informal
business sector [22–24]. Therefore, the impact of the COVID-19 pandemic continues and
will have a long-term effect on the electricity demand pattern for all regions.

Table 1. Summary of the electrical demand between 2016 and 2020 during the movement restrictions orders period (March,
April, and May).

Electrical Demand (MWh) The Percentage Reduction in Demand in 2020
Compared to Previous Years

2016 2017 2018 2019 2020 2016 2017 2018 2019

Maximum demand 2098 1839 1735 1768 1293 38% 30% 25% 37%
Minimum demand 1128 1189 1219 1029 765 32% 36% 37% 35%
Average demand 1443 1492 1444 1319 941 35% 37% 35% 40%

3. Load Forecasting Models

In general, the forecasting models are developed to predict the demand profiles and
follow the fluctuating in the demand [10–16]. As illustrated in Section 2, the stochastic and
non-smooth behavior of the electrical demand during and after the COVID-19 pandemic
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increases the challenges of accurately predicting the demand compared to previous years.
Normally, point forecasts are used to generate electrical demand with a single estimate
value for each time step [11,12]. However, this is mainly limited to the time-series data,
the description of the model and the degree of uncertainty in the data. In cases of highly
stochastic and unpredicted conditions, a forecast model with the ability to handle new
and unpredicted conditions (such as the COVID-19 pandemic) and work under different
degrees of uncertainty is required. Therefore, rolling and fixed probabilistic forecast models
are developed in this section to predict the electrical demand (half-hourly, daily, weekly,

and monthly),
···
L. The fixed forecast model generates a future demand profile over a specific

period, without updating the observation during this period. The rolling forecast model
works to generate a future demand profile, and then the model will be updated with
new observations after each time step [6,14]. This rolling procedure aims to minimize the
forecast error over the prediction horizon period by recalculating and updating the forecast
profile using the new real-time measurements and forecast error after each time step.

3.1. Probabilistic Forecast Model

Probabilistic forecasts are estimation models that aim to generate future demand
scenarios based on the distribution of the data model [14,16]. In this section, an ensemble
forecast model is developed to generate future scenarios of the electricity demand in 2020
as follows:

• The half-hourly demand over the coming day.
• Daily demand over the coming week.
• Monthly demand over the coming year.

The ensemble forecast model aims to handle the inter-dependencies and uncertainty
in the data and generate a wider range of forecast model scenarios. To present the volatile
and uncertain electrical demand, the hybrid-forecasting model is developed in this section,
including Auto Regressive Integrated Moving Average with Exogenous (AIRMX) method
and Monte Carlo sampling method (stochastic ARIMAX forecast model). The ARIMAX
is described by Equation (3) as a common model for forecasting electrical demand time
series [6,15–18].

···
L t =

h

∑
j=0

AjXj(t) +
p

∑
i=1

BiL̂(t− i) +
q

∑
i=1

C Z(t− i) + E, (3)

where
···
L t is the estimation of differenced demand at time t;

p
∑
i

BiL̂(t− i) is the autoregressive

term with pth order lag (AR(p) model);
q
∑
i

CiZ (t− i) moving average term with qth order

lag (MA (q));
h
∑

j=0
AjXj(t) is the Ath exogenous variables term, and E is a constant value.

The p, d, and q order for the ARIMAX model is selected by using the Bayesian information
criterion (BIC) matrix computation. The BIC matrix has been computed for the following
values—p between 1 and 48, q between 0 and 48, and d between 0 and 5—which can assist
in parameter selection in the ARIMAX model for all cases. The BIC matrix results show that
the most preferable parameters through lowest BIC are (p, d, q) = (1,1,2), (1,1,2) and (2,1,2).
The following exogenous variables, in Table 2, were chosen and used for the suggested
ARIMAX model after testing a wide range of possible variables.

The stochastic samples of demand data for half-hourly/daily/monthly demand using
the Monte Carlo sampling method aim to present the uncertainty in the demand profile and
create a number of possible scenarios. Monte Carlo simulation uses a random sampling
process to cover the uncertainty of data by providing a range of possible demand scenarios
that may capture a range of possible events through the simulation iterations. As previously
discussed, the electrical demand analysis shows a weak relation to the historical demand
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during the pandemic period due to the movement restriction. However, to evaluate
the effect of the calendar variables as input variables on the proposed forecast model,
the holiday and weekend indicators are tested in addition to other variables (X1 to X5),
and then the most effective input variables that improve the forecast model performance
are chosen. The exogenous variables X1 to X5 are selected based on the trial-and-error tests
as input variables for the proposed forecast model, due to the strong relationship between
them and current time demand. However, the exogenous variables X3 and X4 can be linked
to other time series forecast models such as ARIMA, AR, and seasonal AR, but this will
not be the case for ANN. In this paper, different exogenous variables are tested with ANN
and ARIMAX and then the most effective input variables that improve the forecast models
performance are chosen. Furthermore, adding other exogenous variables such as the size
of traffic and factories production (monthly, daily, and half-hourly) can help to improve the
forecast error. However, this level of data was not available for the current and previous
years, so the stochastic sampling using Monte Carlo sampling aims to cover the uncertainty
of data by providing a range of possible demand scenarios. The ARIMA forecast model
has been modified to create a number of potential future scenarios using the Monte Carlo
sampling method. Firstly, we generate stochastic samples of the electrical demand from a
joint probability distribution for the electrical demand with average temperature and time
of the half-hour, day and month. Then, the ARIMAX model is used to obtain the forecast
scenarios based on the number of demand samples. For sampling the stochastic electrical
demand from the probability empirical distribution, a 2D histogram of the demand and
the external variables with 48 bins is used.

Table 2. The exogenous variables for Auto Regressive Integrated Moving Average with Exogenous (ARIMAX) model for
half-hourly, daily, and monthly periods.

Testing Period X1 X2 X3 X4 X5

Months The monthly average
temperature.

Average of the
previous two months

demand

Former month
demand.

Former year demand
in same month.

Stochastic samples of
from the monthly
demand dataset.

Daily The daily average
temperature.

Average of the
previous two days

demand
Former day demand. Former week

demand in same day.

Stochastic samples of
from the daily

demand dataset

Half-hourly The half-hourly
average temperature.

Average of the
previous two half

hours demand

Former half hour
demand.

Former day demand
in same half hour.

Stochastic samples of
from the half-hourly

demand dataset

The stochastic ARIMAX forecast model in this paper uses the real time measurements
(actual demand) and the forecast error for each time step to regenerate the future demand
profile by recalculating and updating the forecast demand based on these values for the
prediction horizon period, the rolling stochastic ARIMAX forecast model is designed to:

• Firstly, predict the electrical demand over the proposed prediction horizon period and
generate a future electrical demand profile (let say from t to t + 12).

• Secondly, collect the real-time measurements (actual demand) and calculate the fore-
cast error at time t.

• Thirdly, update the stochastic ARIMAX forecast model using the new observations
and real measurements at time t, and then regenerate the future electrical demand
profile at each time step t + 1 to t + 12 + 1. Here, the stochastic ARIMAX forecast
model is rerun to generate the future demand profile with the new observation.

3.2. ANN Forecast Model

The ANN feedforward model, with two hidden layers and ten neurons in each hidden
layer, is developed in this paper to forecast the electrical demand. The main parameters of
the ANN model such as the number of layers and input variables are chosen after testing
a wide range of possible variables using the trial-and-error approach and then the most
effective input variables or parameters that improve the forecast model performance are



Sustainability 2021, 13, 1435 14 of 22

chosen. In the proposed ANN model, the input variables were similar to ARIMAX and the
remaining model parameters can be summarized as follows:

• Training function: Levenberg–Marquardt backpropagation.
• Transfer function: sigmoid function.
• Evaluation criteria: the full squared errors.
• The stopping criteria: once there is no additional development in the error function.

4. Forecast Results

The stochastic ARIMAX forecast model, as described in the previous section, aims to
minimize the impact of the stochastic nature of the electrical demand on the forecast
performance. The stochastic ARIMAX forecast model was developed as fixed and rolling
forecast models to investigate the impact of updating the observation in the forecast model
on the forecast performance for electrical demand.

In this section, the stochastic ARIMAX forecast model (fixed and rolling) will be
presented and compared to common forecast models ANN [8,13] and ARIMAX [6,27]
for electrical demand. However, to evaluate the selected benchmark forecast models,
the ARIMAX and ANN are tested and compared to a simple naïve model. The proposed
naïve model developed to create the future demand based on the previous year’s demand
in the same month, the previous week demand in the same month, and the previous day
demand in the same half-hour for monthly, daily, and half-hourly profiles, respectively.
The simple naïve model showed a higher forecast error compared to ANN and ARIMAX
during the pandemic period with 14%, 11%, and 10% mean absolute percentage error
(MAPE) for monthly, daily, and half-hourly profiles, respectively. Therefore, the most
effective forecast models (ANN and ARIMAX) were chosen to be the benchmark models.
In general, the common forecast models ANN and ARIMAX for electrical demand achieved
the best results compared to other benchmark models such as naïve forecast models,
especially with the stochastic demand behavior during the pandemic. The stochastic
ARIMAX forecast model results in this section are for the average demand scenario. Firstly,
the collected data and forecasting model evaluation are presented, then the proposed
forecast models are compared. In Section 4.3, the performance of the stochastic ARIMAX
forecast model during the COVID-19 pandemic is presented and discussed.

4.1. Data Collection and Forecasting Model Evaluation

As discussed previously, we collected data from the National Electric Power Grid
Co (NEPCO) over a five-year period from January 2016 until the end of November 2020.
The half-hourly electrical demand data werecollected from three main areas in Jordan: city
center, Ashrafiah, and Rashadieh. The collected data were divided into a training dataset
(2016 and 2017) and a testing dataset (2018 to 2020). In order to assess and evaluate the
performance of the proposed forecast models, it is significant to define and determine
the evaluation techniques. In this section, the mean absolute percentage error (MAPE)
measures were used, as the most common forecasting evaluation methods. The MAPE
is a scale-independency elevation model, which make its ease of interpretation [9–11,30].
However, the MAPE is calculated only for the cases when the actual demand is greater
than zero, otherwise it will produce undefined values. Therefore, the forecast error is
used to avoid this problem and help evaluate the stochastic ARIMAX forecast model
performance. The forecast error and MAPE techniques are described in Equations (4) and
(5), respectively [31,32].

Err = Lt −
···
L t, (4)

MAPE =
100
T

T

∑
t=1

∣∣∣∣∣∣Lt −
···
L t

Lt

∣∣∣∣∣∣, (5)
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where Lt is the actual electrical demand at time step t;
···
L t is the forecasted demand at time

step t; t is the current time step, and T is the total steps of the prediction horizon period
(total number of observations).

4.2. Overall Comparisons

In this section, the overall MAPE was calculated for each proposed period and pre-
sented in Table 3. In general, the stochastic ARIMAX (rolling) outperformed other proposed
models and achieved the best forecast model accuracy (MAPE%) overall testing periods.
The stochastic ARIMAX (rolling and fixed) outperformed the other two benchmarks,
ARIMAX and ANN. From Table 3, it is seen that by involving a stochastic term in the
forecast model, the performance is improved compared to the ANN and ARIMAX models,
which only use the historical demand data. For example, the overall monthly MAPE during
2019 for the fixed stochastic ARIMAX was 4.6%, compared to 4.9% and 5.9% for ARIMAX
and ANN models, respectively. The rolling stochastic ARIMAX helped to decrease the
daily MAPE in 2018 by 22.4% and 23.7% for ARIMAX and ANN models, respectively. Fur-
thermore, the high MAPE% occurred during 2020, and this corresponds to the stochastic
and non-smooth demand nature due to the COVID-19 pandemic. This is can be explained
by the demand analysis introduced in Section 2. However, the stochastic ARIMAX (rolling
and fixed) provided the most accurate forecast models compared to ANN and ARIMAX
during 2020 and the stochastic term in the proposed forecast model minimizes the impact
of the COVID-19 pandemic on forecasts performance. In addition, by updating the forecast
model every in rolling stochastic ARIMAX, the forecast performance improved the overall
half-hourly, daily, and monthly MAPE during 2020 by 23.3%, 22.5%, and 18.4% compared
to the fixed stochastic ARIMAX model, respectively. In general, the forecast error (MAPE)
for aggregate demand is normally around 3–4% [10–12,33]; however, recently, with the
increasing number of renewable energy resources for small and large scales and to use of
more electrical vehicles, the forecast error increased up to 6% during normal conditions
based on the nature of the power networks [16,31]. In addition, the MAPE for demand
with stochastic behavior similar to our case in this paper is achieved at around 10% [9,16].

Table 3. The overall mean absolute percentage error (MAPE) over each of the testing periods.

Testing Period Stochastic ARIMAX
(Fixed)

Stochastic ARIMAX
(Rolling) ARIMAX ANN

Months
2018 5.1% 4.3% 5.2% 5.7%
2019 4.6% 4.1% 4.9% 5.9%
2020 6.5% 5.3% 8.9% 8.1%

Daily
(March–May)

2018 5.9% 4.5% 5.8% 5.9%
2019 5.2% 4.1% 5.5% 5.8%
2020 7.1% 5.5% 8.2% 9.0%

Half-hourly
(March–May)

2018 5.8% 4.6% 6.0% 5.9%
2019 5.1% 4.3% 5.7% 5.6%
2020 7.3% 5.6% 9.3% 9.8%

4.3. Stochastic ARIMAX (Rolling Model): Forecast Error Analysis

The main aim of developing a rolling stochastic ARIMAX forecast model is to improve
the forecast performance by capturing the non-smooth electrical demand nature and
creating a number of future electrical demand scenarios to feed the forecast model. Table 2
shows that the proposed rolling stochastic ARIMAX forecast model presented a significant
improvement compared to all other forecast models. Therefore, this section presents the
rolling stochastic ARIMAX forecast model results. Firstly, the rolling stochastic ARIMAX
forecast model profiles are generated for each testing period and then the average demand
scenario is plotted, as illustrated in Figure 7. From Figure 7, the rolling stochastic ARIMAX
forecast model captures all main peaks and the prediction demands were around the
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actual demand value. The averaged demand scenarios from the rolling stochastic ARIMAX
forecast showed small deviations around the actual demand at each time step. During
the COVID-19 pandemic period (March to May 2020), the stochastic and rolling process
helped to minimize the forecast error and capture the actual demand, as shown in Figure 8.
The results in Figure 8 presents the calculated forecast error at each time step. The variation
in the forecast error results in Figure 8 is mainly related to the high non-smooth nature
of the demand. Furthermore, Figure 9 presents the histogram of the forecast error for the
rolling stochastic ARIMAX forecast model for all testing periods. The rolling stochastic
ARIMAX forecast model takes into account the uncertainty in demand data by updating
the model variables after every time step to improve the forecast performance. The result
shows the forecast error values for all testing periods were normally distributed around
the zero value, as presented in Figure 9. The histogram plots for the forecast errors showed
that the high number of instances are clustered around zero error, which means that the
forecast model achieved the highest performance and no bias in the forecast error results,
which also means the minimum uncertainty (error) in the forecast profile. In order to
evaluate the forecast error and investigate the availability of any seasonality and trend
in the forecast error, the ACF of the forecast error series is plotted in Figure 10. The ACF
aims to measure the relationship between the historical errors and how the errors in the
time series are correlated. The ACF aims here to check if there are any seasonal patterns
in the error profiles. The forecast error series shows highly volatile behavior without any
repetition in the significant lags of ACF. This shows that there are no signs of trend or
seasonality, which makes it difficult to improve the forecast accuracy further.
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Figure 7. Results of rolling stochastic ARIMAX forecast model with the average demand scenario for a (a) monthly, (b) daily,
and (c) half-hourly testing period in Jordan (city center).
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Figure 8. Forecast error results of rolling stochastic ARIMAX forecast model with the average demand scenario for a
(a) monthly, (b) daily, and (c) half-hourly testing period in Jordan (city center).
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Figure 9. Histogram for the forecast error results of rolling stochastic ARIMAX forecast model with the average demand
scenario for (a) monthly, (b) daily, and (c) half-hourly testing period in Jordan (city center).
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Figure 10. Autocorrelation function (ACF) plots for the forecast error results of rolling stochastic ARIMAX forecast model
with the average demand scenario for a (a) monthly, (b) daily, and (c) half-hourly testing period in Jordan (city center).
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5. Conclusions

The multiple levels of movement restrictions to contain the spread of COVID-19 have
significantly affected the electricity demand consumption’s and the demand profile’s nature
and pattern. As economies try to recover from the COVID-19 pandemic, the electricity
demand starts to slowly return to the pre-pandemic values. However, the impact of the
COVID-19 pandemic continues, and will have a long-term effect on our lives. Thus, under-
standing electricity demand changes and their impacts on load forecasting is important to
maintain a reliable operation of the electrical grid. Unlike previous studies that covered
only the start of the pandemic period, this paper aimed to examine and analyze electrical
demand data over a longer period of time. The electrical demand analysis for three regions
showed a clear sign of peak and demand reduction due to the pandemic. Unlike previous
studies, the demand analysis process in this paper is developed based on eliminating the
times series correlation, trends, and seasonality impact on the demand analysis to cover
only the pandemic’s impacts. Finally, a rolling stochastic ARIMAX forecast model has been
developed to improve the forecast performance by capturing the non-smooth electrical
demand nature and creating a number of future electrical demand scenarios to feed the
forecast model. The proposed forecast model outperformed the benchmark forecast model
ARIMAX and ANN.
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