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Abstract: This article presents a spatial supply network model for estimating and visualizing spatial
commodity flows that used data on firm location and employment, an input–output table of inter-
industry transactions, and material balance-type equations. Building on earlier work, we proposed a
general method for visualizing detailed supply chains across geographic space, applying the prefer-
ential attachment rule to gravity equations in the network context; we then provided illustrations for
U.S. extractive, manufacturing, and service industries, also highlighting differences in rural–urban
interdependencies across these sectors. The resulting visualizations may be helpful for better under-
standing supply chain geographies, as well as business interconnections and interdependencies, and
to anticipate and potentially address vulnerabilities to different types of shocks.

Keywords: geography; networks; pandemics; supply chain locations; input–output table

1. Introduction

Like no other recent crisis, the coronavirus disease 2019 (COVID-19) pandemic has
raised public awareness of both the importance and vulnerability of national and global
supply chains, including those for food supplies, e.g., [1,2]. Beginning with the disruptions
in Wuhan, China, affecting Apple Inc., among other technology companies (e.g., [3–5]),
concern among policymakers, business owners, and researchers in the United States,
Germany, and elsewhere then shifted to the food processing sector, specifically beef and
pork slaughtering facilities (e.g., [6–10]). Subsequent studies focused on diverse sectors,
such as general food and beverage manufacturing [11], the fisheries sector [12], and ready-
made garment manufacturing [13].

While rudimentary spatial supply chains could be visualized by mapping where
different establishments are located using public information, such industry location maps
would not reveal flows of inputs and outputs between firms. Yet, in order to identify and
anticipate bottlenecks and disruptions, it would benefit public agencies and emergency
responders to know where and how these flows crisscross the economy in space, especially
when a highly contagious virus creates local infection hotspots and threatens workers.
We used a systems approach in this study to demonstrate how secondary public data
can be used under a limited set of assumptions to construct, model, and visualize spatial
supply chains for all businesses engaged in an industrial sector. For illustrative purposes,
we present these for primary, secondary, and tertiary sectors. Because of the importance
of agriculture and food, we provide additional discussion and illustrations from this
sector. For example, knowing where different food processors are located relative to
COVID-19 hotspots, an earthquake zone, or a tornado belt could be helpful for targeting
prevention resources, medical personnel, or even considering lockdowns and similar
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mitigation strategies. Moreover, knowing where different food processors within hotspots
sell their output to and from where they source their inputs in space could help to further
anticipate upstream and downstream impacts of the pandemic in geographic space.

Interest in supply chains research has expanded in recent years, as is evident from
a burgeoning academic literature, including one that draws on input–output tables. For
example, recent pre-COVID-19 articles have studied shocks to specific manufacturing
sectors resulting from natural disasters (e.g., [14,15]), how a product’s carbon footprint
is affected by expanding its lifetime [16,17], how to identify manufacturing supply chain
bottlenecks [18], how to mitigate the impact of road delays when shipping perishable
products [19], and they have examined hubs and spokes in international value-added
trade systems [20] and critical pathways and sectors for reducing pollution in Asia [21].
Supply chains also are of interest to planners, economic development practitioners, and
policymakers for their potential to stimulate and disperse economic development to lagging
regions. Alternatively, some regions may suffer greater exposure to natural shocks or
economic events, such as “Brexit” (e.g., [22]), due to their reliance on particular supply
chains. In the case of the food system, supply chains are also of interest for issues such
as social equity [23], waste and spoilage [24], the spread of disease [25], vulnerability
to disruptions [14,26], and the potential to enhance access to local or regionally sourced
food [27]. The most sophisticated studies available [28–31] examine food flows across space
but exclude the detailed and disaggregated intermediate processes and establishments
involved in transforming a product; in contrast, we do consider all of these intermediate
features in this study. For example, while Lin et al. [29] use the Oak Ridge National
Laboratory’s Freight Analysis Framework to approximate product flows, we used explicit
county locations of individual establishments to estimate product supply, demand, and
trade for each industry to estimate county-to-county trade flows for the products of all
industries. We also use the more detailed (albeit more dated) U.S. national input–output
table from 2012. Thus, our approaches were fundamentally different. Other studies use
approaches more similar to ours but examine only individual sectors, such as dairy [32] or
broiler meat [33]; our work can thus be considered a generalization and extension of earlier
studies to the entire economy. Finally, we also examined trade flows between rural and
urban areas to shed light on their economic interdependence.

In this study, we thus proposed a straightforward method for modeling and visu-
alizing supply chains over geographic space. While the approach is based on strong
assumptions, using the case of the United States we illustrate how it can be applied at
relatively low cost to all industries (we use the terms industry and sector interchangeably)
at the level of 409, 3-digit North American Industry Classification System (NAICS) interme-
diate industries, thereby providing a comprehensive view of all supply chains operating
in the nation. The purpose of this study was to illustrate the basic approach; given the
complexity and richness of networks, many further extensions are possible for applications
that are close to real-world situations, as we discuss below.

For illustrative purposes, we mainly show the high-level aggregations of flows, but
these can be disaggregated using multi-dimensional scaling (akin to zooming in on a na-
tional map to states, cities, and then neighborhoods; we illustrate this in the Supplementary
Materials for meat-packing plants, given the great interest in the vulnerability of that
sector at this time). Our results can be seen as complementing existing, more detailed
but very specific supply chain studies in the literature. Among other benefits, the maps
generated here (and in future, more detailed maps) would allow local decision-makers, as
well as business owners, to better understand how their economies and firms are linked to
surrounding regions, as well as to the nation, and how they depend on buyers and sellers
located elsewhere. The results are also useful for understanding complex rural–urban
interdependencies of different products and industries. Our visualization approach com-
bines information on the geographic locations of all U.S. firms and their employment with
the economic transactions (or matrix of supply chains) that are reflected in the national
input–output (IO) table compiled by the Bureau of Economic Analysis.
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IO tables are inherently aspatial, and while they have been used to model regional
flow relationships within and across countries, they have to date not been commonly
used to explicitly identify and visualize spatial supply chains of particular industries
at the subnational level. Here we illustrate how such chains can be modeled using the
information on local employment in different sectors, as well as the U.S. national IO table.
Our approach is conceptually similar to that of a materials balance equation (for a recent
example, [34]). We do not consider international trade flows because our primary interest
is in the geography of domestic supply chains, but export and import flows could readily
be introduced into the analysis.

The primary aim of our study was thus to generate and visualize monetary flows of
goods and services among industries and to locate these geographically by combining the
aspatial input–output table with detailed spatial data on where specific firms making up the
industries in the input–output table are located. Our work was located at the intersection
of the supply chain management and network visualization literatures. For example, a
growing literature uses visual analytics to model and understand [35] or design, manage,
and evaluate (e.g., [36]) supply networks, but these studies do not explicitly consider the
location of supply chains in space. Other studies seek to visualize innovation processes
in global supply chain networks but do not consider space explicitly (e.g., [37]), or they
consider latent innovation in specific locations but without visualizing the underlying
interactions that contribute to innovation (e.g., [38]).

2. Materials and Methods

Previous studies have used multi-regional IO models to model and identify inter-
regional and inter-industry economic flows at the state level (e.g., [39]), country level
(e.g., [29,40]), or internationally (e.g., [41]). Most of these regional IO studies share common
features: (1) they step down the national-level IO table to the region using regional-level
labor market data and (2) they assume identical technologies and tastes in each region
such that the quality of products is similar and consumers have the same preferences
across regions. Using these assumptions, regional IO tables can be estimated by linking
industries across regions. Recently, Boero et al. [42] proposed a non-survey method to
identify local IO tables and calculated trade flows using a gravity model and a transporta-
tion cost minimization model; however, they did not consider inter-industry trade flows
across regions.

Each local economy consists of a network of firms within their respective industries,
forming a local IO network in which local industries represent nodes and transactions
among the industries measured in dollars represent edges. Using the idea that nodes in a
network connect to each other in a predictable manner, and based on the above assumptions,
we can estimate the inter-industry linkages or flows across local areas. To model and
subsequently visualize the underlying supply chains, we make two key assumptions: (1)
transactions between local industries follow the gravity rule, which we extended to the case
of complex networks [43–47], and (2) the amount of production (supply) and consumption
(demand) of an economic sector are proportional to the employment of the sector, or
population in the case of final demand, including personal consumption expenditure and
residential private fixed investment. We discuss ideas for relaxing these assumptions
below.

The following variables and parameters were defined:

Xs—Total output of commodity s
Yt—Total intermediate input of industry t
xst—Transactions (in $) from commodity s to industry t
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xst
ij —Transactions (in $) from commodity s produced in local area i to industry t in local

area j
f su—Transactions (in $) of commodity s to the final demand of sector u
f su
ij —Transactions (in $) of commodity s produced in local area i to the final demand of

sector u in local area j
ps

i —Production (in $) of commodity s in local area i
ct

j—Consumption (in $) of industry t in local area j
f u
j —Final demand (in $) of sector u in local area j

dij—Network impedance (unit free) between local area i and j
γ—Exponential coefficient of the impact of network impedance
ms

i —Employment in local area i in industry s.

In the national IO table, the simplest balance equation of a commodity s is Xs =

∑t xst + ∑u f su. Considering the geographic distribution of products and the consumption
of the commodities or industries, we extend the material balance equation to that given as
Equation (1):

Xs = ∑
t

xst + ∑
u

f su = ∑
i

∑
j

(
∑

t
xst

ij + ∑
u

f su
ij

)
, (1)

Here, xst
ij and f su

ij indicate transactions between industries across local areas, i.e., the
local IO table for each county i (or j).

Assuming that the local production and consumption of a sector are proportional to
employment in the sector, or population in the case of final demand, we calculated the total
production of commodity s in local area i (ps

i ), total consumption of industry t in local area
j (ct

j), and total final demand of sector t in local area j ( f u
j ) using Equation (2):

ps
i = Xs ms

i
∑k ms

k
, ct

j = Yt mt
i

∑k mt
k
, f u

j = Yu mu
i

∑k mu
k

. (2)

According to the gravity model, interactions between two masses depend on their
relative sizes and the distance between them. Leontief and Strout [48] introduced the
gravity model to estimate transactions in an IO table, Riddington et al. [49] and Fournier
Gabela [50] used the model to generate local IO tables, and Duarte et al. [41] used the model
to embody carbon in international trade. We extended the gravity rule here by applying it
in the context of the preferential attachment rule in complex networks.

According to the preferential attachment rule, a node prefers to attach to nodes that
already have many connections [51] such that the transaction from commodity s produced
in local area i to industry t in local area j, xst

ij , is estimated with the following equation: xst
ij ∝

xst. The gravity rule suggests that the attachment force is proportional to the amount of
production and consumption, and inversely proportional to the network distance between
nodes [52]: xst

ij ∝ ps
i ct

j
(
dij
)−γ, where γ is the exponential distance coefficient. Each industry

may have its own unique distance coefficient; for example, agriculture may have a large
gamma value γ and a web portal has a small value. Because we do not know the specific γ
coefficient of every industry, we used 2 as a representative value. In future simulations,
different values could be explored in sensitivity analyses.
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Applying the equations above in a spatial network context, trade flows between in-
dustries in local areas are proportional to the amount of local production and consumption
of the industries, and inversely proportional to the distance between the two local areas.
The amount of commodity s produced in local area i that is consumed in industry t (xst

ij )
and final demand sector u ( f su

ij ) in local area j was calculated using Equation (3):

xst
ij = kst

ij ·ps
i ·Π

st
ij , Πst

ij =
ct

j ·x
st ·d−γ

ij

∑k ∑m cm
k ·xsm ·d−γ

ik
,

f su
ij = ksu

ij ·ps
i ·Π

su
ij , Πsu

ij =
f u
j ·x

su ·d−γ
ij

∑k ∑n f n
k ·xsn ·d−γ

ik
.

(3)

Here, Πst
ij is the potential flow of a unit commodity s produced in local area i to

industry (or sector) t in local area j. The proportionality factors kst
ij and ksu

ij were determined
using the following five conditional equations: total production of commodity s in place i
(ps

i ), total consumption of industry t in place j (ct
j), total final demand of sector u in place j

( f u
j ), total transaction from commodity s to industry t (xst), and the final demand u ( f su)

was fixed, as in Equation (4):

ps
i = ∑

j

(
∑
t

xst
ij + ∑

u
f su
ij

)
, ct

j = ∑
i

∑
t

xst
ij , f u

j = ∑
i

∑
u

f su
ij , xst = ∑

i
∑
j

xst
ij , f su = ∑

i
∑
j

f su
ij . (4)

Next, we discuss the data and their sources. We used the 2012 Benchmark Input–
Output use table from the Bureau of Economic Analysis (BEA) to measure the transactions
between economic sectors; this is presently the most recent version available. The IO table
identifies 409 intermediate sectors and 20 final demand sectors. We then used county-level
employment data from the Commerce Department’s County Business Patterns (CBP) to
estimate the amount of local production and consumption of each sector identified in
the IO table. Employment according to the NAICS was converted to employment using
the IO sector. The CBP do not provide farm-related (NAICS 111–112) or government
employment data; therefore, we used county-level farm sales measured in dollars from the
National Agricultural Statistics Service (NASS) based on the 2012 Census of Agriculture
and total government-related employment from the BEA. County-level populations were
used to measure the personal consumption expenditures and residential or non-residential
investment of counties.

Network impedances from Oak Ridge National Laboratory were used to measure the
county-to-county transportation costs or distances (Oak Ridge National Laboratory 2011
County-to-county distance matrix (cited 15 July 2018), available from: http://cta.ornl.gov/
transnet/SkimTree.htm). Transportation costs depend on the geographical environment
(mountains, river, etc.) and shipment mode (highway, railroad, ship, etc.). We used network
impedance to reflect these various logistics costs. Impedance reflects the distance between
each pair of county centroids via highway, railroad, water, and combined highway–rail
paths. A unit impedance indicates a 1 mile distance via highway, and different modes have
specific adjustment factors to convert the cost into a common unit: 1/3.3 for rail, 1/5.0
for an inland barge, 1/5.8 for the Great Lakes, and 1/6.5 for marine shipping. The lowest
impedance path was selected regardless of the transport mode used between counties; this
is a strong assumption, which could be relaxed in future extensions that consider specific
products and their forms, including perishability (e.g., canned vs. frozen or fresh). By way
of summary, Figure 1 shows how we conceptually derived the spatial supply chains.

http://cta.ornl.gov/transnet/SkimTree.htm
http://cta.ornl.gov/transnet/SkimTree.htm
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Figure 1. A conceptual model of spatial supply chain derivations. Here, ps
i is the production (in $) of commodity s in local

area i, ct
j is the consumption (in $) of industry t in local area j, and dij is the network impedance (unit free) between local area

i and j. xst are the transactions (in $) from commodity s to industry t. BEA: Bureau of Economic Analysis, CBP: Commerce
Department’s County Business Patterns, ORNL: Oak Ridge National Laboratory.

3. Results

For illustrative purposes, we generated simulated supply chain or network maps for
three representative industries that included the extractive sector (primary), manufacturing
(secondary), and services (tertiary sector): these were grain farming; motor vehicle gasoline
engine, and engine parts manufacturing; data processing, hosting, and related services. We
discuss grain farming first.

3.1. Grain Farming

Figure 2a shows the simulated flows of commodities over space using the above as-
sumptions and calculations for grain farming. The colored arrows or directed graphs reflect
the relative sizes of the simulated spatial transactions or supply chains. The clustering
of activities in grain farming and the supply chain for subsequent processing is evident
around the Great Lakes, the Midwest, and along the West Coast. Illinois is the largest
producer of soybeans and ranks second in corn production. Iowa is the largest producer
of corn and the second-largest producer of soybeans, while Kansas is the largest wheat-
producing state, followed by North Dakota and Washington (United States Department
of Agriculture, National Agricultural Statistical Service, 2017 (cited 15 December 2019),
available from https://quickstats.nass.usda.gov).

https://quickstats.nass.usda.gov
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Figure 2. Spatial supply chain of grain farming: (a) the simulated spatial transactions, (b) grain
farming’s relative production and consumption shares, and (c) the heat map.

We show only the largest (in this case >$1 million) transactions for grain flows na-
tionally to avoid cluttering the graphs. This threshold varies by sector, as shown in the
legends of subsequent graphs. To demonstrate the enormous size and number of total
transactions involved, consider that the flows of $1.0 to 1.8 million make up only 0.2 to 0.1%
of the total value of transactions in the grains sector; flows making up at least $9.2 million
comprise a mere 0.01% of the total value. This also underscores the tremendous complexity
and magnitude of the networks involved, as well as the calculations underlying these
simulations. Alternatively, consider that we are showing less than 1% of all transactions
in this sector (only the top 0.85%), and the resulting graph is already relatively dense. In
future work, we plan to introduce a multidimensional scaling feature into related mapping
software that allows decision-makers to study specific communities with much more detail.

Consequently, our maps show only the largest (most important) flows and transactions
for grains and other commodities (below), and as such, the primary locations of the most
important components of the supply chains. However, as we have already computed all
of the other remaining 99.8% of transaction flows, they could be graphed for subregions
of the country, or individual states and contiguous counties, if that were of interest to a
policymaker or planner-practitioner. To illustrate how more local detail can be provided
in terms of transactions, we show the zoomed-in flows of grain farming in Iowa and the
two largest sets of transactions—these are other basic organic chemical manufacturing
and flour milling and malt manufacturing (Figure S1). In the legend to the map showing
grain farming flows to other basic organic chemical manufacturing, for example, the
percentages show the share of these particular links (n = 77) out of the 776,085 total links
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for which the transactions were 4.4 M$ or more; these are only 0.01% of all national grain
→ other basic organic chemical manufacturing transactions or flows. Obviously, if we were
interested only in Iowa or the breadbasket region of the United States, we could calculate
these percentages with respect to the state’s or region’s total flows, which would yield
higher percentages.

For the sake of visual clarity, we limited the flows to those starting and ending within
the state of Iowa; it is also possible to add flows across state borders. In future work, we
will develop a platform that allows users to zoom in on particular commodities to trace
out these flows. We are also limited in the sector-level detail available from public data:
for example, we are unable to distinguish corn from wheat and soybeans using these data.
However, the flows for these different products could be developed using knowledge of
what is grown where, and how it is used: corn tends to be used as a feed and to produce
high fructose corn syrup, whereas soybeans are used primarily as livestock feed or are
exported. Wheat is used primarily for bread-making.

In Figure 2b, we show the relative production and consumption shares of grain
farming across the population density spectrum, ranked from lowest (most rural) to highest
(most urban) along the x-axis. By showing where grains are produced vs. consumed, one
can develop an idea of how much of the product has to flow over space. This also shows
the degree of interdependence between rural and urban areas and how that varies for
different commodities.

It is important to stress that this consumption is not just the end users of grain products,
such as consumers eating bread and pastries but also all value-added processing higher
up the supply chain. These activities include transportation, milling, refining, storing,
baking, etc. The latter explains why a relatively high share of consumption also occurs
in more rural areas: this is where grain millers and other processors are located. The fact
that some grain production occurs in more population-dense areas is also noteworthy.
This likely represents urban farming, as well as the growing of grains in fields located
in urban fringe and core areas. Figure 2b makes it clear that most grain production
and subsequent processing takes place in lower-density places, while consumption (for
example, in the form of bread or baked products but also as raw grain product prior to
milling) occurs in more densely settled urban areas, where consumers live and processors
including bakeries are based. The gap between where production and consumption occur
gives rise to the need for transportation between places and shows the interdependence
between rural and urban areas. This interdependence varies depending on the industry
(or commodity) and is of growing interest, especially to rural policymakers, as well as
economic development practitioners.

To further demonstrate the richness and utility of our approach, Figure 2c shows
where the production (vertical axis) and consumption (horizontal axis) of grains occur
in two-dimensional space and using a heat map, again ranked by population density
from rural to urban. Clearly, most grains were produced in rural areas, clustered as the
blue shading in the upper-left-hand corner of the graph, while the consumption of these
products was fairly evenly distributed across urban areas, shown as dark blue in the
right-most columns.

As an alternative to this heat map, we also tabulated the production and consumption
shares according to the rural–urban continuum. Here, we used the USDA Economic
Research Service rural–urban county classification scheme (USDA Economic Research
Service, Rural–Urban Continuum Codes, 2013 (cited 15 December 2019), available from
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes). Table 1 shows
that most consumption (56.2%) occurred in urban areas, where they received 15.8%, 20.3%,
and 20.2% of their products from rural, suburban, and urban areas, respectively. Note
again that in this case, the urban areas were also producing forms of grain products that
were higher up the supply chain (i.e., processed or producing other forms of added value).
As such, urban areas still produced 29.6% of all grain-farming-related products by value.

https://www.ers.usda.gov/data-products/rural-urban-continuum-codes
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes


Sustainability 2021, 13, 1512 9 of 15

Table 1. Production and consumption shares (%) for grain farming.

Production→
Consumption ↓ Rural Suburban Urban Total

Rural 11.6 7.4 15.8 34.8
Suburban 5.8 9.6 20.3 35.6

Urban 3.5 6.0 20.2 29.6

Total 20.8 23.0 56.2 100

3.2. Motor Vehicle Manufacturing

Turning next to the manufacturing sector example, Figure 3a clearly highlights the
well-known U.S. auto alley stretching from Michigan into Alabama, Georgia, and South
Carolina, with linkages to the former New United Motor Manufacturing, Inc. plant in
Fremont, California. Although the plant no longer exists (having been purchased by
Tesla Motors in 2010), gasoline engine and engine parts manufacturers and suppliers are
evidently still located there and continue to supply major manufacturers in the auto alley.
The smallest size category of transactions ranged from $1.4–3.3 million in this case, and
they made up 0.2–0.5% of the flows. Again, as noted already, it would be possible also to
map smaller, disaggregated flows within specific states and counties. Using knowledge of
where the major automobile plants are located, one could begin to approximate the supply
chains of individual manufacturers (e.g., Chrysler vs. BMW vs. Mercedes).
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Figure 3b likewise shows the relative production and consumption shares for this
sector, again including all subsequent value-added activities (such as attaching fuel pumps
to engines during final assembly), that were distributed across U.S. counties ranked from
lowest to highest population density. While consumption and production did occur in
rural areas, as well as urban, clearly much less activity was found in rural areas for this
sector compared to grains. Furthermore, in this case, there was more of an overlap of the
production and consumption lines than was the case for the grain sector; this, in turn,
suggests that, on average, the consumption (using) and production (making) of parts were
more closely co-located in space for this sector, presumably to economize on shipping costs.
Although we do not provide them here, it is of course possible to generate figures and
tables for this sector that correspond to Figure 2c and Table 1 above.

3.3. Data Processing

Our third example is from the services sector. Figure 4a indicates that most data
processing, hosting, and related services were based in major metropolitan areas, including
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New York City, Chicago, and Dallas-Fort Worth, as well as places that were home to
well-known high-tech companies along the West Coast, including Seattle, San Francisco,
and Los Angeles, and that most transactions occurred between these areas. Here, we map
only transactions of at least $1.8 million to avoid clutter; the largest flows were valued
at $33 million and higher (the largest 0.02% transactions). Altogether, we are showing
only the top 0.3% of all transactions in the data processing, hosting, and related services
supply chain.
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Figure 4b clearly shows that most of these data services were also consumed where
they were produced (as evident from the tight overlap between the grey and orange
production and consumption lines). Most notably, virtually no activity was observed in this
sector in low population density, highly rural areas. However, the high degree of overlap
between the lines in Figure 4b is also misleading in that Figure 4a reveals major trade links
for these services up and down the supply chain across the nation, with major flows of
services occurring across the East Coast, Chicago, Florida, Texas, and West Coast.

So far, the above figures show the largest transactions within the primary designated
supply chain. Because we are dealing with networks, a next step could be to examine the
subsequent supply chains of the top recipients of transactions from each of these initial
suppliers. In this manner, we can simulate the cascading supply chains that emanate
from these initial sectors, starting with the top two sectors. This is shown in Figure S1; in
principle, these maps can be generated for each of the other sectors that are relevant to the
one showcased.

3.4. Additional Illustrations from the Food System

Figure S2 shows other basic organic chemical manufacturing, along with flour milling
and malt manufacturing, as the top two recipients of the transactions from grains. The first
of these sectors includes synthetic sweetener (i.e., sweetening agents) manufacturing, or
high fructose corn syrup, which is one of the major uses of corn, other than animal feed.
Soybeans, another major grain, are largely exported and as such do not show up in our
domestic transactions analysis. Again, however, this could easily be incorporated if one
were interested in international trade flows as well. It is also noteworthy that animal feed
does not appear as a major flow in the figure. This is due to the fact that many livestock
farmers grow their own feedstock and, as such, these flows would not appear in the
transactions table as inter-industry (or inter-firm) commodity flows, as ownership is never
transferred. Furthermore, Figure S2 shows the shares of production and consumption
across the population density spectrum. Clearly, different patterns again emerge for the



Sustainability 2021, 13, 1512 11 of 15

two sectors shown, and the same is true of the patterns across the rural, suburban, and
urban spectrum.

In Figures S3 and S5, respectively, we show the top two recipients of transactions
from our illustrative examples in the manufacturing and services sectors. While the light
truck and utility vehicle manufacturing activity map looks similar to a lighter version of
the motor vehicle gasoline engine and engine parts manufacturing sector in Figure S3, it
completely lacks the West Coast (California, in particular) component. On the other hand,
the map for automotive repair and maintenance had a relatively strong presence in western
New York state and a heavy presence in California. In Figure S4, personal consumption
expenditures (i.e., consumers) and non-depository credit intermediation activities are seen
to be the two users of data services. Perhaps not surprisingly, the former map looks very
similar to that of data services (with the services essentially being produced where they
are consumed, even though transaction flows did occur across county lines), while the
non-depository services appeared as a much lighter version. It is noteworthy that the
latter already included 4.7% of all transaction flows in this particular sector. The tables
underneath the maps and line graphs confirmed that most (97.1%) of these types of services
were produced in urban areas.

In Figures S5 and S6, we show two additional important agricultural sectors with produc-
tion and primary supply chains, as well as the respective top two recipients of transactions. For
vegetables (Figure S5), California was the leading state in terms of area harvested and the value
of production with 39.1 and 56.7%, respectively. Florida contributed 6.6% of area harvested
and 7.6% of the total value of production (USDA. Vegetables 2017 Summary, 2018 (cited 15 De-
cember 2019), available from https://downloads.usda.library.cornell.edu/usda-esmis/files/
02870v86p/5425kd81z/9019s517t/VegeSumm-02-13-2018.pdf). In Figure S6, the map for cat-
tle highlights that Texas was a major cattle-producing and -processing state. It contributed
14.5% of cattle to the national inventory, followed by Kansas and Nebraska, with 7% each.
The major processing states for cattle were Nebraska, Kansas, and Texas (North American
Meat Institute, The United States Meat Industry at a Glance, 2018 (cited 15 December 2019),
available from https://www.meatinstitute.org/index.php?ht=d/sp/i/47465/pid/47465).
To provide detail, given the concern about meat-packing industry employees contracting
COVID-19, we again “zoomed in” on the state of Iowa to illustrate the within-state flows.

In Figure S7, the first two maps show the flows of beef cattle to packing houses, again
with estimated volumes of flows between each county, and flows of cattle between farms
(mostly breeding-related or for fattening). The third map shows the flows of processed
meat from the packing houses to retail consumers (in the form of personal consumption
expenditures, which is how this was tracked within the input–output table). The two maps
in Figure S8 show the flows between packing facilities, usually for more refined cuts of
meat or to deal with product volumes that exceeded the capacity of any one house, as well
as direct flows from packing houses to limited-service restaurants, which were essential
fast-food places that were sourcing from local packers. In this manner, great sector-level
spatial detail can be provided for the different industries.

4. Discussion

By extending and generalizing earlier studies, this article presents a spatial supply
network model that can be used to estimate and visualize spatial flows of any commodity
within a country. The resulting maps can be matched with data on natural disasters
and pandemics, as well as city- or county-level infection hotspots, to anticipate where
the mitigation and protection of workers may be critically needed. Extensions of this
work would include multidimensional scaling that allows decision-makers to zoom into
particular communities for greater detail, or to trace the simulated flow of a particular
product through local counties.

We suggest that these visualizations with more detail can be helpful for address-
ing supply chain problems now but also in the event of future pandemics, diseases, or
food-safety-related issues. In the future, it is also likely that the identified supply chain

https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/5425kd81z/9019s517t/VegeSumm-02-13-2018.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/5425kd81z/9019s517t/VegeSumm-02-13-2018.pdf
https://www.meatinstitute.org/index.php?ht=d/sp/i/47465/pid/47465
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connections and geography will change as weather fluctuations become more pronounced.
The corn belt is expected to shift northward [53] and California, the current leading state
in vegetable production, is likely to continue to experience either drought or heavy rains,
leading to significant crop losses. Mapping and comparing these shifts over time will allow
users to forecast spatial changes in supply chains. Changes in one local economy would
ripple through the entire economy and force a restructuring of other local economies, where
these changes can be modeled using the framework provided in this article.

Our method is based on strong assumptions, such as constant technology and pref-
erences over space. Productivity is higher in more densely settled places, but this could
be introduced in further refinements of the method (for example, a productivity premium
or discount associated with density). In addition, we do not incorporate international
trade linkages, although this could easily be done in the future using the IO table, as well
as import/export data associated with ports located in different counties. Our approach
also suffers from typical problems in regional economic studies, such as cross-hauling.
Yet we submit that the visualization proposed here offers more potential place-specific in-
sights than the next alternative, which would be the Commerce Department’s Commodity
Flow Survey, which is available only every 5 years and provides only state-level rather
than county-level data. As such, our work also complements and further refines that of
Boero et al. [41].

For the specific research questions discussed in this study, and especially in the
context of an evolving pandemic, clear opportunities exist to extend the proposed approach.
First, it can be used to identify future potential business opportunities that are related,
for example, to import substitution. The fact that producers in any one county incur
longer transport distances for a given commodity than other counties means that residents
(firms) of the county consume relatively more expensive products. Next, the resilience
(or vulnerability) of the local economy can be measured over space. A county with more
complex transactions is more resilient [54,55]. Here, it is possible to explore network-
based concepts, such as local cascading failures and structural holes, in addition to the
key inter-county linkages. This would help local decision-makers to better understand
the independencies to which their respective county economies may be exposed. This, in
turn, could be used to identify vulnerabilities within counties to natural (or human) shocks
that may wipe out key suppliers, as well as critical rail and road infrastructures. More
strategic planning could be devoted by county emergency response management to such
disruptions. Furthermore, economic clusters of counties that share similar transactions and
vulnerabilities can be identified and categorized. Finally, changes in the local economies
that may result from environmental changes can be forecast, including climate change,
improvements in technology and population growth, and natural shocks and disasters [56].
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supply chain for motor vehicle manufacturing to the top two recipients of the transaction, Figure
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