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Abstract: This paper studies the correlation between built environment factors and the prevalence
of hypertension in Wuhan, a typical city in central China. Data were obtained from a regional
epidemiological database, which is the 2015 Epidemiological Survey of people under 65 years in
144 communities. The prevalence of hypertension was analyzed in five components based on the
WHO framework (land use, transport, accessibility, green space, and socioeconomic status). Results
indicated built environment factors have significant correlations with the prevalence of hypertension
(p < 0.01). The road network density, gymnasium cost, income, medical facilities cost, walkability
index, and land use mix (LUM) were statistically significant. Other indicators did not pass the
significance test. The spatial models fit better than the multivariate linear model.

Keywords: healthy city planning; prevalence of hypertension; built environment factors; empiri-
cal research

1. Introduction

With the advancement of medical technologies and economic development, the field
of population health has experienced an epidemiological transition from infectious diseases
to noncommunicable diseases (NCDs) [1]. The main NCDs, such as cardiovascular disease,
diabetes, cancers, and chronic respiratory disease, are the leading cause of death and are a
large burden globally. NCDs are often described as “lifestyle” diseases because the main
risk factors are overconsumption of food, physical inactivity, smoking, and alcohol abuse.
In recent decades there has been increasing recognition that the urban environment and
built environment can have a significant (although complex and difficult to quantify) impact
on human health. There have been only a few studies that have attempted to examine
how the built environment impacts on the health of residents. Evidence supporting the
association between the built environment and NCDs is far from convincing and remains
ambiguous and fragmented [2,3]. The problem with most research is that case studies
often tell stories with complex details or prove positive claims, rather than derive inductive
hypotheses or test useful ideas that build on well-established theories [4]. Few studies have
tried to establish a holistic conceptual framework or explain the mechanism of the built
environment impacting health.

There has been relatively little work on NCDs and almost nothing of relevance on
the relationship between built environment and NCDs in China [5]. Most of the Chinese
scholars follow the direction of their colleagues in the United States and Europe. How-
ever, the built environment in China is very different from that of North America and
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Europe. Whether the healthy city theories or approaches originating from the West are still
applicable to China, or not, needs to be verified [6].

That the built environment affects health and well-being has been confirmed by
many studies [7,8]. The Lalonde report issued by the Canadian government in 1974 first
confirmed that the human habitat is one of the main factors affecting health [9]. It was
the first recognition that the built environment has a considerable impact on physical
activity [10–12]. Since then, the association between the built environment and NCDs
has attracted increasing attention from decision-makers and researchers. The eligible
studies published have found there are three main vectors of built environment and health
outcomes: one is physical activity [13], the other is the urban foodscape [14], and the third is
the restorative environment [15].

In the WHO/Europe’s Evidence Review of Spatial Determinants of Health [16], the main
urban components that determine health are land use patterns, transport, green space, and
urban design. In other recent holistic framework studies on the built environment and
chronic disease, Nieuwenhuijsen and Khreis et al. proposed that land use, facility acces-
sibility, mobility, physical activity, environmental exposure, and social participation are
important components of a healthy city [17,18] and examine the eligible studies between
2005 and 2015 worldwide to assess the influence of built environmental attributes on car-
diovascular disease (CVD) risks. It was found that neighborhood environmental attributes
were significantly associated with CVD risk. Residential density, traffic, recreation facilities,
street connectivity, and a highly walkable environment were associated with physical
activity. Highly walkable environments, fast food restaurants, and supermarket/grocery
stores were associated with blood pressure fluctuations [19]. Sarkar et al. found that in
areas with a low residential density (1800 p/km2) or less, a positive association between
density and obesity was observed. If density was more than 1800 p/km2, it was negatively
associated with obesity, in contrast [20]. In addition, it was reported that green space is
beneficial for mental health [21,22], not only designated green space types such as parks,
but also, and in general, street greenery [23].

Several studies have been conducted in various parts of the world to understand the
health impacts of the built environment [24,25]. So far, empirical studies on the causal
correlation between built environment factors and NCDs such as hypertension have rarely
been seen. This is partly due to the fact that health outcomes are an evolutionary process of
long-term exposure to risk factors, including confounding physiological and psychological
factors, and even social behaviors; most studies only point out the relationships [26]. Even
Reid Ewing, one of the leading scholars in the field of the healthy city, cannot assert
unequivocally that urban sprawl causes obesity but can only state that the two factors are
significantly related [27]. It is widely accepted that NCDs are caused by comprehensive
risk factors and it is difficult to establish a reliable model of their causal association [28,29].
Various etiological mechanisms exist in the complex causal chain of NCDs. For example,
many risk factors cause the same disease, but on the other hand one factor may be related
to multiple chronic diseases. Bird et al. found no linear association among the built
environment factors, physical activity, and health outcomes [30].

The earliest consensus about the relationship between the built environment and
NCDs is the impact of the built environment on physical activity; for example, whether the
design of streets is conducive to walking and cycling, whether there is a mix of land uses
that encourages walking and cycling, and whether there are green spaces and sports fields
for outdoor activities. There has been a large body of work on this [27,31,32]. Frank et al.
(2004) found that every 25% increase in the land use mix (LUM) reduced the overweight and
obesity rate by 12.2% [33]. Li et al. (2008) observed that for every unit increase in the LUM
(entropy index) in the Portland metropolis, the rate of overweight and obesity in the elderly
decreased by 25%. Liu and Yang (2016) compared four communities in Dalian and found
that diversified land use and high street connectivity promoted an increase in physical
activities in the elderly [34]. However, contrasting results were also reported. Cerin et al.
(2007) observed that the association between LUM and walking was not significant in
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research on the community environment and destinations [35]. Forsyth A. et al. found that
the LUM was negatively correlated with an increase in physical activity [36]. Ewing and
Cervero (2010) reported that the assessment methods provided inaccurate results in a meta-
analysis on LUM and physical activity. The entropy algorithm of LUM may not be the best
tool for determining the association between land use and physical activities [37]. Green
spaces and landscapes also encourage physical and psychological health [38], expediting
the recovery of patients [39].

This study follows the WHO’s framework and selects land use, transport, green space,
and urban design as the four components of the built environment. LUM and FAR (Floor
area ratio) were selected for land use; density of road network and destination accessibility
for transport; normalized difference vegetation index (NDVI) for green space; and walkability
index for urban design, respectively. In addition, socioeconomic status is also an important
determinant of health. Thus, demographic and socioeconomic factors were added to the
research framework. The theoretical analysis model is shown in Figure 1.
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Figure 1. Multiple regression model of the prevalence of hypertension and the influencing factors of the built environment.

2. Study Area

The study district is one of the seven main districts of Wuhan city, located on the
north bank of the Changjiang River. It has a wide variety of land types, including the
downtown area with high urbanization and building density, a developing area, as well
as some agricultural land and forest. Wuhan is the economic and geographical center of
central China, so it is a good representative Chinese city, with an area of 70.25 km2, 137
communities, and 7 villages (Figure 2).
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3. Materials and Methods
3.1. Collecting Hypertension Data for Visualized Images at Community Level

In this cross-sectional analysis, prevalence data were collected from an epidemiological
survey, which was collected from 2012 to 2015 in Jiang’an district in Wuhan. It was collected
using a multi-stage stratified and random sampling method from 2012 to 2015. So far it
is one of the most reliable hypertension epidemiological datasets [40]. After removing
duplicates and sorting out the original data, a total of 40,113 adult hypertensive patients
aged 18–99 (86.7% between 40 and 69) remained in the dataset. The number of male
patients (22,411) was higher than that of female patients (17,702).

In this study, the data of people over 65 years were excluded to minimize the influence
of age. According to the China Cardiovascular Diseases Report 2018, the prevalence rate of
hypertension between 17 and 64 years is 23.2%, whereas it is 56.0% in people over 65 years
old, affecting more than half of the population that age and losing statistical significance [41].

The raw data were positioned by a coordinate conversion system using geocoding
software and linked to a community base map (Figure 3). The prevalence data of hyper-
tension per 10,000 people were calculated in each community (Figure 4). Arcgis software
was utilized to see if there was spatial aggregation in the prevalence of hypertension at
community level with visualized images.Sustainability 2021, 13, x FOR PEER REVIEW 5 of 18 
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3.2. Calculation of Built Environment Indicators
3.2.1. Land Use

For the land-use components, we chose LUM and floor area ratio (FAR) as indicators.

• Land use mix (LUM):

LUM is used to evaluate the degree of mixing of various land uses in a certain area.
It was difficult to create a quantitative calculation method for LUM before Cervero and
Kockelman first proposed the nine-square grid model [42]. At present, the entropy model
proposed by Frank et al. is widely recognized by scholars [43] (Figure 5).

LUM = −
n

∑
i=0

Pi ∗ ln Pi/ ln n (1)

where n is the number of land uses, and Pi is the percentage of the area attributed to land
use i. The four land uses of residential, commercial, office, and institutional were utilized
to calculate LUM.

• Floor area ratio (FAR):

Due to the small research scale and most buildings being high-rise buildings in the
study area, FAR was selected as the land-use intensity indicator. The FAR is the ratio of the
total building area to the land area (2) (Figure 6).

FAR =
∑n

i=1 Si ∗ n
SC

(2)

where Si is the building area of a single building, n is the number of buildings in the block,
and SC is the block land area.
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3.2.2. Transport

The density of the road network (RoadDen) and the public facilities’ accessibility were
selected to characterize transport.

• Density of road networks:

The density of road networks (RoadDen), which is the ratio of the total length of all
the roads to a unit area, can be used to characterize the connectivity level. A high RoadDen
indicates better walkability in the neighborhood and promotes more physical activity, such
as walking and cycling (Figure 7).

• Destination accessibility:

Destination accessibility is a variable used in the 3D models proposed by Ewing and
Cervero (2001) and represents the ability to travel between locations [44]. The calculation of
accessibility is relatively complicated and various. In this study, we used public transport
and public facility accessibility to measure destination accessibility.
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• Public transport accessibility:

The density and coverage of bus stations were selected as two indicators to calculate
bus accessibility (BusIndex). The density of bus stations is the number of bus stations per
unit area (the weight of subway stations was twice that of bus stations) (Figure 8). The
coverage of stations is the percentage of the area served by the bus and subway stations. To
identify the service radius of public stations, we checked the literature. Referring to some
of the existing studies [45,46], we identified that the bus stations covered a 300 m range
and the subway stations covered an 800 m range. The weights of bus station density and
coverage were set to 0.4 and 0.6 respectively (3) (Figure 9).

F =
ϕ

Sn
× 0 · 4 +

Si
Sn

× 0.6 (3)

where ϕ is the number of bus stations (subway stations*2), Si is the area covered by the bus
station, and Sn is the area of the community.Sustainability 2021, 13, x FOR PEER REVIEW 8 of 18 
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• Accessibility of public facilities:

The distance cost to Class IIIA hospitals and gymnasiums, which are closely related to
health, were selected as the indicator of the accessibility of public facilities. The distance cost
is the shortest distance from each community to the nearest Class IIIA hospital (MedCost)
and gymnasium (GymCost) based on street connectivity (Figure 10).
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3.2.3. Green Space

The green area ratio is often used as an indicator of green space. Due to rapid changes
in Chinese cities, the planning maps often lags behind actual developments. Therefore,
we used another indicator, the normalized difference vegetation index (NDVI) obtained from
remote sensing data, to characterize the actual distribution of green space in the study area.
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3.2.4. Urban Design

Morphological parameters, such as sky view factor (SVF), street width to building
height ratio (W/H), building coverage ratio (BCR), and building surface fraction (BSF)
etc., are key factors of urban design. While morphological parameters were linked with
the vibrancy of the city, they were too many to be examined in this study. Besides, the
emotional and subjective feelings of residents on urban design make it difficult to obtain a
quantitative measure [47]. The walkability index (WI) is a recently emerged indicator that
evaluates the vibrancy of cities [48], indirectly reflecting the quality of urban design [49,50].
Many algorithms exist to calculate the WI. This study used the walk score algorithm, which
is relatively mature and is recognized by most scholars worldwide [51]. The walk score
was calculated as the usage of various public facilities with different weights based on the
travel behaviors of pedestrians. The walking distance attenuation, intersection density, and
road length were considered to improve the accuracy of the WI, Equation (4) (Figure 11).

S =
n

∑
i=1

wi × ni × Pi (4)

where wi is the weight of the evaluation factor Xi, ni is the number of Xi, and Pi is the
distance attenuation coefficient.Sustainability 2021, 13, x FOR PEER REVIEW 10 of 18 
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Figure 11. Walkability index of the communities in the Jiang’an district.

3.2.5. Income

This study used two indicators to characterize this factor: population density (PopuDen)
(the number of residents per unit area) and income. Yet it was difficult to obtain income
data due to privacy issues at the community level. Using web crawler, we obtained 5707
local housing prices from real estate websites which covered most of the new buildings in
study area. The average housing price (AHP) was calculated as the income indicator instead.

3.3. Evaluating the Influences of Built Environment Indicators on the Prevalence of Hypertension
3.3.1. Multivariate Regression Model

A mathematical model was used to analyze the correlation of the built environment
and hypertension. SPSS software was used to incorporate the variables into the model
using the entry methods in stepwise regression methods. After the regression equation was
established, the significance of the dependent variable by the 95% confidence rule and the
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magnitude of the effect were checked. The Moran’s I index was used to analyze whether
the distribution of residuals was normal or not.

3.3.2. Spatial Analysis Based on SLM and SEM

According to a community health survey conducted in 2008 in New York City, hy-
pertension and diabetes prevalence exhibited spatial clustering similar to infectious dis-
eases [52]. Thus, spatial econometric models are important [53,54] in such studies. A
spatial lag model (SLM) and spatial error model (SEM) were established in the Geoda software.
The difference in the degree of fitness and the level of interpretation between the spatial
model and the linear model were compared to determine the association between the built
environment and NCDs.

4. Results
4.1. Spatial Clustering of the Hypertension Prevalence

The hypertension prevalence data at the community level was imported into ArcGIS,
and the Kernel density analysis tool was used. Spatial clustering of the hypertension preva-
lence was observed; some data clouds were concentrated at the lower left corner in the
Jiang’an district, which is a downtown area with high density and high-rise buildings.
Some areas showed a dotted distribution with others being blanks (Figure 12a).Sustainability 2021, 13, x FOR PEER REVIEW 11 of 18 
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Moran’s I index was 0.133 (Z = 2.55, p = 0.01), indicating spatial clustering of the
hypertension prevalence. The scatter chart confirmed this result (Figure 12b). Hot spot
analysis (Getis-Ord Gi) indicated 3 hot spots and 1 cold spot in the study area (p < 0.05). After
performing cluster and outlier analysis (Anselin Local Moran’s I), 2 high–high clustering
communities, 4 low–low clustering communities, 3 low–high clustering communities, and
4 high–low clustering communities were observed in the study area (Figure 13).
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4.2. Results of Multivariate Regression Models

Based on the research framework (Figure 1), the LUM, FAR, NDVI, MedCost, GymCost,
AHP, WalkIndex, RoadDen, BusIndex, and PopuDen were used as the explanatory variables.
The prevalence of community hypertension was an independent variable. The results are
shown in Table 1. The P-values of the models were all less than 0.01, indicating that the built
environment factors significantly affect the prevalence of hypertension (confidence ratio
> 99%). The all-variables model (model 1) had an R2 of 0.517 and an adjusted R2 of 0.210.
However, some variables in models 1 and 2 had relatively large variance inflation factor
(VIF) values, indicating the existence of multicollinearity in the model. The optimal model
(model 5) was obtained after excluding the covariant variables. The R2 was 0.483, and the
adjusted R2 (0.198) was slightly lower than the all-variables model. The Durbin–Watson
statistic was 2.058, indicating that no spacial clustering existed in residuals (Table 1). The
scatter plot confirms this result (Figure 14).

Table 1. Model summary.

Model R R-Square Adjusted
R-Square Sig. F Std. Error of

the Estimate
Durbin–Watson

(U)

1 0.517 0.267 0.210 0.000 4.696 37.867
2 0.515 0.265 0.214 0.000 5.213 37.955
3 0.507 0.257 0.212 0.000 5.678 38.353
4 0.494 0.244 0.204 0.000 6.083 39.054
5 0.483 0.233 0.198 0.000 6.729 39.624 2.058

1 Predictors: (Constant), GymCost, LUM, PopuDen, Income, RoadDen, NDVI, Medcost, FAR, WalkIndex, BusIndex. 2 Predictors: (Constant),
GymCost, PopuDen, Income, RoadDen, NDVI, Medcost, FAR, WalkIndex, BusIndex. 3 Predictors: (Constant), GymCost, PopuDen, Income,
RoadDen, NDVI, Medcost, FAR, WalkIndex. 4 Predictors: (Constant), GymCost, Income, RoadDen, NDVI, Medcost, FAR, WalkIndex. 5

Predictors: (Constant), GymCost, Income, RoadDen, Medcost, FAR, WalkIndex.

Model 5 includes GymCost, AHP, RoadDen, Medcost, FAR, and WalkIndex. The statistics
of the variables are shown in Table 2. The p-values of all variables were < 0.05, and the VIF
values were < 7.5, indicating no significant collinearity between the variables (Table 2).

However, the LUM, Busindex, NDVI, and PopuDen did not pass the significance test.
Hypertension is caused by many influencing factors besides genetic and behavioral factors,
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while it is affected by complex system factors. Culture, socioeconomic status, and even
food have significant influences.
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Table 2. Model 5 variable statistics.

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Beta Tolerance VIF

5

(Constant) −2.426 1.848 −1.312 0.192
Medcost 0.496 0.177 0.325 2.796 0.006 0.428 2.335
Income 1.028 0.396 0.235 2.593 0.011 0.704 1.421

WalkIndex −1.168 0.436 −0.475 −2.678 0.008 0.183 5.460
FAR 0.253 0.152 0.213 1.660 0.099 0.349 2.865

RoadDen −0.741 0.150 −0.540 −4.929 0.000 0.480 2.082
GymCost 1.070 0.279 0.775 3.843 0.000 0.142 7.054

4.3. The Performance of SEM and SLM

Analysis showed that there was a more obvious spatial autocorrelation in the preva-
lence of hypertension at the community level. Adjusted R2 of the linear model was not high,
indicating that the linear model was insufficient to explanation the spacial phenomena.
Another characteristic of our hypertension prevalence data is that it carries spatial informa-
tion. Therefore, spatial models were used to test the robustness of the model. The results
are shown in the following table. Geoda software developed by Dr. Luc Anselin and his
team was used to test the model by ordinary least squares (OLS), SEM, and SLM methods.

Comparison showed the fit superiority of the spatial model exceeded that of the
linear model across the board. The results are shown in the table below (Table 3). The
R2 of the SLM model was higher (0.192) than that of the OLS (0.167) model. The Akaike
information criterion (AIC) of the SEM model (279.003) was lower than that of the OLS
model (281.505). The Schwarz criterion of the SEM model was also lower than that of the
OLS model. Generally speaking, the lower these two indicators are, the better the fitting
excellence of the model. Furthermore, the fitting performance of the SEM was slightly
better than that of the SLM model.
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Table 3. Comparison of the spatial lag model, spatial error model, and OLS model.

R-Squared Adjusted
R-Squared AIC Log-

Likelihood
Schwarz
Criterion

OLS
regression

model
0.167 0.104 281.505 −129.752 314.173

Spatial lag
model (SLM) 0.192 — 280.400 −128.200 316.038

Spatial error
model (SEM) 0.190 — 279.003 −128.501 311.670

The SEM model provided a better fit than the SLM model, indicating that the spatial
distribution of NCDs was likely affected by the error in the spatial distribution and not by
the influence of adjacent regions.

5. Discussion
5.1. The Significance of Influences of Built Environment Variables on Hypertension

The purpose of this study was not to establish an accurate regression model but to
explore the potential association between the built environment factors and hypertension.
The variables of model 1 were sorted by their significance and impact direction. The mean
of the absolute value of the coefficient (0.629) was used as a threshold to evaluate the degree
of impact (Table 4). The variables that had significant influence were RoadDen, GymCost,
Income, Medcost and WalkIndex, while the ones having no significant influence were NDVI,
PopuDen, BusIndex, and LUM.

Table 4. Summary of the variable correlations.

Variables Coefficients
Influence
Direction

and Degree
Sig. Significance Significance

Ranking

RoadDen −0.779 − − 0.000 ** 1
GymCost 1.401 + + 0.001 ** 2
Income 1.160 + + 0.005 ** 3

Medcost 0.510 + 0.006 * 4
WalkIndex −0.952 − − 0.042 * 5

FAR 0.281 + 0.071 − 6

NDVI 0.216 + 0.113 Not
significant 7

PopuDen 0.024 + 0.132 Not
significant 8

BusIndex −0.674 − − 0.251 Not
significant 9

LUM 0.288 + 0.586 Not
significant 10

** Indicates significance at the 0.01 level (paired t-test). * Indicates significance at the 0.05 level (paired t-test). + +
Influence is positive and the coefficient is greater than 0.629; + influence is positive and the coefficient is lower
than 0.629. − − Influence is negative and the absolute value of the coefficient is greater than 0.629; − influence is
negative and the absolute value of the coefficient is lower than 0.629.

5.2. Built Environment Factors that Affect the Prevalence of Hypertension Significantly

Among the significant built environment factors, the RoadDen and WI had a negative
influence on the prevalence of hypertension, which is consistent with most current studies.
A high density of the road network indicates that the public service system in this area has
good accessibility [33], resulting in a lower BMI index and lower risk of obesity [55,56]. It
also indicates a small community with a dense road network layout block in which people are
willing to go out walking and shopping because of commercial prosperity. The higher the
WI of the street, the denser is the road network, which means it is more suitable for physical
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activities, leading to a lower prevalence of hypertension. On the other hand, the cost of
medical and sports facilities were positively correlated with the prevalence of hypertension.
The less accessible the hospital facilities, the more difficult it is for residents to access health
care. Similarly, we can conclude that the less accessible the gymnasium facilities, the more
difficult it is for them to participate in sports, so the risk of NCDs is increased.

From the components of land use, FAR was positively correlated with the prevalence
of hypertension, differing from the results of some recent studies. For example, Dunphy
et al. found that physical activity, including walking and cycling, increased significantly
when the population exceeded 7500 per square mile [57]. Many subsequent studies have
confirmed this result [58]. However, our results are also consistent with those of some
recent research. In a recent cross-sectional study, Sarkar et al. (2017) found a nonlinear
relationship between the built environment factors and obesity [20]. Beside this, our result
is also consistent with the findings of most studies in China. Sun et al. found that high-
density environments increased the risk of obesity in Chinese cities [59]. The reason is that
high-density development reduces urban public areas and green spaces, so that decreases
the residents’ willingness to be physically active [60].

AHP (income indicator) was positively correlated with the prevalence of hypertension.
This is different from the usual perception [61]. High-income area residents have a better
living environment and enough time for physical activity, so their prevalence of NCDs
should be decreased. In the U.S., it was found that increases in income significantly improve
mental and physical health but increase the prevalence of alcohol consumption [62]. There
are three potential reasons to explain our results. First, the sample size in Jiang’an district
was still so limited that it created statistical bias. Second, AHP is just an approximate
estimate of income level. Price of real estate are determined by a number of factors, not
only income factor, e.g., location, age of the housing, and even school district. Third, in
Chinese cities, high-price areas are often located in the heart of the city with convenient
public services. People’s desire to go downstairs for physical activity and leisure is low.
Another risk that cannot be ignored is that overeating and high alcohol consumption often
increase the risk of CVD. This is regardless of whether a person is rich or not.

There is also an inverse relationship between the prevalence of hypertension and the
distance cost of health care facilities. This is consistent with the findings of some previous
studies. In the USA, inpatient utilization decreased when travel distance to VA facilities
increased [63]. It is natural that if people are farther away from health care facilities, they
will not have access to convenient health care services.

5.3. Other Built Environment Factors That Did Not Pass Significance Test

The NDVI (p < 0.113) and PopDen (p < 0.132) were not significant but we can see
the effects of their impact. The NDVI was positively correlated with the prevalence of
hypertension, which is contrary to some research results but consistent with others. Tilt
et al. used objective measurements and self-assessment methods to study the influence
of destination accessibility and NDVI on walking willingness and BMI. The data showed
that residents living in areas with high green space accessibility and NDVI had lower
BMI [64]. Yet, there were different results in some research. A study in the United Kingdom
considered that there is not a clear link between the amount of green space and health
outcomes [65]. Even more green space was associated with poor health status in low-
income suburbs [66]. Another study in Netherland declared that people with more green
space spend more time gardening and less time walking and cycling [67].

Green space is used differently in China than in the West. In China, due to the dense
population, green space is very limited and generally green space is used as landscape and
access is generally not allowed, nor is walking in it. In contrast, green spaces in the United
States and Europe are easily accessible and used as fitness areas as a public recreational
space. This is perhaps the main reason why Chinese green space indicators are different
from those of the West.
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Although the NDVI is still not a good indicator to measure green space in this research
because wasteland and swamps are often considered green space, cloud and smog often
interferes with the value of NDVI, so the NDVI is still an objective assessment of the
green space relative to the green area ratio derived from the drawings. Further studies
on indicators such as accessibility, distance to the nearest green space from home, visual/
scenic quality of the views, and window views over the green space should be done in the
future.

PopDen did not pass the significance test. A reason for this may be that the prevalence
of hypertension has been standardized twice based on the population. However, the impact
direction of PopDen is positive, supporting the conclusion that crowding is a risk factor
for NCDs [68]. Research in a Chinese city found that a high-density environment reduces
the residents’ well-being. Noise and congestion may be the main reasons for residents’
psychological stress [59].

The BusIndex was not significant either but its impact direction was negative. A study
by Rundle et al. found that BusIndex significantly affected the BMI of New York’s residents.
Our research results support this conclusion.

The impact of LUM could not be confirmed (p < 0.586), which was not consistent with
the findings of existing researches. In this study, the results showed that the LUM obtained
from the entropy method was not suitable for the study area in China. The LUM obtained
from land-use plans was quite different from actual conditions.

6. Conclusions

Urban studies differ from other sciences because of their objects and scale, and most
studies do not allow the possibility of conducting multiple comparative experiments.
Empirical case studies play an important role in advancing knowledge in the field of urban
planning. Due to the lack of high-precision data in the past, most of our simulations of
cities are too rough and abstract.

This study analyzed the correlation between the built environment factors and the
prevalence of hypertension based on the 2015 Epidemiological Survey of people under
65 years in 144 communities of Wuhan city. While RoadDen, GymCost, Income, Medcost
and WalkIndex had significant influence on the prevalence of hypertension, the correlation
of RoadDen, GymCost, Income, Medcost and WalkIndex, the NDVI, PopuDen, BusIndex, and
LUM are insignificant. In addition, it was found that the spatial models fit better than the
multivariate linear model in the correlation analysis.

Our study is one of a few to systematically investigate the association of built environ-
ment factors with hypertension and quantify the dose–response relationship. In addition
to a linear regression model, we also used the spatial econometric method to verify the
robustness. These design features provided details and statistical rigor of the analysis.
Despite the considerable complexity and uncertainties of healthy city planning and weak
evidence of causality, decision-makers and researchers should not refuse to use the best
available research evidence to plan and design healthy cities.

The inference that we can learn which built environment factors are detrimental to
health and which factors can be improved through an improved living environment is a
conclusion with significant public health implications. It needs to be carefully considered
by urban planners and policy makers. Further longitudinal studies based on cumulative
data are needed to clarify changes in the built environment and to infer causal relationships
with health.
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