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Citation: Krč, R.; Kratochvílová, M.;

Podroužek, J.; Apeltauer, T.;

Stupka, V.; Pitner, T. Machine

Learning-Based Node

Characterization for Smart Grid

Demand Response Flexibility

Assessment. Sustainability 2021, 13,

2954. https://doi.org/10.3390/

su13052954

Academic Editor: Mehdi

Seyedmahmoudian, Alex Stojcevski,

Ben Horan, Saad Mekhilef and Eklas

Hossain

Received: 26 January 2021

Accepted: 1 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Aided Engineering and Computer Science, Faculty of Civil Engineering,
Brno University of Technology, 602 00 Brno, Czech Republic; rostislav.krc@vut.cz (R.K.);
Martina.Kratochvilova1@vut.cz (M.K.); tomas.apeltauer@vut.cz (T.A.)

2 Centre for Education, Research and Innovation in Information and Communication Technologies-ExecUnit,
Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic; stupka@fi.muni.cz (V.S.);
tomp@fi.muni.cz (T.P.)

* Correspondence: podrouzek.j@fce.vutbr.cz

Abstract: As energy distribution systems evolve from a traditional hierarchical load structure towards
distributed smart grids, flexibility is increasingly investigated as both a key measure and core
challenge of grid balancing. This paper contributes to the theoretical framework for quantifying
network flexibility potential by introducing a machine learning based node characterization. In
particular, artificial neural networks are considered for classification of historic demand data from
several network substations. Performance of the resulting classifiers is evaluated with respect to
clustering analysis and parameter space of the models considered, while the bootstrapping based
statistical evaluation is reported in terms of mean confusion matrices. The resulting meta-models
of individual nodes can be further utilized on a network level to mitigate the difficulties associated
with identifying, implementing and actuating many small sources of energy flexibility, compared to
the few large ones traditionally acknowledged.

Keywords: smart grid; electricity network; flexibility assessment; renewable energy sources; machine
learning; network simulation; artificial neural networks; convolutional neural networks

1. Introduction

Safe and reliable operation of energy systems depends on maintaining a balance
between consumption and production in real-time, while an increasingly large part of the
production portfolio depends on the inherently variable non-stationary climate, such as
renewable wind or solar sources [1].

The variability of the consumption, on the other hand, can be relatively easily con-
trolled, when compared to the climate-dependent part of the production portfolio, by
purposefully influencing the consumption behavior, i.e., targeting the reducible (epistemic)
uncertainty components on the consumer side, rather than focusing only on mostly aleatory
(irreducible) uncertainties related to long-term weather forecasting.

The ability to purposefully influence both the production and consumption behavior
of selected elements of the electricity system is therefore gradually gaining in importance
(e.g., [1–4], as it can effectively reduce fluctuations in the overall load diagram and thus
reduce the demands on available power and dynamics of Support Services, as well as the
associated costs.

The electricity market is currently at a crossroads. The current market model assumes
that the market will ensure both short-term optimization, such as effective allocation of
the necessary production among existing capacities, and long-term investment signals for
the construction of new capacities. However, the significant degree of market distortions
in the sector practically paralyzed this function of the market model. Such development
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leads to a situation where investors are only looking for the construction of sources with
guaranteed (subsidized) prices. Investments in resources and networks are thus driven
by state incentives, instead of the market. Under such conditions, market development
without adjustments by the state leads to an unbalanced resource mix with a number of
strategic and systemic risks for the future [1].

An important part of any state’s critical infrastructure is its electricity network. This
is traditionally based on centralized generation in large power plants, however, as the
share of renewable energy production increases, the grid will need to adapt to a large
number of smaller sources. Decentralized production growth is enabled by the spread of
new technologies and typically benefits the local economy.

However, the transformation of energy must meet the basic conditions. These are
secure supplies during normal operation as well as in the event of sudden changes in
external conditions, and competitive prices. At the same time, energy must be sustainable
in the sense that it does not harm the environment, is able to provide raw materials for its
operation and the whole sector is economically stable.

The aim of this work is to contribute to the theoretical framework for quantifying
network flexibility potential by introducing a machine learning-based node characteri-
zation. It is unique in the successful utilization of state-of-the-art convolutional neural
network models for the classification of historic demand data from the Ausgrid distri-
bution zone substation data. After introducing the related concepts of smart grid, grid
flexibility and network modeling, demand interval data used for this study are introduced
together with the clustering analysis performed. Next, machine learning-based time-series
classification and surrogate resampling concepts are discussed, together with various
architectures of convolutional neural network models. Finally, the statistics of resulting
classifiers are discussed.

1.1. Smart Grid

Decentralizing the energy system and thus at least partially replacing large-scale
energy production (e.g., fossil, nuclear or hydroelectric) is an increasingly common effort.
These facilities are usually far from the end consumer and therefore require an extensive and
reliable high-voltage transmission network. The global tendency to achieve a sustainable
economy and improve the environment leads to higher use of energy from renewable
sources and thus, for example, to reduce the global temperature disruption [5]. Carbon
dioxide emissions during energy production account for about two-thirds of all greenhouse
gases [6]. Power plants using renewable sources are usually smaller in format and closer to
the end-user. Thus, energy is not transmitted over such long distances and the transmission
network has a decentralized structure. This results in fewer losses during transmission and
the network is less vulnerable because it does not depend on a small number of remote
large power plants. The whole system is therefore composed of smaller subsystems, which
do not have to be interdependent, but still communicate with each other and can help
each other.

An ideal (smart) grid is a modernized electrical self-monitoring grid that can combine
conventional central sources with alternative sources of electricity [7]. This includes an
intelligent control system that monitors and adjusts the operation of the network in real-
time, including the self-healing capabilities and supported by intelligent elements, without
the need for human intervention. Smart grids communicate with the customer in real-time
and help to optimize the consumption with regard to the current price of electricity and
the burden on the environment, allowing better integration of renewable electricity sources
and improving the efficiency, reliability, economics, and sustainability of the production
and distribution of electricity.

As the production of energy using renewable sources is difficult to predict in the long
run (climate-dependent production), it is necessary to be able to target consumers and
ensure communication between individual entities. In this way, the demands on the peak
loads and the operational cost and costs of providing support services can be reduced [8].
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This can be done through a combination of technical and economic tools. Various
smart metrics for measuring, communication, synchronization, forecasting and control are
being developed [9]. Among the economic instruments, it is possible to name, for example,
the real-time pricing [10] or the Adaptive Billing Mechanism [11], which can work, with
negative energy prices and thus flatten the oscillation of the overall load diagram. A whole
new market with new entrants can be expected.

Information security is discussed in [12], where risk propagation model based on the
Susceptible–Exposed–Infected–Recovered (SEIR) infectious disease model is proposed for
a smart grid. The high volatility and uncertainty of load profiles and the tremendous com-
munication pressure are discussed in a two-stage household electricity demand estimation
study by [13]. Investigation of voltage control at consumers connection points based on
smart approach has recently been carried out by [14], proposing a voltage control system
for use in the Russian distribution grid.

1.2. Grid Flexibility

Flexibility is considered a key enabler for the smart grid according to O’Connell et al. [15],
and is required to facilitate Demand-Side Management (DSM) programs, manage electrical
consumption to reduce peaks, balance renewable generation and provide ancillary services
to the grid. The ISO 50002:2014 [16] specifies the process requirements for carrying out an
energy audit in relation to energy performance. It is applicable to all types of establishments
and organizations, and all forms of energy and energy use. This standard can be used to assess
flexibility and formulate optimization requirements [2,15]. According to a given scale, flexibility
analysis can help to identify and quantify the available electrical load at a network or node level,
i.e., substation, site or building.

U.S. Energy Information Administration (EIA) [17] defines DSM programs as those
including planning, implementing, and monitoring activities of electric utilities which are
designed to encourage consumers to modify their level and pattern of electricity usage. In
its international energy outlook or other EIA annual reports, projected and actual energy
production can be compared with the global changes in manufacturing and services share,
an important component in any flexibility analysis for smart grid DSM.

The primary objective of most DSM programs in the past was to provide cost-effective
energy and capacity resources in order to help defer the need for new sources of power,
including generating facilities, power purchases, and transmission and distribution capacity
additions. However, due to changes that are occurring within the industry, electric utilities
are also using DSM as a way to enhance customer service. According to EIA, DSM refers
to only energy and load-shape modifying activities that are undertaken in response to
utility-administered programs. It does not refer to energy and load-shape changes arising
from the normal operation of the marketplace or from government-mandated energy-
efficiency standards.

Moreover, the European Commission’s (EC) 2020 targets [18] to generate 20% of
Europe’s energy from renewable energy and reduce greenhouse gasses emissions by 20%
have already resulted in increased climate-dependent production. In order to further
increase this production to 25%, all aspects of grid flexibility have to be carefully addressed
to ensure grid resilience and stability. This includes, among others, the ability to balance
non-dispatchable sources and managing the power locally.

In the International Energy Agency’s annex 67 [19], energy flexibility is also presented
as a key asset in the smart building future, where buildings can manage itself, interact with
their users and take part in demand response.

1.3. Network Modeling

In the current state of discussions, energy flexibility is typically associated with
“smartness” and evaluated either in a qualitative framework according to the number and
type of services provided by its components, or, as presented in this paper, by quantitative
and physical indicators, utilizing measured (historic) data and network-level simulations.
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To better understand the functioning of Smart grids and investigate the possibilities
of optimization of their functions, it is appropriate to create a mathematical meta-model
of individual network nodes and simulate the operation of the whole network, where the
nodes are connected according to real network topology and edge capacity. Because it is
a decentralized system, decision intelligence is divided between the individual nodes of
the network. Agent models are commonly used for simulations, where each agent has its
own decision-making power and none of them depends on any central authority [20]. Rela-
tionships and connections between agents are usually modeled using network theory [21].
The agent decision-making process and behavior prediction can be modeled, for example,
using machine learning (ML) [22].

Among recent contributions to the integrated simulation of power and communication
networks for smart grid, applications can be found [4], where the smart grid discrete-
event simulator is implemented in C++ using the open-source OMNeT++ simulation
environment. In [23], a comprehensive real-time simulation of the smart grid is presented,
including a microgrid model of a small community. A recent overview of simulation and
modeling application to residential demand response can be found in [24].

In order to simulate the behavior of the entire network, and to evaluate the impact of
various control strategies on the power grid, it is necessary to validate the behavior of the
individual nodes first. In this paper, a historic 15 min interval demand data from Ausgrid
substations [3,25] have been classified using machine learning methods.

2. Interval Demand Data

Publicly available distribution zone substation 15-min interval demand data from the
Australian network operator Ausgrid [25] have been used for the machine learning-based
node characterization in order to support computational reproducibility of this research. In
particular, historic data from the year 2019 (between May 2018 and April 2019) and from
the year 2020 (between May 2019 and April 2020) from 185 substations from distribution
networks around Sydney and Newcastle have been used. These substations form the
boundary between the sub-transmission network and the distribution (11 kV) network.
The time is in Australian Eastern Standard Time (AEST) format during the winter period
and Australian Eastern Daylight Time (AEDT) during the summer period. Figure 1 shows
the irregular topology of the investigated distribution network, where real node positions
(red dots) correspond to population density clusters, resulting in large variability of edge
length (black lines).

Data from individual substations were sampled at 15 min and divided into time
series by days, resulting in 96 data points. The proposed classification cannot intentionally
distinguish between workdays, weekends or holidays, as there is no information on the
actual date attached to the individual time series, although the dataset exhibit typical
daily, weekly and seasonal fluctuations in electricity demand. Nevertheless, the achieved
accuracies are far from prohibitive, as discussed in the next chapter.

The daily fluctuations include morning and afternoon peaks throughout all four
seasons, including workdays and weekends, see Figures 2–5 for an example from Harbord
substation, with group averages in dark color. In summer, a lower overall demand can be
observed, including less distinct morning and evening peaks.
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Figure 1. Irregular topology of the investigated distribution network (map source [26]).

Clustering Analysis

In general, the goal of clustering is to identify structure in an unlabeled data set
by objectively organizing data into homogeneous groups where the within-group-object
similarity is minimized and the between-group-object dissimilarity is maximized [27]. The
time-series demand data presented in this section have been clustered by the basic k-means
algorithm [28] in order to split substations into several groups. K-means clustering is a
renowned heuristic method for crisp partitions (i.e., each object belongs to exactly one
cluster, as opposed to fuzzy if one object is allowed to be in more than one cluster to a
different degree), where each cluster is represented by the mean value of the objects in
the cluster.
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Figure 2. Daily fluctuations and seasonal scattering at Harbord substation, May–July 2018.
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Figure 3. Daily fluctuations and seasonal scattering at Harbord substation, August–October 2018.
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Figure 4. Daily fluctuations and seasonal scattering at Harbord substation, November 2018–January 2019.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

4

6

8

10

12

14

16

Po
we

r d
em

an
d 

[M
W

]

Weekday
Weekend

Figure 5. Daily fluctuations and seasonal scattering at Harbord substation, February–April 2019.

For effective optimization of the distribution grid, and for any network-level simula-
tions in general, the behavior of nodes (i.e., stations and substations) must be understood.
Daily fluctuations of power demand may depend on the type of supplied neighborhood.
Three basic types of substation neighborhoods—residential, business and combined—were
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considered as only 96 equally spaced data points were available per signal. K-means
clustering analysis with k = 3 identified the following clusters (Figures 6–8):

• C1: 48 substations, residential, morning and evening demand peak,
• C2: 66 substations, combined, morning and evening peaks less distinct than in the

clusters C1,
• C3: 71 substations, business, high and flat distribution of energy demand during

the day.

Note that the qualitative evaluation of characteristics of the three identified clusters is
based only on the assumption of daily peak distribution and has not been verified by any
other on-site investigation as it was not the goal of this research. Note the normalization of
amplitudes of daily signals to the maximum value in order to ensure classification based
on demand patterns instead of absolute values of demand.
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Figure 6. Cluster C1 with average daily power demand for each substation (grey) and overall average
demand (blue).
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Figure 7. Cluster C2 with average power demand for each substation (grey) and overall average
demand (blue).
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Figure 8. Cluster C3 with average power demand for each substation (grey) and overall average
demand (blue).
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3. Machine Learning Based Classification
3.1. Surrogates Resampling

In each identified cluster, 14 substations have been randomly selected (see Table 1) for
the machine learning-based classification. The goal is to identify a substation based on its
daily demand, all selected substations being type 33/11 kV. Since data for all substations
were not complete, a criterion for the minimal number of measurement days per substation
has been set to 350 days of a year.

Table 1. Selected substations for each cluster.

C1 C2 C3

Avondale Baerami Auburn
Cessnock South Blakehurst Blackwattle Bay
Edgeworth Campsie Brookvale
Harbord Dulwich Hill Camperdown
Jannali Enfield City East
Killarney Gateshead Darlinghurst
Medowie Lindfield Graving Dock
Mt Hutton Maitland Kotara
Newport Nelson Bay Lucas Heights
Paxton Peats Ridge New Lambton
Sans Souci Riverwood Newcastle CBD
Swansea St Ives Paddington
Tanilba Bay Thornton Surry Hills
Tomaree Williamtown Tomago

Three scenarios were evaluated considering data from year the 2019, 2020 and both
years respectively. In the first two scenarios, data were divided between training and
testing set using a typical split ratio 80%/20%. Data were selected randomly from the
original dataset in such a way that the same split ratio is ensured for each substation. In
order to avoid over-fitting and evaluate the reliability of the models, 10 splits of the dataset
were randomly generated. This technique is often referred to as bootstrapping [29] and
has been preferred over cross-validation due to the limited number of time series available,
as cross-validation resamples without replacement and thus produces surrogate data sets
that are smaller than the original. Bootstrapping used here resamples without replacement,
produces surrogate datasets with the same number of time series as the original dataset,
therefore statistical evaluation of the performance of the model becomes available, as
represented here by the average confusion matrices and reported variability of accuracies.
Each row in a confusion matrix represents the instances in a real class, while each column
represents the instances in a predicted class, so whether the system is confusing two classes
can easily be visible.

In the third scenario, denoted as 2019–2020, data from the year 2019 were used for
training and data from the year 2020 for testing. Five runs for each cluster and model were
done and their results averaged in order to consider variance due to random initialization
of network parameters and data shuffling. This scenario aims to evaluate generalization
capability of the used model for future years. Setup of all three scenarios is listed in Table 2.
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Table 2. Setup of the evaluated years and clusters.

Year Cluster No. of Classes Dataset Size Training Size Testing Size No. of Repeats

2019 C1 14 5085 4070 1015 10

C2 14 5081 4068 1013 10

C3 14 5085 4069 1016 10

2020 C1 14 5109 4091 1018 10

C2 14 5098 4082 1016 10

C3 14 5105 4087 1018 10

2019–2020 C1 14 10,194 5085 5109 5

C2 14 10,179 5081 5098 5

C3 14 10,190 5085 5105 5

3.2. CNN Models

Commonly used machine learning methods for the classification of time-series data
are Support Vector Machines (SVM) and Artificial Neural Networks (ANN), as recently
reported in [30–32].

SVM is a simple algorithm that looks for a hyperplane that divides the n-dimensional
input space into two or more categories and assigns an output value accordingly. However,
there is an infinite number of such planes, and the goal of the algorithm is to find a plane
that has the maximum distance from the points of both (all) classes. Multidimensional
problems are usually transformed using the so-called kernel transformation, so the non-
linear problem is converted to linear. That means, from the original space to the Euclidean
space. Thus, it is clear that the correct function of the SVM depends on the correct choice of
the kernel function. This method is computationally expensive if large amounts of data are
to be considered.

The best known and probably also the most universal ML algorithm is the Artificial
Neural Network (ANN) method. This algorithm is inspired by the decision-making
processes of the human brain. It is composed of several million neurons, which evaluate
and pass information to each other. Likewise, an artificial neural network is composed
of layers, which are composed of neurons. Each layer has given rules, based on which it
evaluates the input information from the previous layer and passes the output to the next
layer. Input and output can be of different formats. Within ANN, however, the information
is transmitted using an internal weighing system. The number of layers and neurons in
them is arbitrary, as well as the type of layers. However, all these parameters affect the
reliability of ANN.

Both SVM and ANN are sensitive to the subjective choice of parameters, in the case
of SVM, these are the describing (scalar) features of the time-series, such as the number
of peaks, total energy or various Fourier transform properties. In the case of ANN, the
subjective choice of its architecture can significantly influence both its performance as well
as computational requirements. Given the relatively small size of the time series (96 data
points), compared to applications that differ by two orders of magnitude, where high-
frequency components have to be maintained, such as the dynamic response of railway
track due to a passing train, which, if resampled to a lower resolution, looses its most
important characteristics (see e.g., [30]), finding proper characterization for SVM input
vector would make a little sense, since the entire time series vector can be directly processed
by a more general ANN model.

Some advanced time series classification techniques can be used such as Least-Squares
Wavelet (LSWAVE) [33]. The spectral and wavelet analyses are very useful for estimating
trends and seasonal components of any time series and identifying their patterns in the
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time-frequency domain [34]. Herein, we directly classify the time series data and shall
leave the use of wavelets to future research.

A specific type of ANN, the convolutional neural networks (CNN) were selected for
data classification as they provide state-of-the-art performance for computer vision or time-
series classification and are also widely adopted for end-to-end learning [35]. End-to-end
approach utilizes raw time-series data without any preprocessing and manual feature
extraction which often introduces unnecessary bias as extracted features are often domain-
specific. Convolutional layers in CNN also enhance pattern recognition capabilities of
the network.

In the following, three CNN models with different architectures have been considered:

• CNN1 has the same architecture as the best performing model CNN in [30]. It contains
one convolutional layer with 64 filters followed by max-pooling layer, fully connected
hidden layer and an output layer;

• CNN2 contains three convolutional layers with 128, 64 and 32 filters, respectively.
Batch normalization and dropout with 25% probability is applied to the output of the
last convolutional layer before passed to a max-pooling layer. The result of the pooling
layer is flattened to one fully connected output layer. It is the deepest architecture
with the largest number of layers with trainable parameters;

• CNN3 contains one convolutional layer with 64 filters followed by an average pooling
layer with output size 20 and fully connected output layer. This architecture contains
the lowest number of trainable parameters.

Rectified linear unit (ReLU) has been used between layers as an activation function
for all presented architectures. Overview of parameters for evaluated architectures is
presented in Table 3.

Table 3. Number of layers and number of trainable parameters for the evaluated convolutional
neural networks.

Model CNN1 CNN2 CNN3

Number of layers with trainable parameters 4 6 3

Number of trainable parameters 123,498 122,830 18,446

Average training time (s) 1,2 96.4 99.5 93.6
1 C2 dataset in year 2019 (4069 training samples), 2 NVIDIA GeForce GTX 1050 Max-Q with 640 cores and 3 GB
of memory.

Training has been executed in 20 epochs. Data were forwarded through the networks
in batches of size 32. The learning rate has been set to 0.001, while Adam optimizer has
been used to minimize cross-entropy loss function (which is a composition of negative
log-likelihood and logarithmic softmax function).

A graphics processing unit (GPU) has been used for training, approximately 0.6–0.8 GB
of memory has been required, and models with a lower number of parameters (CNN3)
had only slightly lower training time.

4. Results

The most accurate model with mean accuracy over 88.8% and deviation less than
1.5% for all clusters and all scenarios is the CNN2 due to the incorporation of multiple
convolutional layers. Slightly lower accuracy can be seen in the scenario 2019–2020,
compared to the scenarios 2019 and 2020.

It was also shown that CNN2 model has the best ability to generalize future years
(trained 2019, tested 2020), C1 cluster shows higher accuracy compared to C2 and C3.

The highest mean accuracy can be observed in scenario 2019–2020 for CNN2 model
and cluster C1 at Jannali substation (99.3%), while the lowest mean accuracy occurred in
cluster C2 at Maitland substation (67.3%), which was often confused with Thornton.
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The mean model accuracies are presented in Table 4 or in graphical representation,
Figure 9, where the accuracy of independent and random selection results (base) are also
included for reference.

Results are presented by means of mean confusion matrices for scenario three (training
on 2019 data and testing on 2020 data) and the best performing CNN2 classifier model for
individual clusters C1 to C3, see Figures 10–12. These matrices show how the model is able
to cope with the classification of new data in future years and which classes (substations)
are often confused.

Table 4. Mean model accuracies for each year and cluster.

Year Cluster Base (%) Mean (%) CNN1 (%) CNN2 (%) CNN3 (%)

2019 C1 7.1 83.7 ± 10.0 80.7 ± 2.5 96.8 ± 1.4 73.6 ± 2.8

C2 7.1 80.9 ± 10.0 75.3 ± 2.4 94.6 ± 1.4 72.8 ± 2.3

C3 7.1 81.6 ± 8.8 78.7 ± 2.4 93.3 ± 1.4 72.9 ± 1.7

2020 C1 7.1 83.3 ± 10.7 79.7 ± 4.7 97.2 ± 0.9 72.9 ± 1.8

C2 7.1 75.0 ± 13.8 64.5 ± 6.9 93.5 ± 1.4 66.9 ± 2.7

C3 7.1 79.0 ± 9.9 74.7 ± 2.9 92.4 ± 1.3 70.0 ± 2.7

2019–2020 C1 7.1 79.1 ± 12.0 76.8 ± 0.9 94.8 ± 0.7 65.7 ± 1.4

C2 7.1 74.2 ± 10.4 68.0 ± 1.5 88.8 ± 1.4 65.9 ± 1.0

C3 7.1 79.9 ± 7.7 77.4 ± 3.6 89.9 ± 1.5 72.4 ± 1.3

CNN CNN2 CNN3
model
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Figure 9. Accuracy of evaluated neural network models for different clusters in different years (mean
+− standard deviation).
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Figure 12. Mean confusion matrix for best performing model CNN2 and cluster C3.

5. Discussion

The machine learning-based substation node energy demand characterization repre-
sents a first logical step in a network-level flexibility assessment based on simulations or
optimizations of DSM programs, ensuring resilient and stable operation of smart grids.

The resulting meta-models of individual substations can be further utilized to mitigate
the difficulties associated with identifying, implementing and actuating various sources of
energy flexibility, such as those related to the technology of indoor environmental comfort,
compared to the few large ones traditionally acknowledged.

As explained and demonstrated in the paper, the ML-based classification of substations
can be further utilized to study different scales of smart grid applications, and verify new
control strategies. In particular, this study shows that:

(1) Clustering analysis can effectively help to understand the type of supplied neighbour-
hood, such as residential, mixed or business, and is used in this paper for benchmark-
ing categorization of the three convolutional neural network models.

(2) Despite inherent daily (accounted timestamp), weekly (unaccounted directly) and
seasonal (unaccounted directly) fluctuations in historic node demand data, the pro-
posed CNN2 model yields relatively reliable results even when validated on future
data, with mean model accuracy ranging from 88.8 + −1.4 (combined cluster C2) to
94.8 + −0.7 (residential cluster C1) in case of scenario 2019–2020.

(3) Given the relatively high ratio of trainable parameters (e.g., 122,830 for CNN2) to the
input size (96 data points), over-fitting and over-determinism can clearly represent
a problem and has to be carefully acknowledged in general, however, due to the
proposed state-of-the-art ANN architecture, including multiple convolutional layers
accompanied with regularization techniques such as batch normalization and dropout
and conservatively set learning rate, the presented sparse mean confusion matrices
based on bootstrap (10× resampling) demonstrate a rather robust fit, if relatively small
accuracy standard deviation of 1.4% (CNN2) and dominant diagonal are considered.
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(4) Certain classes may be mutually confused due to similarities in substations and
their neighbourhoods. Some types of neighbourhood such as tourist or holiday
locations may also increase demand variability in different parts of a year. The mutual
confusions are similar for all investigated CNN models, and since these models have
a different number of convolutional layers, the confusion is more likely to stem from
substations variability rather than from the different architecture of CNN. For example,
Swansea has fishing and tourism, Campsie has business and commercial areas, while
Darlinghurst is a vibrant central district dependent on high season.

Limitations of this study include a limited range of considered years due to computa-
tional intensity. In order to optimize the distribution grid as a whole, network topology
including its inner dependencies and boundary conditions must be considered (e.g., us-
ing hierarchical neural networks). In this study, only classification of network nodes
was presented.

6. Conclusions

After introducing the importance of quantifying network flexibility potential for the
safe integration of renewable energy sources and sustainable economy, the background on
the smart grid and network modeling has been presented together with state-of-the-art
machine learning techniques and their application to the classification of historical demand
data. The resulting characterization of individual substations is important for future work
on network-level simulations, the aim of which is to mitigate the difficulties associated
with identifying, implementing and actuating many small sources of energy flexibility,
compared to the few large ones traditionally acknowledged.

The proposed CNN models do not require any pre-processing of the 15 min interval
demand data, the only subjective choice associated with the classification is the architecture
of the neural network. Three scenarios were evaluated considering data from year 2019,
2020 and both years respectively. In the first two scenarios, data were divided between
training and testing set using a typical split ratio 80/20, and in the third scenario, denoted
as 2019–2020, data from the year 2019 were used for training and data from the year 2020
for testing. This enabled the verification of both statistical significance of the classifier,
based on bootstrapping, as well as generalization of the resulting meta-models.

The sparse mean confusion matrices indicate a robust modeling approach, considering
very similar structures across the investigated architectures, and relatively small standard
deviation of accuracies. A more detailed (qualitative) assessment of substations and their
neighbourhoods was beyond the scope of this paper, as well as the effects of boundary
conditions on real network topology. Future work will continue with hierarchical neural
networks modeling of the entire network.
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