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Abstract: While the world’s total urban population continues to grow, not all cities are witnessing
such growth—some are actually shrinking. This shrinkage has caused several problems to emerge,
including population loss, economic depression, vacant properties and the contraction of housing
markets. Such issues challenge efforts to make cities sustainable. While there is a growing body
of work on studying shrinking cities, few explore such a phenomenon from the bottom-up using
dynamic computational models. To fill this gap, this paper presents a spatially explicit agent-
based model stylized on the Detroit Tri-County area, an area witnessing shrinkage. Specifically, the
model demonstrates how the buying and selling of houses can lead to urban shrinkage through
a bottom-up approach. The results of the model indicate that, along with the lower level housing
transactions being captured, the aggregated level market conditions relating to urban shrinkage are
also denoted (i.e., the contraction of housing markets). As such, the paper demonstrates the potential
of simulation for exploring urban shrinkage and potentially offers a means to test policies to achieve
urban sustainability.

Keywords: agent-based modeling; housing markets; Urban Shrinkage; cities; Detroit; GIS

1. Introduction

For the first time in human history, more people are living in urban areas (4.2 billion
people or 55% of the world’s population) and this is expected to grow in the coming
decades [1]. While the world’s urban population continues to grow, this growth is not
equal [2]. Some cities are actually shrinking, and the list of shrinking cities expands every
year and currently includes: Leipzig in Germany; Urumqi in China; and Detroit in the
United States [3–5]. The causes of urban shrinkage have been the source of much debate
but can be broadly attributed to a combination of factors related to deindustrialization,
suburbanization (i.e., urban sprawl) and demographic withdrawal (see: [6–8]). It has
also been noted that urban shrinkage poses a significant challenge to urban sustainability
from the urban planning, development and management point of view due to declining
populations and changes in land use [9].

The challenges brought by shrinking cities, especially in and around the traditional
downtown core of the city results in many problems such as population loss, economic
depression (due to loss in tax revenue), a growth in vacant properties and the contraction of
the land and housing markets. From a more general perspective, cities that focus too much
on one branch of the economy are often not regarded as sustainable, as such cities are more
vulnerable if the specific industry that they rely on declines [10] (as was the case for Detroit
and its reliance on the manufacturing industry). Hence, a decline of a specific industry will
cause people to lose their jobs and unemployment rates to rise. Residents in such cities may
therefore leave their current location in order to find employment opportunities in other
areas. Such employment mobility results in a large number of properties in shrinking cities
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to be left vacant as the population in a city declines. Significant amounts of vacant land
and abandoned properties across an entire urban area are one of the key characteristics of a
shrinking city [11]. Not only do these vacant (abandoned) properties potentially result in
higher rates of crime [12], but they also impact the local economy and contract the local
housing market [13]. For example, local governments collect less property tax revenue due
to the vacant properties, and therefore have less money to allocate to public safety and
infrastructure, which in turn potentially accelerates population decline. In other words,
the economic decline may worsen and the vacant properties may lead to the oversupply
of stock within local housing markets. Therefore, it is rational to expect house prices to
decrease and, if the population continues to decline, the local housing market may contract
or collapse completely [14].

Numerous factors including regional housing market trends, job suburbanization,
deindustrialization, downturns in the economy, increasing unemployment rates and pop-
ulation loss account for the causes of shrinking cities and the consequent contraction of
the housing market at the macro-level [14–16]. For example, in Detroit, the continued
suburbanization of jobs has driven people from downtown areas. More generally speaking,
deindustrialization and the loss of manufacturing, construction, and retail has accounted
for 60 percent of job losses in the 100 largest United States metro areas over the last few
decades [15]. People working in such sectors become unemployed and seek employment
elsewhere [8]. The motivation of this paper is to explore the housing market in a shrinking
city from the micro-level interactions, specifically based on individuals’ preferences and
trading interactions. Therefore, an agent-based model is utilized as a tool to simulate and
analyze a shrinking city’s housing market. Specifically, we explore how urban shrinkage
emerges at the macro-level through the simulation of housing trades at the individual level.
In the remainder of the paper, Section 2 introduces the study area and provides a literature
review with respect to housing and land markets from an agent-based modeling perspec-
tive. Section 3 outlines our model, while Section 4 presents the results of our simulation
experiments. Finally, Section 5 concludes the paper and discusses areas of future study.

2. Background
2.1. A Shrinking Detroit

The city of Detroit is the largest city in Michigan, located in the Great Lakes area of
the United States, which has also been given the moniker the “Rust Belt region”. There are
many stories that discuss the greatness of this city during the 1950s—when the automobile
manufacturing sector rapidly expanded and its population reached its peak [17]. However,
the stories today often describe how over the last 60 years the city of Detroit has declined
and shrunk. Specifically, how a growing city can rapidly become a declining one if it is
focused on only one branch of economic production (e.g., in the case of Detroit this was the
automobile). We believe that the city of Detroit is an excellent example of urban shrinkage.
Numerous factors contributed to the bankruptcy of the city in 2013. One key reason is the
increasing competition in the automobile manufacturing industry brought by globalization.
Jobs in manufacturing tend to be more suburbanized and thus employment is more decen-
tralized. Deindustrialization swept through the city of Detroit and its surrounding regions
over the last few decades [18]. Another significant phenomenon that Detroit has witnessed
is population loss, a decrease of over 60% in the last 60 years and 25% in the 10 years
up to the 2010 census [5]. This process has accelerated the contraction of the housing
market as employees in certain industries (e.g., manufacturing) become unemployed and
seek employment elsewhere which results in more houses in residential areas becoming
vacant. Large numbers of vacant properties and vacant land are now dispersed to almost
every corner of the city. This is shown in Figure 1, where the darker color indicates more
vacant units within each census tract from the 2010 census [19]. There were approximately
60,000 vacant parcels of land and about 78,000 vacant structures, of which 38,000 were
considered to be unliveable in 2014 due to the potential for structural collapse [17]. With the
increasing number of unliveable properties within the city boundary, the supply side of
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the housing market shrinks. In addition, population loss, caused by deindustrialization,
and suburbanization lead to shrinkage on the demand side (i.e., people looking for homes).
This combination of factors leads to the housing market shrinking from both the demand
and supply sides in Detroit [20].

Figure 1. Vacancy Unit Numbers of each Census Tract in Detroit Tri-County Area for 2010.

2.2. Literature Review

This section discusses the rationale for exploring urban shrinkage via dynamic compu-
tational approaches (unlike more static aggregate ones such as spatial interaction models);
moreover, why we utilized an agent-based modeling approach by introducing works
related to the topic of land markets (which, as noted above, are one of the main factors of
urban shrinkage). However, before we discuss these, let us first present our rationale for
choosing computational approaches. Our reasoning for this approach is that they allow us
to test various scenarios and experiments in the safe environment of a computer. What we
mean by this, is that it might not be feasible or ethical to carry out real world experiments,
for instance setting a building on fire and watching how people might evacuate, but one
can simulate such experiments in an computational model and observe the outcomes [21].
Generally speaking, such dynamical computational models fall within either the cellular
automata or agent-based modeling methodologies [22]. Such modeling methodologies
have been used to explore a wide-range of topics under the umbrella of urban dynamics
(see for example: [23,24]). One of the most widely explored areas with such models is
that of land use change and urban sprawl [25]. For example, the SLEUTH [26] model
has successfully simulated land use transitions relating to the urban sprawl around the
world (e.g., San Francisco, Washington, D.C.-Baltimore area, and “Chongqing, China,
etc.) [27,28]. Recently, cellular automata models equipped with more advanced machine
learning methods (e.g., Neural network and Random Forest) have been utilized to simulate
urban expansion in China with enhanced accuracy over more traditional cellular automata
approaches [29,30]. A closely related but slightly different approach to exploring land
use change regarding urban sprawl is that of agent-based modeling. The major differ-
ence between agent-based modeling and cellular automata is that in agent-based models,
one represents heterogeneous agents and each agent can have their own rule set which
is generally not the case for cellular automata models where transition rules tend to be
homogeneous [21,31–33]. By utilizing agent-based modeling, a variety of urban issues
have been explored, ranging from urban growth [34], land use and land cover change [35],
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the rise of creative cities [36], to that of urban migration [37]. Focusing more on residential
dynamics, agent-based models have been used to explore residential choices and gentrifi-
cation (e.g., [38–40]). However, as noted by Schwarz et al. [41], there is a gap in simulating
urban shrinkage through agent-based modeling.

Readers might be wondering why one might want to utilize agent-based modeling for
examining urban shrinkage? One reason is the ability of agent-based models to capture the
hierarchical structure of systems from the bottom-up, in a sense they focus on individual in-
teractions of entities (e.g., individuals buying and selling houses) at the micro-level and allow
us to capture more emergent phenomena at the macro-level (e.g., land markets). As such,
agent-based models can provide insights into the target phenomenon or system of interest, es-
pecially for complex systems that involve human–environmental interactions [42,43]. In such
systems, humans can impact the environment by their actions and in turn the environment
can impact humans (e.g., [42]). Housing and land markets are excellent examples of human–
environmental systems, as the main components in such markets at the micro-level are the
buyers and sellers [44]. Such actors (i.e., agents) make their own decisions to trade or interact
with each other and are impacted by the environment (e.g., economic and physical conditions)
which can lead to a variety of housing market dynamics emerging overtime at the macro-level.

Secondly, agent-based modeling, unlike other modeling techniques, allows us to
represent individuals as autonomous heterogeneous entities, each with different attributes
(e.g., income), which make decisions based on what they know about other agents as well
as the environment in which they are located [31,45]. With respect to housing and land
markets, this is an important consideration as all actors in the system (e.g., the buyers
and sellers) have different socioeconomic backgrounds, housing preferences, along with
different bid and ask-price strategies [44,46]. Therefore, through the implementation of
an agent-based model these heterogeneous characteristics and unique behaviors can be
represented and simulated.

With respect to modeling markets, Gode and Sunder [47] were among the first to
demonstrate how agent-based models could be utilized to capture supply and demand.
In their abstract model, traders were selected at random to buy and sell goods and through
these interactions demonstrated how supply and demand curves observed in “real” world
situations could emerge through simulation. Turning to land markets, Filatova et al. [48]
demonstrated how heterogenous agents with different ask and bid pricing behaviors could
generate a land market in a stylized abstract environment while at the same time capturing
urban growth, which was validated against Alonso’s [49] theory of land rent within a
monocentric city. Other researchers have also explored land markets emerging from the
bottom-up and how they impact land use within cities (e.g., [40,46]). For example, Torrens
and Nara [40] simulated the demand and supply sides of a land market to explore urban
gentrification in an area of Salt Lake City, Utah. However, while agent-based modeling of
residential housing choices and land markets has started to show its potential as a valuable
methodology for exploring urban issues from the bottom-up, no studies have examined
land markets and urban shrinkage yet. Studies utilizing agent-based modeling to explore
the urban shrinkage to date have mainly focused on land use and residential dynamics
(e.g., [50]) instead of housing market dynamics.

We would argue that capturing housing markets is essential for understanding urban
shrinkage, as the contraction of housing markets is caused by population loss under an
urban shrinking situation [13]. Hence, a model of urban shrinkage should capture not only
residential dynamics but also trades (or lack of) within the housing market. Therefore,
an agent-based model stylized on spatially explicit data is presented in this paper to
simulate the urban shrinkage in the Detroit Tri-County area. For the purpose of this model,
we want to explore how micro-level housing trades impact on macro-level shrinkage by
capturing trades between sellers and buyers within different dynamic sub-housing markets.
Our initial efforts in this area were presented in [51], where we showed that a stylized
model could not only simulate housing transactions but the aggregate market conditions
relating to urban shrinkage (i.e., the contraction of housing markets). In this paper, we
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significantly extend our previous work by: (1) enlarging the study area; (2) introducing
another type of agent, specifically a bank type agent; (3) enhancing the trade functions by
incorporating agents’ preferences when it comes to buying a house; (4) adding additional
household dynamics, such as employment status change. These changes will be discussed
in more detail in Section 3, which we turn to next.

3. Methodology

This section provides details utilizing the Overview, Design concepts and Details
(ODD) protocol by Grimm et al. [52] for a model exploring urban shrinkage by simulating a
generalized housing market based on the Detroit Tri-County Area, Michigan. In Section 3.1
we provide a brief overview of the study area and the agents in the model. Section 3.2
discusses model design concepts and Section 3.3 provides implementation details of the
model. NetLogo 6.1 [53] was utilized to create the model. The model itself and a detailed
ODD document [52] are available at: bit.ly/ExploreUrbanShrinkage, while the graphical
interface is shown in Figure 2. We provide the model and data to allow readers not only to
replicate the results presented in this paper but also to extend the model if they so desire.

Figure 2. Model graphical user interface, including input parameters, monitors (left) and the study area (middle) and
charts recording key model properties ((A): Number of households in different sub-markets; (B): Verification plot for total
household numbers (e.g., total household number, number of bank agents, the number of employed and unemployed
households); (C,D) show the median and average house price changes during the simulation).

3.1. Overview
3.1.1. State Variables and Scales

As noted in Section 2, the purpose of this model is to explore urban shrinkage by
simulating housing transactions and the aggregate market conditions relating to urban
shrinkage. Therefore, this model focuses on housing trades or transactions within various
housing markets, rather than the economy as a whole. However, variables within the
model that capture employment will be discussed in Section 3.4.2. Hence, trades between
buyers and sellers within different sub-housing markets are simulated by this model.
The whole Detroit Tri-County area can be divided into three sub-housing markets, which
are comprised of: (1) downtown; (2) city suburban; and (3) far suburban housing markets,
by utilizing spatial data which for an area of 5095 km2 as shown in Figure 3. Both the
downtown area and suburban areas are within Wayne County. The difference is that
the downtown area is defined by the Detroit opportunity zone data [54], while the city
suburban areas exclude the downtown area. The rest of the study area, which we call
far suburban, comprises part of Wayne County which is not defined as downtown or

bit.ly/ExploreUrbanShrinkage
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city suburban, along with Oakland and Macomb Counties, where the distance to the
downtown area is much greater. In order to model, simulate and experiment with the
housing market, we chose NetLogo as it has the capabilities to handle the spatial data
needed to build the model and allows for rapid prototyping. The sequence of all the events
in this model is displayed by the unified modeling language (UML) diagram in Figure 4,
which demonstrates the model flow and dynamics.

Figure 3. Study Area.

There are two types of agents in this model—households and banks. The main agents
are households who live in the Detroit Tri-County area. In the model, for the purpose of
simplification, one agent is used to represent 100 households. Agents are comprised of
various attributes that result in a heterogenous population. Except for the attribute HPOLY,
the rest of the agents’ attributes were selected for inclusion within the model based on
relevant literature, which is summarized in Table 1. Agents are heterogenous and vary in
their characteristics (e.g., ID, neighborhood type (i.e., HNT)) and finical backgrounds (i.e.,
HINCOME). Furthermore, household agents can be categorized into two types: buyers
and sellers, and they are all goal-oriented. All buyers have one goal which is finding an
affordable house by proposing a bid-price to sellers. If buyers are not able to find affordable
properties in four consecutive years, they will be removed from the system. On the other
hand, sellers aim to post an ask-price and maximize their profits from the trades (this will
be further discussed in Section 3.4.1). Sellers who fail to sell their houses are forced to leave
the system, at that time, the bank agent takes over the unsold houses and attempts to sell
these houses. Further details about the role of banks is provided in Section 3.3.1. As for
the attributes of the bank agents, only three attributes are inherited from sellers, which is
summarized in Table 1.
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Table 1. Agent attributes.

Attribute Description Agent Type Reference

ID Unique ID for households Household [48]

HNT Household neighborhood type that indicated which
sub-housing market is household located Household [54]

HPOLY Polygon ID indicated which polygon is household on Household & Bank Authors
estimation

HINCOME Income of the household Household [40,55]
HBUDGET Budget for annual housing cost and purchasing new house Household [48]

ROLE 0: Regular household; 1: Buyer; 2: Seller Household [48]
BIDPRICE Only associate with buyer households Household [48]
ASKPRICE Only associate with seller households Household & Bank [48]

EMPLOYED? Boolean value, if true, household has job, else, no jobs Household [55]
TRADE? Boolean value, if true, indicates household will trade Household & Bank [48]

YEAR Years that the household entered the market Household [55]

Figure 4. Unified modeling language (UML) Diagram of the Model.

The other component of this model is the environment, which contains two differ-
ent elements: (1) Geo-spatial; (2) Artificial housing market comprising three different
sub-markets—downtown, city suburban and far suburban. The geo-spatial environment
provides a geographic boundary of the whole simulation area and the boundaries of the
three sub-markets. Also, the geo-spatial environment provides a physical environment
for all agents to move around and the places where the households are located. This en-
vironment also contains the artificial housing market, which captures the housing trades
between buyers and sellers. The temporal scale in this model is one year, which is reflected
by one time step in the NetLogo model. Every year, households make decisions to become
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buyers and to trade with sellers or banks. Our rationale for choosing a year is that it is
unlikely for households to move more than once a year, and many other residential models
use a 1 year time step (e.g., [34,38,50,56,57]).

3.1.2. Process Overview and Scheduling

As discussed in Section 3.1, household and bank agents are the main entities in the
model. The key attribute of the households is their income (i.e., HINCOME) level, which
provides heterogeneity within the world and is updated as the simulation progresses
(see Section 3.4.2). There are several models that have used income to control residential
decision making (e.g., [48,49,55]). Accordingly, in this model, each household will make
their decisions based on their income status, that is, to either stay or leave their current
locations as shown by Figure 5. During each time step of the simulation, households will
check if they can still afford their current living location based on their annual budget
(i.e.,HBUDGET), which is calculated from their income. In addition, this income attribute
also informs housing trades (i.e., what they can afford to buy). This affordability check
will be explained in detail in Section 3.4.1. Once the buyer household decides to enter the
housing market, they search for sellers (which include banks) to interact with based on
their annual budget (i.e., HBUDGET). Similar to the real world, where buyers are restricted
to what they can afford, buyers within the model choose sellers within the filtered list and
offer a bid (i.e., a bid-price) to either sellers or banks, which will be discussed further in
Sections 3.2.1 and 3.4.1.

Figure 5. Household Decision-Making Process for Stay or Leave Current Location.

3.2. Design Concepts
3.2.1. Observing

In order to capture the housing market dynamics, we measure various variables
hierarchically, of which the details will be discussed in Section 3.5. At the macro-level,
the overall average and median house price, as well as the total number of buyers and
sellers within the study area is recorded at each time step of the simulation. At the micro-
level, each different sub-market will capture the average and median house prices and the
number of households through the entire simulation to reflect the differences among the
three sub-markets in order to see if any shrinkage is occurring.
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3.2.2. Sensing

All household and bank agents know which sub-markets they are located in and
the price of the house they currently live in. As will be discussed in Section 3.4.1, they
set budgets based on their own incomes and the budgets can be updated along with
changes in income at each time step of the simulation. Housing trades are the main
interaction in our model. Households who become buyers will use their budget to set
the bid-prices (BIDPRICE). For buyers who fail to trade with sellers in one time step, the
bid-price (BIDPRICE) will increase in the next time step. Each seller will set their ask-price
(ASKPRICE) based on the current house price. The ask-prics (ASKPRICE) will decrease in
the next time step if the seller fails to sell their current house. Banks have similar behavior
to that of sellers. The only difference is that the bank decreases their ask-price at a greater
rate. The rationale for this is because banks may want to sell the house within a short
time frame [58]. Details related to bid-price and ask-price dynamics will be discussed in
Section 3.4.2. Within the housing market, buyers make trades with sellers and they will
know every seller’s ask-price, which allows buyers to choose a specific seller based on
their financial capabilities. The trade will happen once the buyer finds a seller to trade with
and they agree upon the price. Further discussions related to the negotiation process are
provided in Section 3.4.1.

3.3. Details
3.3.1. Initialization

The initialization of the model is based on socioeconomic and geo-spatial data of the
study area. The socioeconomic data (e.g., income, employment status, house prices) come
from the Decennial Census [19] for each census tract in the study area. Before applying
this data to initialize the number of household agents within our simulation, the data were
preprocessed using Python to allow for efficient input into the NetLogo platform. Due to
the computational constrains of NetLogo, simulations that entail a large number of agents
are computationally intensive and time-consuming. To mitigate this we therefore only
represent 1% (i.e., 10,602) of the total number of households within the study area. The
model initializes the household agents tract by tract. There is a total of three stages during
the initialization process: (1) Create households; (2) Assign employment status; (3) Assign
house price. The households are initialized by using the income background from the
census dataset. For instance, if 500 households fall into the $10,000 to $15,000 income range
for a certain tract, five household agents will be generated with their incomes assigned
to this range. As for the income, if the household agent is generated within the $10,000
to $15,000 income range, the income of this household will be ten plus a random integer
between 5. After the generation of the households, several socioeconomic attributes are
introduced to the household agents, such as employment status and house prices, which
provides the household agents with more heterogeneous attributes. The employment
status is extracted directly from the census dataset to assign each household agent an
employment status. For instance, if 20% of the households are employed in a particular
tract, the model will assign 20% of households in this tract as employed and the rest of
them will be unemployed. To assign the house price for each household, the procedure is
similar to assigning employment status. We use the percentage of households falling into
various house value ranges to assign the house value. For instance, if 20% of households’
house values fall into $50,000 to $100,000, those households’ house values will be 50 plus a
random integer within 50.

In addition, three input parameters are used to initialize the model. The first being
the demand and supply condition (D-S parameter), which controls the ratio of buyers and
sellers. The model generates sellers based on the number of buyers. For instance, when
set to default (i.e., 0.5) the total number of buyers and sellers initialized is equal which
indicates equal demand and supply. While 0.1 would reflect demand exceeding supply
(i.e., more buyers than sellers), 0.9 would be the opposite (Section 4 shows the results of
changing this parameter). The second input parameter, HAVE-BANK? allows the model to
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add a bank agent. When set to its default (i.e., True), the bank agent is added to the model
(more details about the bank agent are given in Section 3.4.2). The last input parameter is
Price-Drop-Rate, which was inspired by what we see in the real world; that when a house
has been on the market for several months, the sellers often drop the price. A notable model
that does something similar is that of O’Sullivan [39], which decreased the percentage
for each seller’s ask-price in the next time step if the property remained unsold. Table 2
provides an overview of the model input parameters along with their default values.

Table 2. Initialization parameters’ default values.

Parameters Default Value Description Reference

D-S 0.5 Demand and supply, can be controlled by the user; the
default value indicates equal demand and supply

Author
estimation

HAVE-BANK? True Allow banks agent to be added to the model; default
value indicates banks will be added

Author
estimation

Price-Drop-Rate 5%
Ask-prices decrease rate, can be controlled by the user;
the default indicates 5% decrease of ask-price, if the
house is not sold.

[39]

3.3.2. Inputs

Data play an important role in model parameterization, as discussed in Section 3.3.1,
with respect to the initialization of the simulation. Furthermore, data play a role in valida-
tion which we will discuss in Section 4. Two categories of vector data are utilized in this
work: spatial data and socioeconomic data. Spatial data include: (1) Detroit city boundary
(shown in Figure 3); (2) Tri-County area boundary including Wayne County, Oakland
County, and Macomb County; (3) All census tract boundaries for the Tri-County area. The
census tract boundaries can be associated with socioeconomic data which were acquired
from the census dataset [19], as shown in Table 3.

Table 3. Census Variables for Model Initialization.

Variable Description Usage

H_I_K The number households fall in various income ranges (i.e.,
10 k to 15 K) Initialize the agents and their incomes

H_V_K The percentage of households falls to various house value
ranges (i.e., 50 k to 100 K) Initialize the agent house price

H_EM_R Employment status of each census tract Add employment status for each agent

3.4. Sub Models
3.4.1. Housing Market

There are three stages for the simulation process: (1) affordability check of household;
(2) generation of sellers and buyers; (3) trade and move-in. First, households will check their
affordability on their current house by comparing their annual budget (i.e., HBUDGET) and
the minimum housing cost (which we describe below). To check this, all households will
set their budgets, which represents 34% of their income (i.e., HINCOME) and can be used
on annual house fees, including property tax, annual maintenance, mortgage payments,
and so forth [59]. To calculate the minimum housing cost, three percentage numbers are
referenced including 1.52% of the house price for the property tax, 1.3% of the house price
for the annual maintenance fee and 4.54% of the house price for mortgage payment [60–62].
Hence, we set 7.38 % of the house price as the minimum housing cost, which indicates
the lowest annual cost for a house. If one household’s minimum housing cost exceeds
the annual budget (i.e., HBUDGET), which indicates the household cannot afford their
current house, they will enter the housing market. Secondly, the buyers and sellers will be
generated based on demand and supply (D-S), which was discussed in Section 3.3.1.
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As for the key interaction within the model, the trade (and subsequent moving in)
process comprises two stages: (1) buyers find sellers; (2) a negotiation on the price. For
the first stage of the trade, buyers will search for sellers (i.e., moving around the physical
environment). Buyers are able to enter every sub-market; however, buyers may not
enter the downtown sub-market first, due to perceived issues with neighborhood security
which may have negative impacts on buyer’s households’ decisions when purchasing a
new home [63]. Hence, we assume that properties in the downtown sub-market are less
preferred compared to city suburban and far suburban. As such, a buyer may enter the far
suburban sub-market first, and then search for sellers (i.e., homes for sale), because of the
perceived notions of overall safety conditions and a better quality of life in the far suburban
areas [63]. If a buyer is not able to find a seller in the far suburban sub-market, the buyer
will enter the suburban sub-market and continue to search for sellers. Rather than exclude
buyers from the downtown sub-market, a buyer may only enter the downtown sub-market
if they cannot find any sellers in both far suburban and city suburban sub-markets. To
determine whether the buyer can afford house or not, buyers have knowledge related to
all of the sellers’ ask-prices, which is analogous to what we see when using a real estate
website to search for a new home. The buyers will set the bid-price (i.e., BIDPRICE), which
is 2.5 times their gross income [64]. When a buyer searches for a new location, they keep
checking the ask-prices (i.e., ASKPRICE) of the sellers located in that area. Buyers will then
sort out a list of sellers based on their initial bid-prices (i.e., BIDPRICE) when they move to
a new area. For example, sellers with ask-prices less than 1.1 times that of a certain buyer’s
bid-price and greater than that buyer’s bid-price may be sorted into the list. If there is
only one seller in a specific area, the buyer will only bid on one house in one time step.
However, if there are more sellers in a specific area, the buyer’s bid-price may be reviewed
by all those sellers located in the same area, which can be considered multiple bids in the
same area in one time step (hence buyers can make multiple offers in one time step). After
this stage, the sellers attempt to complete a trade. The sellers’ goal is to maximize their
profit from the trade, so they will choose the buyer with the best bid-price. After the trade
is completed, the trade will be recorded.

3.4.2. Households and Banks Dynamics

To imitate reality, several dynamics are introduced to the household and bank agents.
The process is shown in Figure 6. For all households, employment status (EMPLOYED?)
may change each time step, which is inspired by Patel et al. [55]. For example, employed
households have a certain probability to lose their job; similarly, unemployed households
may have the probability of finding a job. As shown by Equation (1), the incomes’ dynamics
are based on the employment status of the agents. It+1 is the income at time t + 1, It is the
income at time t and α represents the employment status. If one household has a job, α will
be the ln 0.5, if not, it will be −0.1. The employment status therefore impacts the households’
income (HINCOME), which has a direct influence on their annual housing budget.

It+1 = It ∗ (1 + α). (1)

Population dynamics are reflected both by the sellers and buyers. As for sellers, if
they are employed but are unable to sell their houses over four consecutive years (i.e., time
steps), they may stay and keep trying to sell the house until a buyer is found. While, for
sellers who are unemployed, if they cannot sell the house in four consecutive years, they
will be removed from the system (akin to foreclosure). At that time, the bank agent may
take over their houses and keep trying to sell it. From the buyer’s side, if they are unable to
find a house to purchase in four consecutive years, they will be removed from the system.
This dynamic indicates that those buyers who cannot afford a house in any of the sub-
markets based on their financial status may move out from our study area to somewhere
else. Also, the dynamics of bid- and ask-prices are added to the model. From the seller
side, the ask-price (ASKPRICE) may decrease when the house is not sold [39]. For example,
in the model, if a seller or a bank fails to sell a house, the ask-price will decrease based on
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the Price-Drop-Rate in the next time step, which is shown in Equation (2). ASKt+1 is the
ask-price at time t + 1, ASKt is the ask-price at time t and PDR represents Price-Drop-Rate.
The bank agent’s ask-price drop rate is doubled compared to that of a seller household.
This is to reflect the banks wishing to clear their inventory and recoup money owed as fast
as possible.

ASKt+1 =

{
ASKt ∗ (1 − PDR) Sellers

ASKt ∗ (1 − 2 ∗ PDR) Banks
(2)

As for the buyers, the bid-prices (i.e., BIDPRICE) are impacted by their income (i.e.,
HINCOME). Other than that, buyers who fail to find a seller or bank to trade with may
increase their bid-price based on their budget (i.e., HBUDGET) as shown in Equation (3).
BIDt+1 is the bid-price at time t + 1, BIDt is the bid-price at time t and β is the random
number generated based on how much percentage a buyers bid-price can exceed their initial
offer. In our model we use 0.1, which indicates a buyers’ bid-price may not exceed %110
of initial bid-price. This β concept is based loosely on land market models (e.g., [46,48])
where buyers have a willingness to pay up to a certain percentage point over their initial
bid-price.

BIDt+1 = BIDt ∗ (1 + β). (3)

Figure 6. Household Dynamics.

3.4.3. Economic Environment

The economic environment is the invisible hand in the model and takes into account
inflation of house prices, which imitates economic inflation. Although the trend of the
economy in Detroit has been downwards, for example, there are few extreme cases where
homes have been sold for $1 [65]. According to 1990, 2000, and 2010 census data, the overall
house prices show an upward trend as seen in Figure 7A. The median house prices are all
increasing. One reason for this relates to general inflation. However, when disregarding
the impact of inflation by using the United States inflation calculator [66], the house prices
still keep increasing over time, as shown in Figure 7B. Hence, in the model, house prices
will increase during the simulation based on annual inflation rates taken from [66].
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Figure 7. Census Data on Median House Prices from 1990, 2000 and 2010 (A) Median House Price,
(B) Median House Price without Inflation.

3.5. Model Outputs

In Section 1, the contraction of the housing market and population loss are the con-
sequences of urban shrinkage, which is what we want to explore with this model (as
discussed in Sections 2 and 3). In order to explore this, a range of outputs are generated
by the model. To explain the urban shrinkage, we specifically focus on the changes on
the number of households and the changes in house prices within different sub-markets.
As discussed in Section 3.4.1, these selected outputs are the result of the housing trades
in the model. To capture the changes in house prices, median and average house prices
of each sub-market are used to reflect the price dynamics. At the same time, median and
average house prices for each census tract are also recorded by the model to show the
spatial disparity of the house prices.

4. Results

Before detailing the results of the model, we first want to discuss our efforts for
verification. Here we refer to verification as the process of checking if the model matches
its design [45]. In this study, verification of the model was performed by conducting code
walkthroughs, visual debugging [67] and a series of control variates experiments to ensure
the model was working as designed [68]. These tests ensured that we made no logical errors
in the translation of the model into code, and that there were no programming errors. Visual
debugging can be carried via the model interface when the model is running. Figure 2 not
only introduces the model interface, but also shows an example of visual debugging during
a model run. For individual households, we use various shapes and sizes to distinguish
different roles and status during a simulation. For example, a dot represents a regular
household, a square represents a seller household and a star represents a buyer household,
and the size differences of stars indicate the difference statuses of buyers during the trade.
A larger star represents a buyer who has successfully completed a house purchase. Other
than visual verification at the micro-level as discussed above, four plots (e.g., plot A, B, C,
D) are used for macro-level visual verification as shown in Figure 2. Plot A captures the
change in the number of households during the simulation. Plot B outputs some generic
results (e.g., total household number, number of bank agents), but the main purpose of this
plot is to show that the households’ employment statuses are updating (i.e., changing) over
the simulation, which was discussed in Section 3.4.2. As for Plots C and D, they show the
median and average house prices during the simulation. With these plots updating during
the simulation, we can ensure that the model does not have programming errors that stop
the simulation instantly, but further experiments were needed to test the impacts of the
input parameters, which it is not possible to capture through visual debugging alone and
we turn to this next.
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As discussed in Section 3.3.1, three input parameters were used in the model: (1) D-
S; (2) HAVE-BANK?; (3) Price-Drop-Rate. To test these three input parameters, a series
of control experiments were carried out for verification purposes. For instance, when
verifying D-S, we only modified the value of D-S and kept the other two parameters set to
default values as shown in Table 2. Each experiment was run 50 times and, in what follows,
we describe only the average results.

To verify D-S (see Section 3.3.1), one does not need to run the model, as D-S is only
used when the model is being initialized to set the number of buyers and sellers. Therefore
we tested various D-S values (e.g., 0.1, 0.5 and 0.9) and noted its outcome with respect to
number of buyers and sellers. Various D-S values stand for different demand and supply
scenarios, which will be discussed further below. As shown in Table 4, the model is able
to generate different numbers of buyers and sellers by modifying the value of D-S. As for
the other two parameters (i.e., price-drop-rate and HAVE-BANK?), because they are used
during the simulation, the following verification experiments were undertaken.

To test price-drop-rate, we carried a series of extreme value tests by setting the pa-
rameter to 0, 5, and 10 which represents how much of a percentage of the ask-price will
be decreased in each time step if the house is not sold. In this experiment, the bank agent
is not added (i.e., HAVE-BANK is False), our rationale for this is that the purpose here is
simply to test the impacts of Price-Drop-Rate on ask-price. Hence, by capturing the average
ask-price changes over the course of a simulation one gains sufficient evidence for this
stage of verification. As Figure 8A shows, when increasing the value of Price-Drop-Rate,
the average ask-price decreases more, which indicates that the Price-Drop-Rate parameter
does have an impact on the average ask-price and this parameter works as intended.

Moving to the verification of HAVE-BANK?, as discussed in Section 3.3.1, HAVE-
BANK? allows the model to add a bank agent. Unlike that of regular sellers, bank agents’
ask-price drop rate is doubled (seen Section 3.4.2). Hence, we assume that with the
increasing number of bank owned properties, the average ask-prices may decrease more
than those in a scenario where there is no bank agent. In Table 5, we capture 805 bank
owned proprieties by the end of the simulation, which indicates HAVE-BANK? is capable
of adding a bank agent when the need arises. Figure 8B shows that the average ask-price
drops with the increasing number of properties owned by the bank agent, and the average
ask-price is lower compared to the no bank scenario. This suggests that the bank agent
is added properly by the model. After carrying out these tests, we feel confident that the
model behaves as it is intended and matches its design and thus is verified.

Table 4. Verification of D-S.

D-S Buyer Seller

0.1 3633.78 403.20
0.5 2018.70 2018.28
0.9 404.10 3632.30

Table 5. Verification of Input Parameter.

HAVE-
BANK?

Total Household Buyer Seller Bank

Start End Start End Start End Start End

True 10601 7440 2140 120 2140 119 0 805
False 10601 8292 2100 28 2099 869 0 0
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Figure 8. Average Ask-price Changes with Different values of Different PDR (A) and HAVE-
BANK? (B).

Now, turning to model results and validation, we refer to validation as the process
ensuring the model aligns to the real world, specifically how the model can capture basic
market behavior as it potentially relates to urban shrinkage. In order to do this we present
three simulation scenarios of different demand and supply conditions for a period of
20 (year) time steps. We ran each scenario 50 times and, in what follows, we describe
only the average results. We chose 20 years as this will cover the years of 1990, 2000 and
2010, which we have census data for, which in turn can be used to validate the model.
To control for demand and supply, we only changed the D-S parameter in the model and
kept all other parameters at their default values (e.g., Table 2). Three different scenarios
were simulated to explore how different demand and supply conditions impact on median
and average house prices in the different sub-markets: (1) equal demand and supply;
(2) demand exceeds supply; (3) supply exceeds demand. Table 6 shows the final median
and average house prices in each sub-market for different D-S settings, which are the same
values described in Section 4.

Building on Table 6, Figure 9A shows the three scenarios with respect to the number
of households in each sub-market. As Figure 9A shows, the overall trend of household
numbers in all the three scenarios are decreasing, which can be considered as population
loss in a shrinking city. However, one can see that around time step 5, there is a drop in
the number of households. This drop is due to the bank agent entering the simulation and
taking over sellers’ houses which were unsold (as discussed in Section 3.4.2). Figure 9B,C
demonstrates how median and average house prices change over the simulation scenarios.
The results indicate that among all three simulation scenarios, the median and average
house prices in different sub-markets turn out to be increasing. This is due to inflation,
which is included in our model (as discussed in Section 3.4.3). The simulated increasing
house price trends are similar to those of the empirical data which was shown in Figure 9.
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If the demand exceeds supply scenarios, although all buyers are attempting to find
sellers and complete trades (i.e., buy a house), due to insufficient sellers generated at
initialization of the model, the number of relocating households is the lowest among all
scenarios. However, as shown in Table 6, the model captures the highest median house
price in the far suburban sub-market (which is approximately 60% more than that of
downtown), which is due to the sellers flooding this area as discussed in Section 3.4.1 and
is similar to what one sees in the “real world” (i.e., Figure 7). This suggests the model
captures the correct market behavior.

While in the demand equals supply scenario, due to a relatively balanced market, we
witness the most household relocations being captured, along with lowest median house
prices in suburban and far suburban sub-markets (i.e., suburban: 116.60; far suburban:
146.50). However, the median house price in the downtown sub-market is not the lowest
among all scenarios (i.e., 127.68). This result might sound counter-intuitive because one
would expect the lowest median house price in the supply exceeds demand scenario,
however, the average house price for all three sub-markets in this scenario is in the middle
of all the scenarios which suggests there are nuances in how one should record and
report the results of the model. One reason for this result could be because all buyers
have preferences for purchasing houses in far suburban and suburban (as discussed in
Section 3.4.1), which leads to a relatively competitive market. In addition, all sub-markets’
average house prices are the lowest among all scenarios.

By discussing the results above from the three scenarios, hopefully it is clear to the
reader that our model captures urban shrinkage from the aspect of decreasing numbers
of households in the downtown sub-market. Also, similar to empirical data as shown in
Figure 7, even without inflation, house prices are still increasing even in a well-known
shrinking city and our model captures similar trends in the three scenarios (as shown in
Figure 9). To some extent one could consider such results as level 2 validation in terms of
the Axtell and Epstein [69] schema of classification of model validation, in the sense we
can attain quantitative agreements of emerging macro-structures (e.g., declining number of
households and increasing house prices) from the bottom-up. We illustrate this in Figure 10
which shows the resulting house prices from the demand equals supply scenario. More
specifically, Figure 10A illustrates a heat map of each census tract’s median house price at
the end of the simulation, while Figure 10B displays the heat map of the average house
price. According to these heat maps, high median and average house prices are mainly
captured in far suburban sub-markets.

Table 6. Median and Average House prices (K) in Different sub-markets at the End of the Simulation.

D-S Value Description
Median House Price Average House Price

Downtown Suburban Far Suburban Downtown Suburban Far Suburban

0.1 Demand exceeds
supply 124.85 112.66 187.62 119.48 116.43 191.10

0.5 Equal demand
and supply 127.68 116.60 146.50 116.22 101.75 163.07

0.9 Supply exceeds
Demand 127.19 119.76 155.22 108.06 87.46 137.83
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Figure 9. Validation on Market Behaviors, Number of Household (A), Median (B) and Average (C) House Prices Change in Different Demand and Supply Scenarios.



Sustainability 2021, 13, 2283 18 of 22

Figure 10. Heat Maps of Median (A) and Average (B) House Prices at the End of the Simulation where Demand equals Supply.

5. Conclusions and Discussion

While we are witnessing a global growth of the urban population, which raises concerns
about urban sustainability (e.g., [9,70,71]), not all cities are growing (Section 1). Some, like
Detroit, are actually shrinking, which has drawn a lot of discussion from the research and
practice communities globally as it causes population loss, economic decline and a growth in
crime due to vacant properties and housing market contraction (e.g., [7,13,14,72]). However,
few efforts have been made to explore this phenomenon from a modeling and simulation
domain. This paper significantly adds to this nascent field of inquiry by specifically
capturing how the buying and selling of houses can lead to urban shrinkage from the
bottom-up through a case study of the Detroit Tri-County area. Results from this model
(i.e., Section 4) have implications concerning urban shrinkage. For example, we show how
household decline in an area could potentially lead to less tax revenue and therefore limits a
city’s ability to provide services, which in turn can lead to more urban decline as discussed
in Section 1. Although the simulated median and average house prices are showing an
upward trend, which seems inconsistent with the intuitive results of a contracting housing
market (i.e., the decreasing of house prices), this was due to the inflation over the simulated
years (see Sections 3.4.3 and 4).

While our model can capture urban shrinkage, like all models there are limitations
and there is always room for improvement. One area of improvement could be to extend
the model to represent more types of housing stock (e.g., apartments, single family homes,
etc.) which could be sourced from the American Community Survey or local government
property records along with home sales data. We chose not to go this route here as
the purpose of the model was to act as a prototype to explore how urban shrinkage
might emerge from the bottom-up through the interactions of buying and selling houses.
Another area of further work could be to better characterize new incoming populations.
In the current model we did not introduce new households based on their heterogeneous
financial and demographic backgrounds due to data limitations (i.e., the census data is
not continuous between 2000 and 2010). As a result of this, the final simulated household
numbers may be lower than the empirical data. With this being said, the declining trend in
the number of households for the whole study area is captured successfully by the model,
which aligns with the empirical data. One way to better capture new households entering
the study area is to use techniques from synthetic population generation such as those seen
in dynamic micro-simulation models (e.g., [73]). This would potentially allow us to better
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capture how changes in demographics impact on residents’ ability to stay in an area and
their preferences for certain types of neighborhoods, but that is beyond the scope of this
current paper as this would be a large undertaking and most agent-based models like the
ones cited in Section 2 only look at one aspect (i.e., subsystem) such as the land market
rather than the entire urban system itself [45].

Building upon this idea, the model presented in this paper only explored the buying
and selling of properties; however, as we noted in the introduction (Section 1), urban
shrinkage is a complex issue and we do not specifically model the economic environment
comprehensively (rather we simply consider inflation as only an aspect of the economic
environment). This simulation could be improved by incorporating time series data with
respect to the economy such as unemployment rates or economic growth. Alternatively
one could couple this model with a more macro economic model to account for such factors
(e.g., [74,75]). Other than incorporating more data into the simulation, the model could
capture more nuanced residential dynamics if the time step was deceased from a year to,
say, monthly. This would allow for a slower incremental price dropping of house values
if they remained unsold. It would also be interesting to experiment with multiple space-
time scales in order to explore the equifinality of urban shrinkage at different temporal
and spatial scales (e.g., [76]). Another area of work, especially with respect to urban
sustainability, would be to explore what it would take to stop urban shrinkage, or how
neighborhoods go from declining to growing, such as through gentrification. Gentrification
in Detroit has been discussed in the literature (e.g., [77–79]). Hence, another direction
to extend the model would be to explore gentrification in Detroit through modeling and
simulation. Similar to urban shrinkage, there is a growing body of models (e.g., [39,40,80])
that show promise for capturing such phenomena. Moving the focus point from Detroit to
other metropolitan areas, we believe the model presented here could be generalized across
metropolitan areas by integrating more data and adding new types of agents (e.g., investors
whose behaviors are different from households and banks). This is one reason we provide
the code and the data to the model (see Section 3), to allow other researchers to extend and
explore the model as they see fit. Even with these limitations and areas of further work we
believe this paper has demonstrated how agent-based modeling integrated with geo-spatial
data provides a promising method for exploring urban shrinkage and, if developed further,
potentially offers a means to test policies to alleviate this issue.
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Abbreviations
The following abbreviations are used in this manuscript:

ABM Agent-based Modeling
CA Cellular automata
ODD Overview, Design concepts and Details Protocol
UML Unified Modeling Language
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