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Abstract: Water elements with flowing water on the surface are common in buildings as a form of
indoor decoration, and they are most often perceived as passive humidifiers. However, by controlling
water temperature, they can be also used for air dehumidification. The dehumidification capacity
of indoor water elements was investigated experimentally under laboratory conditions. For the
experimental verification of dehumidification capacity, a water wall prototype with an effective
area of falling water film of 1 m2 and a measuring system were designed and developed. A total
of 15 measurements were carried out with air temperatures ranging from 22.1 ◦C to 32.5 ◦C and
relative humidity from 58.9% to 85.6%. The observed dehumidification capacity varied in the range
of 21.99–315.36 g/h for the tested measurements. The results show that the condensation rate is a
dynamic process, and the dehumidification capacity of a water wall strongly depends on indoor air
parameters (air humidity and temperature). To determine the dehumidification capacity of a water
wall for any boundary conditions, the equations were determined based on measured data, and
two methods were used: the linear dependence between humidity ratio and condensation rate, and
nonlinear surface fitting based on the dependence between the condensation rate, air temperature,
and relative humidity.

Keywords: water wall; falling water film; relative humidity; temperature; condensation rate; dehumidification

1. Introduction

In the field of the research and development of water walls for building applications,
water walls where water flows between two solid materials are mainly presented. This is a
closed system and is used to adjust thermal comfort, especially air temperature. The first
water wall of this type reported in the available literature was the one built in 1947 at the
Massachusetts Institute of Technology by Hoyt Hottel and his students with the aim to
use a water wall as a passive solar system [1]. It has been proven that a water wall system
used as a green building façade can enhance the energy performance [2–5] and also fire
protection of buildings [5].

Another group of water walls (Figure 1) represents decorative water features often
located in the interior of public spaces such as shopping centers, hospitals, libraries, the
entrance areas of office buildings, and hotels, but also airports. In this case, water falls
on solid material and is in direct contact with indoor air, so there is an assumption that
in addition to thermal comfort, other parameters of the indoor environment can also be
affected. Water elements similar to green walls are perceived as a significant aesthetic
element of the indoor environment and represent one of the patterns of biophilic design [6–8].
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ment of the indoor environment and represent one of the patterns of biophilic design [6–
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Figure 1. Water wall examples: (a) Shopping center, Vienna, Austria; (b) Library, Brno, Czech Republic; (c) Railway sta-
tion, Vienna, Austria; (d) Office building, Baku, Azerbaijan. 

In the case of indoor greenery (e.g., living walls), many studies have been conducted 
that define the different systems and designs of these elements [9–12]. It was shown that 
indoor greenery offers several benefits, such as producing oxygen through photosynthesis 
[13]; affecting the physical parameters of indoor air quality, mainly temperature and hu-
midity [14–16], CO2 concentration, and acoustics [13,15]; and providing an aesthetically 
pleasing environment that increases productivity and lowers stress in the building’s oc-
cupants [17]. The use of indoor plants in some situations could also be a potential problem, 
however, mainly in the context of humidity and fungal respiratory diseases in patients 
[10,14]. 

On the other hand, the issue of indoor water bodies, which also represent the possi-
bility of bringing nature inside a building, has not been explored in detail. There is no 
clear division that describes these elements, even though water elements are increasingly 
becoming part of the interior of buildings. Water elements in the interior of a building 
enhance the experience of a place through the seeing, hearing, or touching of water and 
are associated with reducing stress, increasing feelings of tranquility, and lowering heart 
rate and blood pressure, as well as improving concentration and memory restoration 
[8,18]. It was found that the sound of water has been positively associated with restoration 
[19], especially in connection with dissatisfaction with environmental noise through win-
dows [20]. However, there are also differences in the way different genders respond to 
water features, with male subjects tending to respond to water features more frequently 
than female subjects [18]. 

At present, water walls where the water circulates are mostly used for an evaporation 
cooling effect, as a consequence of which the air temperature decreases and water tem-
perature increases [1,21,22]. In addition to temperature, air humidity also changes and 
increases. This effect may cause an unpleasant level of thermal comfort, especially in hot 
and humid conditions. Subsequent air treatment and dehumidification may also result in 
significant energy loads. A study from India showed that direct evaporation cooling was 
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In the case of indoor greenery (e.g., living walls), many studies have been conducted
that define the different systems and designs of these elements [9–12]. It was shown that
indoor greenery offers several benefits, such as producing oxygen through photosynthe-
sis [13]; affecting the physical parameters of indoor air quality, mainly temperature and
humidity [14–16], CO2 concentration, and acoustics [13,15]; and providing an aestheti-
cally pleasing environment that increases productivity and lowers stress in the building’s
occupants [17]. The use of indoor plants in some situations could also be a potential
problem, however, mainly in the context of humidity and fungal respiratory diseases in
patients [10,14].

On the other hand, the issue of indoor water bodies, which also represent the possibil-
ity of bringing nature inside a building, has not been explored in detail. There is no clear
division that describes these elements, even though water elements are increasingly becom-
ing part of the interior of buildings. Water elements in the interior of a building enhance the
experience of a place through the seeing, hearing, or touching of water and are associated
with reducing stress, increasing feelings of tranquility, and lowering heart rate and blood
pressure, as well as improving concentration and memory restoration [8,18]. It was found
that the sound of water has been positively associated with restoration [19], especially in
connection with dissatisfaction with environmental noise through windows [20]. However,
there are also differences in the way different genders respond to water features, with male
subjects tending to respond to water features more frequently than female subjects [18].

At present, water walls where the water circulates are mostly used for an evaporation
cooling effect, as a consequence of which the air temperature decreases and water tempera-
ture increases [1,21,22]. In addition to temperature, air humidity also changes and increases.
This effect may cause an unpleasant level of thermal comfort, especially in hot and humid
conditions. Subsequent air treatment and dehumidification may also result in significant
energy loads. A study from India showed that direct evaporation cooling was not as
effective during the months of July and August, and some dehumidification is required
to maintain thermal comfort indoors [23]. Research from Malaysia (which has a hot and
humid climate) showed hybrid cooling strategies—thermal stack flue, cross ventilation,
and water walls (evaporative cooling)—located in the atriums of office buildings. Due to
use of this hybrid system, indoor temperatures were lower than outdoor temperatures, and
indoor humidity fluctuated from 68% to 92% during working hours. This system does not
increase RH significantly, but this value can still cause some level of discomfort [24]. The
high humidity of air can also lead to problems associated with condensation, mainly in
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the case of air conditioners without regulation of humidity—for example, radiant cooling
systems [25,26]. The evaporative cooling potential of water walls is more suitable for hot
and dry climates. However, there is still a risk of Legionella bacteria with increasing water
temperature [27]. Additionally, there is an assumption that regulation of water tempera-
ture can lead to a useful impact on indoor air temperature and humidity [28]. Research
conducted by Fang et al. [29] showed the potential of using water walls with water temper-
ature regulation. However, in this case, the experimental measurements took place in real
conditions without control of the physical parameters of the inner microclimate in a specific
environment of sorption-active elements. Thus, the resulting effect of the water element on
the environment is closely related to the boundary conditions for the given environment;
additionally, only the change in individual physical parameters was described, while the
share of the water wall for this change was not clearly quantified.

At present, many studies deal with energy consumption in buildings, especially in
the context of reaching the required temperature [30–32]. However, achieving the required
humidity level is also important. Today, around 10–15% of the total energy consumed
by a building is used to achieve the required humidity level [33]. Moreover, based on
climate change and the global warming effect, there is an assumption that this percentage
will increase several times in the coming years [34,35]. Similarly, as water changes the
hydrothermal behavior of buildings with green components [36], the presence of water
elements in interior spaces can affect the parameters of the indoor microclimate. This forces
us to effectively utilize all elements and to learn more about the potential of individual
elements in the building.

The presented paper fills the gap of knowledge in the field of effective use of water
walls with controlled water temperature, with a focus on the dehumidification capacity of
water walls that is defined by condensation rate under varying boundary conditions. The
novelty of the contribution lies mainly in the fact that the water wall and its dehumidifi-
cation potential are determined in laboratory conditions at various boundary conditions
without sorption-active materials. The main object is the quantification of water wall
dehumidification capacity via equations of condensation rate that can be used for differ-
ent spaces of buildings. The paper connects the aesthetic element (water wall) with the
functional use (dehumidification) in the interior of buildings. Quantification of dehumidifi-
cation capacity of water walls with controlled water temperature as a device through an
equation is helpful for its design, operation, and implementation in any space.

2. Materials and Methods
2.1. Research Scheme

Experimental verification under laboratory conditions was chosen to quantify the
dehumidification potential of water walls. In Figure 2, it is possible to see a schematic
illustration of the methodology of the work. Firstly, the assumption of water wall use
was defined. The second step was to design and create a full-scale prototype of a water
wall, and then the laboratory conditions were determined and specified. The next step
was to perform measurements under different boundary conditions and analysis of the
obtained data where condensation rate is expressed by incensement of weight condensate
in time. Finally, the co-dependence of parameters (air temperature and humidity) and
condensation rate was evaluated using two methods—linear and nonlinear analysis. The
result is a comparison of both methods and the definition of water walls with controlled
water temperature as a device with an impact on the humidity of the indoor environment.
The Microsoft Excel 2016 and OriginPro 9.0 programs were used for the analysis and
presentation of the results.
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2.2. Assumption of Water Wall Use to Dehumidify Air

For the effective use of water walls with a controlled water temperature, the phase
change between liquid and gas associated with condensation was used. If water vapor
comes into contact with a surface whose temperature is below the dew point of the air,
the condensation process occurs, and the vapor changes phase and becomes liquid. In the
present paper, the surface with a temperature below the dew point that was used is the
falling water film with an average temperature of 14 ◦C. This process decreases the content
of water vapor in the air.

In addition to mass transfer, heat transfer also occurs. Considering the problem of
conjugated heat and mass transfer, three basic elements of the system can be specified: the
solid body (glass), the thin falling water film flowing down the glass, and the surroundings
of the gas mixture (air) [37]. The study of film flow is difficult because the flow itself
exhibits large uncertainties and instabilities. Such large uncertainties can be attributed
to its diverse, complex, and irregular wave structures [38]. At the top of a falling film
unit, i.e., at the liquid inlet, the film is smooth. As the film flows downwards, there
is a simultaneous development of hydrodynamic profiles [39]. During the flow of the
water film, a characteristic wave pattern is created, which breaks into wave segments with
different sizes and shapes. The wave pattern also depends on the flow velocity of the
surrounding air [40]. Many studies [37,39,41,42] have proven that film thickness is one of
the most essential parameters playing a vital role in determining heat and mass transfer
performance. The mass flow rate, but also the shape, surface roughness, or porosity of
the solid material after which it flows, have a significant influence on the formation and
thickness of the water film and its energy benefit [43,44]. The problem of the falling water
film is most often studied theoretically via numerical analysis [37] or via an experimental
investigation [42].

2.3. Design of Water Wall Prototype

There are various designs and construction methods of decorative water features.
In this paper, the construction method based on an overflow edge was used. For the
experimental verification, the full-scale water wall prototype was designed (Figure 3).
The prototype consists of bottom and upper water tanks with rectangular shapes made
of polypropylene material (thickness 6 mm) using a method based on fusion welding;
this ensured the tanks were watertight. From the bottom tank, the water is pumped and
supplied to the upper water tank, and subsequently, the water spills over the overflow
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edge, then flows down the glass and forms a continuous falling water film on it. The
effective area of the water film is 1 m2; the dimensions are 710 mm x 1420 mm, and thus,
the width to height ratio is 1:2.
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Figure 3. Design of water wall prototype.

The formation and thickness of the water film affect, among other things, the geometry
of the upper part of the water wall (Figure 4). Into the collecting tank (1) is inserted a
perforated pipe (2) for the supply of water (8). The length of the perforated pipe (2) is
700 mm, and the diameter of the holes is 3 mm, with an axial distance of 10 mm (Figure 5a).
The orientation of perforation is downwards, which is essential for a smooth inlet of water
to the tank and for forming a water film along the entire width of the water wall. The glass
pane (4) forms the overflow edge (9) and is supplemented by protruding parts at its side
edges to prevent undesired water overflow. A silicone adhesive (7) was used to connect the
collecting tank (1) and glass pane (4). A ball valve (10) fastened to the collecting tank (1)
serves to empty it if necessary. The collecting tank (1) is anchored to the supporting metal
structure (5) by screws (6) and is supplemented by a cover (3). A cover is used also for the
bottom tank to prevent unwanted evaporation. The solution of the upper part of the water
wall is part of utility model PUV 50129-2017 no. 8710 [45].
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Furthermore, to form a water film along the entire width of the water wall, the
overflow edge must be in a perfectly horizontal position. For this purpose, there are
4 screws located in the lower part of the metal structure (Figure 5).

2.4. Laboratory Conditions
2.4.1. Climate Chamber

The water wall prototype was tested under laboratory conditions using a climate
chamber (Figure 6) located in the laboratory of the Faculty of Civil Engineering of the
Technical University of Košice, where it is possible to set steady boundary conditions (air
temperature and humidity can be controlled). The chamber is fully closed, airtight, and
consists of two separate rooms. The air temperature and humidity can be controlled for
each room separately. For the experiment, just one room was used, with inner dimensions
of 3.95 × 1.60 × 2.85 m and volume of air of 18.01 m3. The temperature ranged from
−20 ◦C to +125 ◦C, and the RH of the chamber was adjustable from 20% to 95%. The
climatic chamber was chosen to avoid mass exchange between the chamber’s walls, which
are made of stainless steel, and air. Due to this, the moisture buffer effect of materials can be
ignored, and the clean dehumidification capacity of the water wall can be determined. The
climate chamber was adjusted and adapted for measurement purposes. The modification
of the chamber involved the creation of a textile tunnel that was deployed to the air supply.
This intervention contributed to a uniform air distribution in the chamber and, at the same
time, avoided a heavy draft.
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2.4.2. Set of Sensors

In the chamber was installed a set of measuring sensors, which recorded boundary
conditions throughout all the experiments. To measure the water temperature, the Ahlborn
NTC sensor FN 0001 K was used. Two sensors measured the water temperature in the
bottom tank and two in the upper tank. Moreover, two sensors type Ahlborn FHAD 46-C0
were installed to measure the temperature and the relative humidity of the air in front of
the water film, and one behind the glass. The limiting deviations of the used sensors are
described in Table 1.

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 18 
 

2.4. Laboratory Conditions 
2.4.1. Climate Chamber 

The water wall prototype was tested under laboratory conditions using a climate 
chamber (Figure 6) located in the laboratory of the Faculty of Civil Engineering of the 
Technical University of Košice, where it is possible to set steady boundary conditions (air 
temperature and humidity can be controlled). The chamber is fully closed, airtight, and 
consists of two separate rooms. The air temperature and humidity can be controlled for 
each room separately. For the experiment, just one room was used, with inner dimensions 
of 3.95 × 1.60 × 2.85 m and volume of air of 18.01 m3. The temperature ranged from –20 °C 
to +125 °C, and the RH of the chamber was adjustable from 20% to 95%. The climatic 
chamber was chosen to avoid mass exchange between the chamber’s walls, which are 
made of stainless steel, and air. Due to this, the moisture buffer effect of materials can be 
ignored, and the clean dehumidification capacity of the water wall can be determined. 
The climate chamber was adjusted and adapted for measurement purposes. The modifi-
cation of the chamber involved the creation of a textile tunnel that was deployed to the air 
supply. This intervention contributed to a uniform air distribution in the chamber and, at 
the same time, avoided a heavy draft. 

  

(a) (b) 

Figure 6. Climate chamber: (a) Exterior view; (b) Interior view. 

2.4.2. Set of Sensors 
In the chamber was installed a set of measuring sensors, which recorded boundary 

conditions throughout all the experiments. To measure the water temperature, the Ahl-
born NTC sensor FN 0001 K was used. Two sensors measured the water temperature in 
the bottom tank and two in the upper tank. Moreover, two sensors type Ahlborn FHAD 
46-C0 were installed to measure the temperature and the relative humidity of the air in 
front of the water film, and one behind the glass. The limiting deviations of the used sen-
sors are described in Table 1. 

All the sensors were calibrated before use and were connected to a control unit (type 
Ahlborn) for the storage of the measured parameters. The AMR Win Control software 
was used to set up experiments and collect the measured data. This ensured the continu-
ous recording of the measured values. 

  

Figure 6. Climate chamber: (a) Exterior view; (b) Interior view.

Table 1. Specifications of measuring sensors.

Parameter Device Range Deviation

Water temperature NTC sensor FN 0001 K 0 to 70 ◦C ±0.2 K

Air
humidity

FHAD 46-C0
10 to 90% RH ±2.0% RH at nominal temperature (+23 ◦C)

temperature 5 to 60 ◦C typical ±0.2 K (maximum ±0.4 K)

All the sensors were calibrated before use and were connected to a control unit (type
Ahlborn) for the storage of the measured parameters. The AMR Win Control software was
used to set up experiments and collect the measured data. This ensured the continuous
recording of the measured values.

2.4.3. Measuring Systems

The water wall prototype was adapted for experimental testing in accordance with
the scheme (Figure 7). The prototype was placed on an elevated wooden construction, the
bottom water tank was connected with a measuring cylinder, and the different types of
components, i.e., valves, flow meter, and plate heat exchanger, were added to the system.

Because there is no standard method for measuring the condensation rate [46], a
system based on the weighting of condensate increment measurement was developed
(Figure 8). For this purpose, the Radwag laboratory scale connected to a measuring cylinder
was used. Its weight limit is 6000 g to an accuracy of 0.01 g. Another important restriction
is the fact that ambient relative humidity should not exceed 85%. Same as the sensors, the
laboratory scale was connected to the Ahlborn control unit. To achieve the right conditions
for condensation, the plate heat exchanger was added to the system and connected to
well water. Due to this, the water temperature was constant with a value of around
14 ◦C. After the start of the experiment, the individual parts of the water wall are flooded,
and water needs to be added to the level of overflow created in the measuring cylinder.
Subsequently, water from the bottom water tank flows into the measuring cylinder. From
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it, water is supplied into the upper part of the water wall by the pump and cooled by the
plate exchanger. During the experiment, the water increments caused by the condensation
process on the falling water film overflow to the plastic collecting tank, which was put on a
laboratory scale. The flow rate velocity is controlled by the shut-off valve, and for accurate
monitoring, the flow meter was used. Throughout all the experiments, the flow rate was
450 l/h, which was determined to be the optimal flow rate during past experiments [47].
Via this system, it is possible to accurately and continuously record the condensation rate
(condensate formed on the water film) over time.
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quently, water from the bottom water tank flows into the measuring cylinder. From it, 
water is supplied into the upper part of the water wall by the pump and cooled by the 
plate exchanger. During the experiment, the water increments caused by the condensation 
process on the falling water film overflow to the plastic collecting tank, which was put on 
a laboratory scale. The flow rate velocity is controlled by the shut-off valve, and for accu-
rate monitoring, the flow meter was used. Throughout all the experiments, the flow rate 
was 450 l/h, which was determined to be the optimal flow rate during past experiments 
[47]. Via this system, it is possible to accurately and continuously record the condensation 
rate (condensate formed on the water film) over time. 

Figure 7. Schematic diagram of basic setup of the measurement system.
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3. Results and Discussion

A total of 15 measurements were carried out, with 2 repetitions to determine the dehu-
midification capacity of the water wall. During the measurements, air temperature varied
from 22.1 ◦C to 32.5 ◦C, and relative humidity changed from 58.9% to 85.6% (Figure 9).
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The recording of measurements was performed in a 5 min time step. To avoid exceed-
ing the measuring limit of the laboratory scale, the duration of the experiments ranged
from 7 to 15 h. The obtained data from sensors were analyzed and evaluated to average
values for each measurement. This means that an average water temperature, average
air temperature, and average relative humidity were determined. The average water
temperature was 14.8 ◦C ± 0.3 in the bottom tank and 14.0 ◦C ± 0.2 in the upper tank.
To determine the condensation rate, for each measurement, the weight of condensate in
time was evaluated. The resulting values of condensation performance of the water wall
prototype and boundary conditions are evaluated in Table 2. This table also shows that the
condition for condensation has been met: the water temperature must be lower than the
dew point temperature of the air. The dew point temperature (Tdp) was calculated using
the measured boundary conditions of air according to the calculation formula, as shown in
Equation (1).

Tdp =
243.5 × ln

(
RH
100 exp 17.67×T

243.5+T

)
17.67 − ln

(
RH
100 exp 17.67×T

243.5+T

) (1)

By comparing two groups of measurements, it is possible to observe that the conden-
sation capacity of a water wall depends on the temperature and relative humidity of the
air. The first group includes measurements 5, 6, and 7, in which the air temperature was
approximately equal (25.7 ◦C). The second group comprises measurements 8, 9, and 10,
when the air temperature was approximately 27.3 ◦C, which is 1.6 ◦C higher than that of
the first group. In the first case, the air temperature was 25.7 ◦C, and three measurements
were carried out with relative humidity of 58.9% (RH_1), 74.0% (RH_2), and 83.8% (RH_3).
In the second case, the air temperature was 27.3 ◦C and relative humidity 59.5% (RH_1),
75.7% (RH_2), and 83.6% (RH_3). The increase in relative humidity was similar in both
cases. The plots (Figure 10) represent the courses of condensate weight created on the
water film depending on time.

In the first case (Figure 10a), when relative humidity was 58.9%, the hourly gain of
condensate was 21.99 g/h; at a relative humidity of 74.0%, the hourly increase in condensate
was 148.81 g/h; and when relative humidity was 83.8%, the condensation performance
was 236.73 g/h.

In the second case (Figure 10b), when the relative humidity was 59.5%, the hourly
gain of condensate was 68.81 g/h; at a relative humidity of 75.7%, the hourly increase
in condensate was 218.19 g/h; and when relative humidity was 85.6%, the condensation
performance was 315.36 g/h.

The measurement results show that when the air temperature was 25.7 ◦C and relative
humidity 58.9%, the condensation performance was 21.99 g/h. An increase in relative
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humidity of 15.1% represents a rise in condensate weight by 126.82 g, which is 6.8 times
higher, whereas with an increase of 24.9%, condensate weight increases by 214.74 g, which
is 10.8 times higher compared to when relative humidity is 58.9%.

When the air temperature increased by 1.6 ◦C to 27.3 ◦C, the dehumidification perfor-
mance for a relative humidity of 59.5% was 68.81 g/h. An increase in relative humidity of
16.2% represents a rise in condensate weight by 149.38 g, which is 3.2 times higher, whereas
with an increase of 26.1%, condensate weight increases by 246.55 g, which is 4.6 times
higher compared to when relative humidity is 59.5%.

The results (Table 3) show a co-dependence of the dehumidification capacity of the
water wall and boundary conditions. Even though the increase in relative humidity is com-
parable in both groups, the dehumidification capacity of the water wall is incomparable.
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3.1. Analysis of Results Using Linear Dependence

Air humidity can be expressed in various ways. One of them is the humidity ratio.
Based on the measured boundary conditions of air (relative humidity and air temperature),
the humidity ratio was determined (Table 4). The plot in Figure 11 shows the linear
dependence between humidity ratio (g/kg) and condensate rate (g/h).

From the graphical solution of linear dependence, Equation (2) was derived:

CR = 32.982 × χ − 376.64 (2)

where CR is the condensation rate (g/h) and χ is the humidity ratio (g/kg). The correlation
coefficient (R2) of the equation is 0.9589. With the equation, it is possible to determine the
water wall’s condensation capacity for any humidity ratio.

In the next step, the condensation rate was calculated using Equation (2), and the
percentage of deviation compared to the measured values was specified. This comparison,
together with the boundary conditions, is shown in Table 4.
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Table 2. Resulting values of measured parameters.

Measurement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temperature (◦C) 22.2 ± 0.1 22.1 ± 0.1 24.0 ± 0.1 23.8 ± 0.1 25.7 ± 0.1 25.8 ± 0.1 25.7 ± 0.2 27.5 ± 0.1 27.2 ± 0.1 27.3 ± 0.2 28.9 ± 0.2 28.9 ± 0.1 30.7 ± 0.1 30.8 ± 0.1 32.5 ± 0.1

Max Temperature (◦C) 22.4 22.4 24.2 24.0 26.0 26.0 26.1 27.7 27.5 27.7 29.3 29.3 31.0 31.1 32.8

Min Temperature (◦C) 21.9 22.0 23.9 23.6 24.6 25.6 25.3 27.2 26.9 26.7 28.5 28.6 30.5 30.4 32.0

Relative humidity (%) 72.3 ± 1.4 82.7 ± 1.0 73.1 ± 1.4 83.7 ± 1.0 58.9 ± 1.4 74.0 ± 1.2 83.8 ± 1.3 59.5 ± 1.4 75.7 ± 1.0 85.6 ± 0.6 60.8 ± 0.9 70.9 ± 0.9 61.1 ± 1.0 71.6 ± 0.9 61.9 ± 0.9

Max Relative humidity (%) 75.1 84.5 75.5 85.5 62.7 76.2 86.3 62.1 78.0 87.1 62.5 72.7 63.0 73.5 64.5

Min Relative humidity (%) 70.2 80.2 71.0 81.3 56.8 72.4 81.5 57.3 73.6 84.1 59.2 69.4 59.6 69.9 60.4

Dew point temperature (◦C) 17.02 19.04 18.88 20.89 17.07 20.78 22.78 18.86 22.56 24.65 20.56 23.1 22.36 25.04 24.23

Water temperature_upper
(◦C) 13.6 ± 0.02 14.0 ± 0.01 13.7 ± 0.02 14.0 ± 0.02 13.9 ± 0.02 13.9 ± 0.05 14.0 ± 0.02 13.8 ± 0.02 14.2 ± 0.01 14.3 ± 0.01 14.1 ± 0.01 14.2 ± 0.03 14.2 ± 0.01 14.3 ± 0.01 14.3 ± 0.01

Water temperature_down
(◦C) 14.1 ± 0.03 14.4 ± 0.01 14.4 ± 0.06 14.6 ± 0.02 14.6 ± 0.03 14.6 ± 0.03 14.8 ± 0.02 14.4 ± 0.01 15.0 ± 0.02 15.2 ± 0.02 14.8 ± 0.02 15.1 ± 0.04 15.1 ± 0.02 15.4 ± 0.02 15.3 ± 0.02

Duration of experiment (h) 15.0 15.0 12.0 15.0 12.0 12.0 14.0 12.0 7.0 7.0 15.0 14.0 15.0 7.0 7.0

Condensation rate (g/h) 46.02 104.29 88.95 173.42 21.99 148.81 236.73 68.81 218.19 315.36 118.62 219.92 177.4 298.17 240.4

Table 3. The resulting comparison and evaluation of two selected groups of measurements.

Air Temperature (◦C) Relative Humidity (%) Condensation Rate (g/h) Increscent (-)

First group of measurements 25.7
58.9 21.99 reference value
74.0 148.81 6.8 times higher than reference value
83.8 236.73 10.8 times higher than reference value

Second group of measurements 27.3
59.5 68.81 reference value
75.7 218.19 3.2 times higher than reference value
85.6 315.36 4.6 times higher than reference value

Table 4. Comparison of measured and calculated condensation rate using humidity ratio.

Measurement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temperature (◦C) 22.2 22.1 24.0 23.8 25.7 25.8 25.73 27.5 27.2 27.3 28.9 28.9 30.7 30.8 32.5
Relative humidity (%) 72.3 82.7 73.1 83.7 58.9 74.0 83.8 59.5 75.7 85.6 60.8 70.9 61.1 71.6 61.9
Humidity ratio (g/kg) 12.45 14.18 14.03 15.94 12.49 15.83 17.94 14.02 17.7 20.15 15.61 18.31 17.48 20.64 19.63

Measurement: CR (g/h) 46.02 104.29 88.95 173.42 21.99 148.81 236.73 68.81 218.19 315.36 118.62 219.92 177.4 298.17 240.4
Equation: CR (g/h) 33.99 91.04 86.10 149.09 35.31 145.47 215.06 85.77 207.14 287.95 138.21 227.26 199.89 304.11 270.80
Absolute difference 12.04 13.25 2.85 24.33 13.32 3.34 21.67 16.96 11.05 27.41 19.59 7.34 22.49 5.94 30.40

Percent deviation (%) 26.16 12.70 3.20 14.03 60.55 2.25 9.16 24.65 5.06 8.69 16.51 3.34 12.67 1.99 12.64
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The lowest percentage of deviation of the measured and calculated value of dehu-
midification performance was measurement number 14 (boundary conditions T = 30.7 ◦C,
RH = 71.4%, χ = 20.64 g/kg), specifically 1.99%; in this case, the measured condensation
rate was 298.17 g/h, and the calculated condensation rate according to Equation (2) was
304.11 g/h. The most significant difference between the measured and calculated con-
densation rate manifested in measurement number 5 (boundary conditions T = 25.7 ◦C,
RH = 58.2%, χ = 12.49 g/kg). In this case, the measured condensation rate was 21.99 g/h,
while using Equation (2), it was 35.31 g/h; this difference represents a percentage of devia-
tion of 60.55%. The average percentage of deviation between all measured and calculated
condensation rates was 14.24%.

3.2. Analysis of Results Using Nonlinear Surface Fitting

Due to fact that a high percentage of deviation between the measured and calculated
condensation rate using a linear dependence analysis was discovered, for the next analysis,
the dependence between condensation rate, air temperature, and relative humidity was
determined using nonlinear surface fitting. The OriginPro software was chosen for this
purpose. The 3D scatter plot (Figure 12a) shows the individual measurements in the
spatial visualization.
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Using the two-dimensional polynomial function of the nonlinear surface fitting tool
(Figure 12b), it was possible to determine the general Equation (3) of the water wall’s
condensation capacity as follows:

CR = z0 + a × RH + b × T + c × RH2 + d × T2 + f × RH × T (3)

where CR is the condensation rate (g/h); z0, a, b, c, d, and f are constants (z0 = 662.003,
a = −11.9448, b = −61.2747, c = 0.02751, d = 0.85944, and f = 0.64519); RH is the relative
humidity (%); and T is the air temperature (◦C). The coefficient of determination (R2) of
the equation is 0.99865. Equation (3) can be used for the calculation of the water wall’s
condensation capacity for any relative humidity and air temperature.

In the next step, the condensation rate was calculated using Equation (3), and the
percentage of deviation compared to the measured values was specified. This comparison,
together with the boundary conditions, is shown in Table 5.

Table 5. Comparison of condensate weight measured and calculated using nonlinear surface fitting.

Measurement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temperature (◦C) 22.2 22.1 24.0 23.8 25.7 25.8 25.7 27.6 27.2 27.3 28.9 28.9 30.7 30.8 32.5
Relative humidity (%) 72.3 82.7 73.1 83.7 58.9 74.0 83.8 59.5 75.7 85.6 60.8 70.9 61.1 71.6 61.9

Measurement: CR (g/h) 46.02 104.29 88.95 173.42 21.99 148.81 236.73 68.81 218.19 315.36 118.62 219.92 177.40 298.17 240.40
Equation: CR (g/h) 42.07 107.88 92.19 169.27 23.52 150.71 237.63 68.35 214.15 315.90 118.08 222.98 174.84 297.67 241.88
Absolute difference 3.95 3.59 3.24 4.15 1.53 1.90 0.90 0.45 4.04 0.54 0.54 3.06 2.56 0.50 1.48

Percent deviation (%) 8.58 3.44 3.64 2.39 6.97 1.27 0.38 0.66 1.85 0.17 0.46 1.39 1.44 0.17 0.62

The lowest percentage of deviation of the measured and calculated value of dehumid-
ification performance was found in measurement numbers 10 and 14 (boundary conditions
no. 10: T = 27.3 ◦C, RH = 85.6%; no. 14: T = 30.8 ◦C, RH = 71.6%), specifically 0.17%. For
measurement number 10, the measured condensation rate presented a value of 315.36 g/h,
and the calculated rate according to Equation (3) was 315.90 g/h. For measurement number
14, the measured condensation rate presented a value of 298.17 g/h, and the rate calculated
according to Equation (3) was 297.67 g/h. The most significant difference between the mea-
sured and calculated condensation rate manifested in measurement number 1 (boundary
conditions: T = 22.2 ◦C and RH = 72.3%). In this case, the measured condensation rate was
46.02 g/h, while using Equation (3), it was 42.07 g/h; this difference represents a percentage
of deviation of 8.58%. The average percentage of deviation between all measured and
calculated condensation rates was 2.33%.

Air humidity, a significant indicator of indoor air quality, plays an important role,
especially in the context of thermal comfort, where it is shown that, at the same temperature
but different humidity, it is possible to feel different levels of comfort (with a high water
vapor content, the environment is perceived as humid, and with a low water vapor content,
as dry) [48]. The level of indoor humidity depends not only on the content of water vapor
in outdoor air but also on various sources of indoor humidity and people’s activities.
Decorative water elements (fountains, water walls, pools) are perceived as humidifiers [1].
However, the study [49] shows that through the substitution of water with liquid desiccant,
the vase or sphere with the falling film on the surface can act as a moisture receptacle
that removes moisture at high humidity and releases moisture at low humidity. Thus,
decorative elements can also be used to adjust humidity level.

The presented paper monitors the condensation rate on a falling water film under
different boundary conditions. The values of measurements were chosen outside the area
of thermal comfort (according to the ASHRAE standard [48]), especially with regard to
the fact that in such a case, it is necessary to adjust the air (cooling and dehumidification)
to achieve the required level of thermal comfort. Obtaining negative results using the
presented Equations (2) and (3) means that dehumidification will not take place; for the
respective boundary conditions, Equations (2) and (3) cannot be used (Figure 13).
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Figure 13. Condensation rate on a falling water film with an area of 1 m2 for the selected temperature and relative humidity
using Equation (3).

Currently, various air-conditioning systems are most often used to achieve required
humidity levels. Condensate dehumidifiers and desiccant dehumidifiers are used most
often [50]. On the market, it is possible to find several commercial systems, from the
smallest designed for small rooms, whose dehumidification capacity is about 0.3 L per
24 h, through medium mobile dehumidifiers designed for individual rooms at home with
an average dehumidification capacity of about 8–30 L per 24 h (at a temperature of 30 ◦C
and relative humidity of 80%) and to large complex air-handling units with a built-in
system for adjusting temperature and humidity, which are suitable for buildings with
controlled ventilation. At an air temperature of 30 ◦C and relative humidity of 80%, the
dehumidification capacity of a water wall with an effective area of 1 m2, according to
Equation (3), is 366.2 g/h. This is approximately 8.8 L per 24 h, and this dehumidification
capacity is comparable to that of a medium mobile dehumidifier.

Condensation on thin falling liquid films that fall on solid surfaces is a common and
very important process for technical applications and is wildly used in air-conditioning
systems [37]. The results of this paper show that this process can also be used in the case of
water walls with a controlled water temperature. Conventional air-conditioning systems
are closed systems with controlled inlet air velocity and direction, compared to water walls
where dehumidification occurs directly in the room where they are placed and without
airflow control.
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4. Conclusions

This paper shows the possibility of the use of water walls as dehumidifiers, although
this element is built in interior spaces mainly for its aesthetic function. The subject of the
research was a water wall with controlled water temperature and effective area of falling
water film of 1 m2. The main conclusions are as follows:

• Testing in laboratory conditions in the climate chamber allowed the definition of
water walls with controlled water temperature as a device with a certain level of
performance. The measurement of increments of condensate using the laboratory
scale ensured the accurate definition of changes in time.

• The results showed that dehumidification capacity is a dynamic process that strongly
depends on the boundary conditions of the air.

• The water wall dehumidification capacity varied in the range of 21.99–315.36 g/h for
the tested measurements. This represents a difference between the lowest and highest
performance of 293.37 g/h.

• Equation (3) determined by nonlinear surface fitting shows a higher coefficient of
determination (R2 = 0.99865) and a lower average percentage of deviation between
measured and calculated values (2.33%) compared to Equation (2) generated by linear
dependence (R2 = 0.9589; average percentage of deviation = 14.24%).

• The achieved results expand our knowledge regarding the use of water elements to
adjust the parameters of indoor air and their ability to connect with convectional air
treatment systems with the aim to reduce energy consumption.

A water wall with a controlled water temperature was tested in laboratory conditions
in a climate chamber in order to determine its dehumidification capacity regardless of
the surrounding materials or room volume. However, the real effects of water walls in
interior spaces will depend on the sorption capacity of the elements and the surrounding
materials in the interior of buildings. Because of this, it is necessary to develop this
topic and to examine the dehumidification capacity of water walls in real conditions of
sorption-active surfaces.
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