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Abstract: Sustainability improvements in industrial production are essential for tackling climate
change and the resulting ecological crisis. In this context, resource efficiency can directly lead to
significant advancements in the ecological performance of manufacturing companies. The application
of Artificial Intelligence (AI) also plays an increasingly important role. However, the potential
influence of AI applications on resource efficiency has not been investigated. Against this background,
this article provides an overview of the current AI applications and how they affect resource efficiency.
In line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, this paper identifies, categorizes, and analyzes seventy papers with a focus on AI tasks,
AI methods, business units, and their influence on resource efficiency. Only a minority of papers
was found to address resource efficiency as an explicit objective. Subsequently, typical use cases
of the identified AI applications are described with a focus on predictive maintenance, production
planning, fault detection and predictive quality, as well as the increase in energy efficiency. In general,
more research is needed that explicitly considers sustainability in the development and use phase of
AI solutions, including Green AI. This paper contributes to research in this field by systematically
examining papers and revealing research deficits. Additionally, practitioners are offered the first
indications of AI applications increasing resource efficiency.

Keywords: sustainability; energy efficiency; material efficiency; water efficiency; greenhouse gas
emissions; Green AI; AI; machine learning

1. Introduction

The results of the latest assessment reports of the intergovernmental panel on climate
change (IPCC) unambiguously reveal the need for action concerning the diminution of
human-caused environmentally harmful emissions [1]. Based on the year 2010, the industry
sector accounts for approximately 21% of the global emissions of greenhouse gases [1].
These emissions occur due to the consumption of resources during production. The
emission intensity of resources increases with every subsequent step in the upstream supply
chain. Consequently, the saving of every quantity unit of resources prevents upstream
ecological impacts. Hence, the reduction in energy and material inputs directly results
in significant advancements concerning the ecological performance of the manufacturing
industry. Therefore, the increase in resource efficiency is of pivotal relevance in addressing
ecological challenges of current and future times. Nevertheless, this progress needs to be
accompanied by the widespread implementation of sufficiency and consistency approaches
in economy and society [2]. Whatever the reasons for this may be—regulations becoming
more stringent or the intrinsic motivation of decision makers, employees, and customers—
an increasing number of companies are facing the challenge of becoming more sustainable
and, consequently, of reducing their environmental impact.
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After an age of economic growth, in which industrial pollution was widely accepted as
an accompanying effect, the focus of many companies in recent years did not shift towards
reducing environmental impacts [2–4]. Due to this inactivity, the first improvements could
easily be obtained when analyzing existing processes by taking the objective of increasing
sustainability into account [5]. Many measures identified during such evaluations are
commonly referred to as “low hanging fruits”, as the necessary effort and investment
for implementation is comparably low, while the implications can be significant. After
implementing first measures for reducing the ecological footprint of companies, the identi-
fication of further potential for improvement often becomes more complex. Here, targeted
data acquisition as well as efficient data processing serve as enablers for the holistic and
effective optimization of manufacturing environments. Hence, digitization is widely seen
as a powerful enabler for improving the economical, ecological and societal performance
of the industrial sector. The adoption of information technology in the monitoring of
manufacturing systems bears the potential to increase the overall sustainability perfor-
mance [6]. Apart from basic digitization approaches, such as big data analytics and digital
twins, artificial intelligence (AI) represents another promising enabling technology for a
sustainable transformation of the manufacturing industry.

While not solely focusing on sustainability in the context of industrial production,
Figure 1 illustrates the increasing visibility of “artificial intelligence” in combination with
the concept of sustainability in the scientific community. The number of respective scientific
publications has nearly exponentially increased during the last 30 years. A prominent
example is the work of Vinuesa et al. [7], who assesses potential impacts of AI regarding
the Sustainable Development Goals (SDGs), proving both positive and negative effects.
Di Vaio et al. [8] explore the influences of AI on business models in the context of the
SDGs identifying a research gap for SGD 12 “sustainable consumption and production
patterns”. Nishant et al. [9] see the potential benefit of AI in enabling effective and efficient
environmental governance with a focus on developing resilient sustainable systems. Their
comprehensive literature review summarizes the applications of AI in societal matters
and aspects of national economics and the design of energy systems. In conclusion, they
mention the improvement in “industrial environmental performance” as one out of four
promising practical applications of AI [9]. Without a detailed description or specific
examples, the optimization of resource consumption in industrial processes is assessed as
being beneficial for operations at every scale [9]. The present article addresses these issues
by identifying the utilization of AI in this regard by a thorough literature review.

Figure 1. Number of articles containing terms “artificial intelligence” and “sustainability” on Google Scholar since 1990.

While the correlation between general sustainability and AI is discussed extensively
in the literature (Figure 1), a holistic review of the implications of AI utilization on resource
use in the manufacturing industry does not exist to date. Thus, this paper addresses
the research gap by examining the (potential) influence and the current state of AI for
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improving resource efficiency and answers the following research question: What is the
current state of AI used for improving resource efficiency within manufacturing companies?

By providing a comprehensive meta-analysis of existing applications described in the
scientific literature and identifying current research deficits, this article contributes to the
research field of AI and resource efficiency. Additionally, the identification of typical use
cases helps practitioners and researchers to determine possible use cases for increasing
resource efficiency within production.

The paper is structured as follows: Section 2 provides definitions for AI and resource
efficiency, which are essential for the literature review. Section 3 describes the proceedings
and method used in this paper. For the literature review, the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines were chosen. The papers
identified are listed and described according to AI tasks, AI methods, resource efficiency,
and business unit in Section 4. In Section 5, the results are discussed, analyzed, and typical
use cases are identified. Section 6 concludes the findings, states the limitations of this
papers and gives an outlook for future research directions.

2. Fundamentals of AI and Resource Efficiency

By defining AI and resource efficiency, this section is the basis for the following
analysis. Additionally, the link between AI and resource efficiency is explored, clarifying
the possible impact of AI application on resource efficiency.

2.1. Definition of AI

Although AI is seen as a technology with disruptive potential in companies and
research, it lacks a universally valid definition and is not clearly distinguished from general
IT [10]. Broadly speaking, systems that incorporate AI possess analytical capabilities that
emulate human cognition. Nilsson [11] defines AI as “that activity devoted to making
machines intelligent, and intelligence is that quality that enables an entity to function
appropriately and with foresight in its environment.” Various scientific publications discuss
the complexity of determining the research domain of AI in detail and provide overviews
of different definitions [12–14].

While often falsely equated with AI, machine learning is a subset of AI, comprised
of various sub-branches such as deep learning [15,16]. Although various other meth-
ods and branches of AI (e.g., expert systems) exist, machine learning is one of the more
popular in the public and scientific dialogue [10]. Machine learning deploys statistical
methods for advancing the analytical abilities of the respective system [17,18]. This is
done autonomously in a predefined framework and without detailed instructions in the
form of human programming [10]. Generally, three main categories of learning methods
are applied for state-of-the-art AI agents with machine learning algorithms (supervised,
unsupervised and reinforcement learning). Supervised learning, as the least autonomous
method, utilizes expert knowledge or given regularities to verify hypotheses derived from
data analyzation [19,20]. Humans predefine and label the utilized data beforehand [21].
Based on derivations calculated from the correct result, the AI model learns systematically
by adjusting parameters [22]. Unsupervised learning lacks this kind of testing circle. Re-
spective models learn without comparing the potential solution to a desired result. Sathya
and Abraham [19] describe the operating principle as the identification of “hidden patterns
in unlabeled input data”. While applicable to use cases where data quality does not allow
the implementation of supervised learning, the performance of unsupervised learning
models is often difficult to quantitatively evaluate, as the comparison to an ideal result is
not possible [21]. Reinforcement learning is also known as semi-supervised learning as
it is a mixture of the two learning methods described above. The input data are labelled
beforehand; however, it might occur that the labelling is changed over the course of the
learning process [20]. The reinforcement is obtained from rewards emitted from the af-
fected environment. The system achieves a maximization of cumulated positive feedback
through a systematic and iterative approach [21]. The superordinate task of models based
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on reinforcement learning is to identify an equilibrium between the exploration of new
information and exploitation of existing information [21,23].

Generally, individual or combinations of various AI methods in manufacturing en-
vironments are able to analyze unstructured data such as audio or image signals. Conse-
quently, patterns are identified and deviations from the regular conditions of the monitored
system are detected rapidly and, in some cases, proactively [24]. These irregularities are
informationally processed and provided to decisional entities. Subsequently, measures
for improvement are automatically or manually derived and commissioned, depending
on the grade of autonomy of the AI solution. The effects of the implementation of AI in
manufacturing environments are mostly related to operational efficiencies. However, the
potential implications for resource efficiency have not been investigated in detail.

2.2. Definition of Resource Efficiency

According to VDI 4800 [25], resource efficiency is defined as “the ratio of a specific
benefit or result to the resource input required to achieve it”. A benefit or result can be
the production of a product or the execution of a production process [26]. Resource input
in this context can be defined as natural and operational input for production systems.
Natural resources represent a “resource that is part of nature. These include renewable
and non-renewable primary raw materials, physical space (surface area), environmental
media (water, soil, air), flowing resources (e.g., geothermal, wind, tidal and solar energy)
and biodiversity.” [27]. Examples include operational input covers, operating and auxiliary
materials, materials, energy, capital, personnel, know-how, and time. As is common in the
context of environmental science, the present article focusses on the potential contribution
of AI to reducing the use of natural resources in manufacturing systems [28]. Therefore,
renewable and non-renewable primary raw materials are of special interest, with energy,
material and water being used as a resource input in this article.

Consequently, various operational inputs such as, for example, capital, human re-
source and know-how-related aspects are not considered in particular [26]. Other impact
categories, such as, for example, system and product efficiency [29] are neglected due to the
focus on natural resources as well as the system boundary of the manufacturing system.

2.3. Link between AI and Resource Efficiency

By identifying patterns and suggesting measures for improving the performance of
the observed system, AI bears the potential to play a relevant role in transforming the
industry to a sustainable, competitive and future-proof production. An optimized man-
ufacturing system utilizes its infrastructure and inputs to a perfect extent. In the context
of industrial manufacturing, the implementation of AI and the associated possibilities for
data analysis can, for example, result in optimized production planning. Thus, by taking
the introduced definition into account, all impact categories are potentially affected. By
reducing attrition and production waste through improved simulation and planning, the
material efficiency of the manufacturing system is improved. The same is true for water
usage, which often serves as the auxiliary and operating supply. Optimized production
planning reduces energy consumption, for example, through schedule and capacity plan-
ning. The improved coordination of various production processes and steps bears a large
potential to increase energy efficiency. AI supports decision makers in a holistic analysis of
the manufacturing system and, thus, in the identification of potential correlations between
singular production entities.

AI thus provides support for the evaluation, identification and implementation of
improvement measures in manufacturing companies. In this context, digitized knowledge
is very important in order to utilize the knowledge that is already available in a company
for AI applications and, thus, to create an enhanced knowledge base [30]. However, a
sole focus on AI to increase resource efficiency is not reasonable; rather, it should be seen
as a promising technology that could be a building block for enhanced sustainability.
This technology, however, can only fully contribute to increasing resource efficiency if this
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objective is clearly formulated during the development and use of AI. In this sense, resource
efficiency is a sub-goal of sustainability and the SDG 12 and can, therefore, only make a
limited contribution to improving sustainability, but it is nonetheless an essential aspect.

3. Materials and Methods

Figure 2 presents the research process of this paper. By identifying AI methods,
relevant business divisions, and relevant resource efficiency terms, it was possible to
create a search string for a literature review according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a framework for
an analysis of the included papers. The results of the literature review were analyzed to
identify their potential to increase resource efficiency within a manufacturing company.

Figure 2. Research process of this paper.

3.1. Identification of AI Methods

The identification of AI methods is based on [19,20,31], focusing on machine learning.
Here, various methods were assigned to different tasks and clusters (Table 1) for application
as the basis for the subsequent analysis. In total, 21 AI methods were assigned to the AI
clusters of supervised, unsupervised and reinforcement learning, as described in Section 2,
and to AI tasks. Thus, this paper focuses on machine learning and other AI paradigms,
such as expert systems and generic algorithms, are not explicitly included. However, this
selection of AI methods is not meant to be conclusive, but rather represents the selection of
common AI methods. To include other papers, to which none of the identified AI methods
apply, the subordinate term of Artificial Intelligence was integrated in the search string.

Table 1. Identified AI Cluster, Tasks and Methods used for this research paper.

Cluster Task Method

Supervised
learning

Trend analysis Linear regression
Non-linear regression

Classification

Decision trees
Logistic regression

Naive Bayes classification
Support Vector Machines (SVM)
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Table 1. Cont.

Cluster Task Method

Supervised
learning

Anomaly detection Isolation Forest
Local Outlier Factor

Image recognition Convolutional neural networks (CNN)

Modeling, language processing

Markov chain
Pattern recognition

Recurrent neural networks (RNN)
Transformer

Long short-term memory (LSTM)

Unsupervised learning
Clustering Hierarchical clustering

K-means

Dimension reduction Principal Component Analysis (PCA)

Reinforcement learning Learning tasks

State–action–reward–state–action (SARSA)
Deep Q-Network (DQN)

Double Deep Q Network (DDQN)
Q-Learning

Linear regression examines a linear relationship between a so-called dependent vari-
able and an independent variable (bivariate regression) and maps this relationship with
a linear function or regression line [32]. In non-linear regression, functions are stud-
ied that cannot be written as linear functions in the parameters [33]. Decision trees are
used, especially for the classification of data, and consist of nodes, edges, and leaves [34].
(Binary) logistic regression analysis is used for testing whether a relationship exists be-
tween a dependent binary variable and one or more independent variables [35]. Naïve
Bayes classification is a probabilistic classifier derived from Bayes’ theorem. It assigns
each object to the class to which it is most likely to belong, or for which the lowest costs
are incurred [36]. SVM is a mathematical method of pattern recognition [37]. Isolation
forest is an approach in which anomalies in datasets are detected and isolated instead of
removed, as occurs in most other machine learning algorithms. [38]. Local Outlier Factor
is an algorithm for detecting density-based outliers. It compares the density of the point
itself with that of its nearest neighbor to rank the individual datapoints and find anomalies
or outliers [39]. CNNs consist of different convolutional layers and one pooling layer,
representing a biologically inspired approach. It is most commonly applied for image
recognition [40]. Markov chain is a stochastic model describing a sequence of processes
in which the probability of each state can be calculated and simulated in relation to the
previous states [41]. Pattern Recognition is the ability to recognize regularities, repetitions,
or similarities in a set of data [42]. In contrast to feedforward networks, RNNs are charac-
terized by connections from neurons in one layer to neurons in the same or a previous layer.
Thus, temporally encoded information in datasets can also be processed [43]. Transformers
are applied similar to RNNs in the classification and traversal of ordered datasets and are
particularly suitable for recognizing and generating language [44]. LSTM is a specific RNN
architecture, which is well-suited to processing times series data [45].

Hierarchical clustering is a method of grouping objects into optimally homogenized
sets based on empirical similarity measures and sorting them into hierarchically arranged
structures [46]. K-means is suitable for the classification of data into a known number of k
groups. It is one of the most frequently used algorithms for the clustering of objects [47].
PCA is used to reduce the dimensionality of datasets, making them easier to interpret with-
out losing information content. This is achieved by adding new, uncorrelated datapoints
until the maximum variance is successively reached [48].

SARSA is an algorithm for learning an action-value function. In contrast to Q-learning,
however, the agent remains true to its strategy when calculating its subsequent action.
DQN and DDQN are variants of Q-Learning [49,50].
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3.2. Identification of Relevant Business Divisions

Since this paper focusses on AI applications within manufacturing companies, the
definition of business divisions was based on the value chain according to [51]. The
following divisions were thus identified:

- Procurement;
- Product development;
- Production planning and optimization;
- Facility management;
- Logistics (internal/external).

3.3. Identification of Relevant Resource Efficiency Terms

To evaluate the influence on resource efficiency within manufacturing companies,
this paper focuses on operational input which directly affects natural resources, including
material (including operating and auxiliary materials), energy, and water. This proceeding
is in line with the above-stated definition of resource efficiency. Hence, material efficiency,
energy efficiency, and water efficiency are of interest in this paper. Additionally, the two
terms of resource efficiency, as well as efficiency itself, were identified as superordinate
terms and included in the search string.

3.4. Literature Review according to the PRISMA Guidelines

The literature review, following PRISMA guidelines, was conducted at the end of
September 2020. There were no time restrictions, and it was searched up to the latest issue
available. The databases Scopus and Web of Science were searched, with the following
search string, consisting of the identified AI methods, business divisions, and resource
efficiency terms: (“Artificial Intelligence” OR “Linear Regression” OR “Nonlinear Regres-
sion” OR “Support Vector Machines” OR “Logistic Regression” OR “Decision Trees” OR
“Naive Bayes Classification” OR “K-means” OR “Hierarchical Clustering” OR “Principal
Component Analysis” OR “Isolation Forest” OR “Local Outlier Factor” OR “Convolutional
Neural Network” OR “Pattern Recognition” OR “Recurrent Neural Networks” OR “Long
short-term Memory” OR “Transformer” OR “Markov chain” OR “ State–action–reward–
state–action” OR “ Deep Q-Network”, “ Double Deep Q Network” OR “Q-Learning”)
AND (“manufacturing” OR “industrial” OR “procurement” OR “product development”
OR “logistics” OR “warehouse management” OR “facility management”) AND (“effi-
ciency” OR “resource efficiency” OR “material efficiency” OR “energy efficiency” OR
“water efficiency”)

Figure 3 shows that 1347 papers were identified through database searching within
Scopus and Web of Science. Additionally, 49 papers were identified through other sources,
including expert recommendations, citations, and cross-references. Subsequently, dupli-
cates were removed, and the title and abstracts of the identified papers were screened.
Here, only papers using an AI method for an industrial application were included. A total
of 1012 papers not meeting these criteria were excluded, e.g., AI applications, used for en-
vironmental monitoring of landscapes, as this application is not suitable for manufacturing
companies. The resource efficiency aspect was still of secondary importance in this step and
not an exclusion criterion, since resource efficiency potentials were conceivable in many
approaches, but these were not explicitly described in the title or abstract. Subsequently,
151 articles were assessed for eligibility. In this step, papers were excluded if no (potential)
impact on at least one resource efficiency aspect could be found. At the end of the PRISMA
process, 70 papers were identified as relevant to this literature review and for subsequent
analysis. In accordance with the exclusion criteria, relevant, in this context, means that
these papers address AI applications in manufacturing companies and can potentially
impact at least one of the identified resource efficiencies (material, energy, or water).



Sustainability 2021, 13, 6689 8 of 26

Figure 3. Literature review according to PRISMA guidelines.

3.5. Analysis of the Identified Literature

The included papers were then analyzed regarding the identified AI tasks, AI methods,
business divisions, and their (potential) influence on resource efficiency aspects. Due to the
high urgency of tackling climate change and reducing Greenhouse Gas (GHG) emissions,
a potential reduction in the latter was analyzed alongside the (potential) improvement
in energy, material and water efficiency. To objectify the evaluation of the influences on
resource efficiency, a scale was developed. This scale includes:

- High influence, if a paper states an improvement in a resource efficiency aspect of 1%
or more;

- Potential influence, if the AI application is able to improve a resource efficiency
aspect, e.g., by optimizing a process and decreasing product errors. However, no
quantification of the improvement is given, or the improvement is below 1%;

- None, if the AI application does not influence any of the resource efficiency aspects;
- N/A, if not enough information is available to evaluate the potential influence.

Furthermore, the papers were categorized according to AI tasks, AI methods, and
business divisions.

3.6. Identification of Typical Use Cases of AI Application Increasing Resource Efficiency

When analyzing the identified papers, it became clear that many addressed similar
use cases, especially within the business division production. To provide practitioners
and applied research with possible starting points for the promising implementation of AI
regarding resource efficiency, typical use cases were derived from the approaches. Here,
the AI applications itself, their aim of improvement, the addressed resource efficiency
aspects, and the improvement object (product or process) were analyzed and, thus, suitable
clusters were determined.

4. Results

The 70 research papers identified were analyzed and classified according to their
influence on resource efficiency. Table 2 shows the results of the respective classification
regarding AI tasks, AI methods, business divisions, and the assessment of the influence on
resource efficiency and GHG emissions.
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Table 2. Research papers found following the literature research process (green = high influence; yellow = potential influence; grey = no influence; white = N/A).

Business Divison Ressource Efficiency + GHG

AI Tasks AI Methods Source Procurement Development Production Facility
Mgmt. Logistics Energy Material Water GHGEemissions

Trend analysis

Linear
regression

Rentz et al. (2006) x none pot. none none
Irrek and Barthel 2010) x pot. none none pot.
Bartusch et al. (2012) x pot. pot. none none
Hofbauer et al. (1983) x pot. none none pot.
Gebbe et al. (2014) x pot. none none pot.
Wehle and Dietel (2015) x pot. pot. pot. pot.
Youssef et al. (2019) x pot. pot. none pot.
Adamczak et al. (2020) x pot. pot. none pot.
Kuhlmann and Sauer
(2019) x x pot. none none pot.

Non-linear
regression

Johnson et al. (2004) x x pot. none N/A pot.
Wohlgemuth (2008) x none pot. none none

Trend analysis;
dimension
reduction

Linear
regression; PCA Flick et al. (2017) x pot. none none pot.

Trend analysis;
dimension
reduction

Linear
regression;
SVM; PCA

Ghaedi et al. (2014) x none pot. none none

Classification

Decision trees

Evans et al. (2013) x pot. pot. pot. pot.
Ronowicz et al. (2015) x pot. pot. none pot.
Hsu and Wang (2005) x x pot. pot. none pot.
Antosz et al. (2020) x pot. pot. pot. pot.

Logistic
regression

Yan and Lee (2005) x pot. pot. none pot.
Li et al. (2015) x pot. pot. none pot.
Schmid (2017) x pot. pot. pot. pot.
Yan et al. (2004) x pot. pot. none pot.

Naive Bayes
classification;
decision trees

Doreswamy (2012) x pot. pot. none pot.

Naive Bayes
classification

Adam et al. (2011) x pot. pot. none pot.
Ferreira and Borenstein
(2012) x none none none pot.

Prasetiyo et al. (2019) x pot. N/A N/A N/A
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Table 2. Cont.

Business Divison Ressource Efficiency + GHG

AI Tasks AI Methods Source Procurement Development Production Facility
Mgmt. Logistics Energy Material Water GHGEemissions

Classification SVM

Decker (2008) x x x x x pot. pot. none pot.
Freitag et al. (2015) x none pot. none none
Zendehboudi et al. (2018) x pot. none none pot.
Wanner et al. (2019) x pot. pot. pot. pot.
Deng et al. (2017) x pot. pot. none pot.
Golkarnarenji et al. (2019) x high pot. none high

Classification;
dimension
reduction

SVM; PCA Pai et al. (2009) x pot. pot. none pot.

Classification;
modeling,
language
processing

Naive Bayes
classification;
LSTM

Zhang et al. (2018) x pot. none none pot.

RNN; LSTM Cheng et al. (2019) x pot. pot. none pot.
SVM; RNN Yu et al. (2017) x high none none high

Anomaly
detection Isolation forest Susto et al. (2017) x pot. pot. N/A pot.

Image
recognition CNN

Weimer et al. (2016) x pot. pot. none pot.
Bechtsis et al. (2017) x x pot. pot. none pot.
Scime and Beuth (2018) x pot. pot. N/A pot.
Willenbacher et al. (2017) x pot. pot. pot. pot.
Choi and Kim (2020) x high none none pot.
Liang et al. (2019) x high none none high
Lee et al. (2019) x pot. pot. none pot.
Cui et al. (2020) x none pot. none none
Li et al. (2018) x none pot. none none
Wang et al. (2020 a) x pot. pot. pot. pot.

Image
recognition;
clustering

CNN;
hierarchical
clustering

Wang et al. (2020 b) x pot. pot. pot. pot.

Image
recognition;
modeling,
language
processing

CNN; LSTM Liu et al. (2019) x pot. none none pot.
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Table 2. Cont.

Business Divison Ressource Efficiency + GHG

AI Tasks AI Methods Source Procurement Development Production Facility
Mgmt. Logistics Energy Material Water GHGEemissions

Modeling,
language
processing

LSTM Zhang and Ji (2020) high pot. none high
Markov chain;
pattern
recognition

Reger et al. (2015) x pot. none none pot.

Markov chain

Abedi et al. (2010) x pot. none none pot.
Jónás et al. (2014) x pot. pot. none pot.
Xu and Cao (2014) x pot. none none pot.
Tsiliyannis (2018) x pot. pot. none pot.

Pattern
recognition

Chin (1982) x pot. pot. none pot.
Bhagat (2005) x pot. none pot. high
Dong and Burton (2009) x high none pot. high
O’Driscoll et al. (2013) x pot. none none pot.

RNN; LSTM Wang et al. (2017) x pot. none none pot.
RNN Meyes et al. (2019) x pot. pot. none pot.

Clustering

Hierarchical
clustering

Alper Selver et al. (2011) x none pot. none none
Kain (2018) x x none pot. none none

K-means

Yiakopoulos et al. (2011) x pot. pot. none pot.
Park et al. (2013) x pot. none none none
Moll et al. (2019) x pot. pot. N/A N/A
Gould et al. (2017) x pot. pot. pot. pot.

Clustering;
anomaly
detection

K-means; Local
Outlier Factor Kanyama et al. (2017) x none none pot. none

Dimension
reduction PCA Lane et al. (2003) x pot. pot. none pot.

Dimension
reduction;
classification

PCA; linear
regression Jagadish and Ray (2016) x pot. pot. N/A pot.

Learning tasks Q-learning Yang et al. (2020) x pot. none none pot.
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Rentz et al. [52] applied a regression-based calculation model to the utilization pro-
cesses of waste products in the metal processing industry. Plans of metallurgical recycling
processes were developed and implemented in software tools that drew on problem-
adequate mapping the underlying processes. Irrek and Bunse [53] used a regression analy-
sis to select more efficient lighting for a manufacturing plant. The calculation model com-
pares several options and simulates the results, without having to replace the entire lighting
of the manufacturing facility contributing to essential energy savings. Bartusch et al. [54]
presented an AI-supported intra- and inter-company material flow analysis, which is in-
tended to increase resource efficiency while explicitly considering energy efficiency and
CO2 emissions. Hofbauer et al. [55] analyzed measures for increasing energy efficiency in
the heat-intensive industry with the help of linear regression. Gebbe et al. [56] developed a
method to estimate the electricity consumption of machines within a factory, although only
the aggregated electricity consumption of multiple machines is available. The method uses
linear regression to disaggregate the electricity consumption, enabling the consumption
to be easily monitored, and thus identifying potential savings [56]. Wehle and Dietel [57]
describe a procedure to optimize maintenance processes by evaluating images of possi-
ble errors in production in real time. Such a procedure allows for errors to be corrected
as efficiently as possible, thus saving scrap and making production more efficient [57].
Youssef et al. [58] developed a model to improve the data-based prediction quality of
properties of different materials. By improving this prediction quality, it is possible to
find (quasi-)optimal solutions to manufacturing processes, enabling an improvement in
material and energy efficiency [58]. Adamczak et al. [59] examined a regression model
that analyses data from a ball bearing sensor. Minimization of vibrations can reduce ma-
terial wear in the long term, as well as energy and, thus, CO2 emissions, through lower
friction [59]. Kuhlmann and Sauer [60] developed a model with linear regression to eval-
uate energy measures and increase the energetic agility within a manufacturing plant.
Johnson et al. [61] used non-linear regression to create a more reliable meta-model and
optimize various factors, such as efficiency in manufacturing semiconductors. Wohlge-
muth [62] derived analytical equations by applying non-linear regression to test the acoustic
compliance of a separation membrane in the galvanic manufacturing process. Thus, more
efficient separation membranes can be manufactured [62]. Flick et al. [63] analyzed the
energy efficiency of manufacturing systems within the automotive industry. By applying
regression analysis and PCA, aspects influencing energy consumption, such as product
size or shop area, are identified [63]. By combining SVM, PCA, and linear regression,
Ghaedi et al. [64] predicted the adsorption of methylene blue dye.

With the help of a decision tree, Evans et al. [65] created a system that supports the
selection of the manufacturing method for a certain manufacturing process. Using histori-
cal data, the model is trained to simulate experience and intuition from past decisions [65].
Ronowicz et al. [66] investigated the characteristics of produced pellets using a decision-
tree-based model. In this way, the perfect formula per chemical used can be found, in which
the respective ingredients can be used as efficiently as possible. As research and develop-
ment in the chemical industry can be very time-, cost- and energy-intensive, savings in
these areas are possible [66]. Hsu and Wang [67] used a decision tree to classify size patterns
of the human body for clothing and calculated the amount of fabric needed for garment
patterns based on a database of measured data. Applying decision trees, Antosz et al. [68]
improved the maintenance approach of manufacturing companies. Yan and Lee [69] used
logistic regression for the real-time monitoring of the health status of industrial components.
A logistic regression analysis was used by Li et al. [70] to analyze the sound of rotating
cutting tools. In this way, even minor inaccuracies can be detected, which prevent increased
reject products due to imprecise cutting performance at an early stage [70]. Through a com-
bination of model-based control methods and machine learning procedures, Schmid [71]
attempted to improve resource efficiency in process control of industrial printing processes.
Yan et al. [72] developed a method for predictive maintenance using logistic regression.
Naive Bayes clusters and decision trees are used by Doreswamy [73] to classify datasets
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of different manufacturing materials. The information gained from these data models
enables decisions regarding the use of different materials for specific tasks or manufac-
turing pieces [73]. Adam et al. [74] applied a Hybrid Artificial Neural Network-Naive
Bayes classifier in the identification of reject products in the semiconductor manufacturing.
Thus, these products are prevented from being further processed and waste is avoided [74].
Based on a database of past decisions on supplier selections, Ferreira and Borenstein [75]
trained a data model. Thus, they developed a system for evaluating suppliers on the basis
of a Bayes cluster, also considering resource efficiency and sustainability [75]. Prasetiyo
et al. [76] analyzed the energy efficiency of a building with a Naive Bayes cluster. SVM was
applied by Decker [77] in order to compensate for variances in process sequences. Freitag
et al. [78] trained an SVM model to predict the effects of different process designs, and to
evaluate these with regard to logistical performance and technical feasibility. A calculation
model based on SVM was applied by Zendehboudi et al. [79] to predict the yield of solar
and wind plants. Companies can use this calculation model to plan their own Photo voltaic
or wind plant, integrate it into production, or optimize their existing plants [79]. Wanner
et al. [80] analyzed machine data to improve maintenance and simplify fault detection,
localization and identification. This can ensure smooth production, which, in the long
term, reduces the energy costs caused by constant downtimes associated with shutting
down and restarting machines [80]. Deng et al. [81] improved the fault detection within
manufacturing processes using SVM. By applying SVM, Golkarnarenji et al. [81] increased
the product quality and energy efficiency of the production of carbon fiber. Energy savings
of almost 45% were realized. Pai et al. [82] applied SVM and PCA to the detection of
errors during the production of LCD monitors. Zhang et al. [83] applied LSTM and Naïve
Bayes Classification to the prediction of system degradation and the remaining lifetime
of a machine. Cheng et al. [84] proposed a model applying RNN and LSTM to optimize
the predictive maintenance of machines. By applying SVM, Yu et al. [85] extrapolated the
energy consumption of individual tools in production. Moreover, energy savings can be
estimated with the help of further simulations.

Susto et al. [86] applied Isolation Forest in a semiconductor manufacturing process,
detecting product anomalies and identifying the process which causes the latter.

Weimer et al. [87] designed a CNN for defect detection in industrial inspection. Thus,
the feature extraction is automated. In the context of automated guided vehicles, a solution
with CNN was described by Bechtsis et al. [88]. Through this approach, the position and
possible routes of autonomous vehicles are determined by the data collected at all times,
using the Light Detected And Ranging (LIDAR) technology [88]. A CNN is applied by
Scime and Beuth [89] to additive manufacturing, to detect anomalies and defects in the
interaction of the deposition blade and the powder bed in selective laser melting or laser
powder bed fusion. Willenbach et al. [90] combined different AI methods, mainly CNN,
to improve the operational material flow management. Choi and Kim [91] developed an
“edge AI” using CNN to control the defrosting operation of industrial mobile terminals
in logistics. Hence, the energy consumption can be decreased significantly [91]. Liang
et al. [92] optimized the machining processes by detecting potential errors with CNN for a
dynamic prognosis. The energy efficiency was improved by about 29% [92]. Lee et al. [93]
applied CNN for product quality control of steel. Thus, defects can be detected early
on within the manufacturing system, and processes can be adapted. Using CNN, Cui
et al. [94] analyzed the product quality of additive manufactured metal parts, considering
the lack of fusion, crack, and porosity. Li et al. [95] applied CNN to evaluate the product
quality during the assembly process. Wang et al. [96] proposed a model for identifying the
optimal operation model of manufacturing processes with CNN. Wang et al. [97] designed a
method with CNN and hierarchical clustering, enhancing the prediction models of chemical
processes. Liu et al. [98] improved human–machine interaction within manufacturing with
CNN and LSTM.

Zhang and Ji [99] developed an LSTM method for production error detection and
energy-efficient scheduling. Thus, an increase in both energy efficiency, of 21.3%, and
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in product quality were achieved in a case study [99]. Reger et al. [100] used pattern
recognition and Markov chain to classify electric drives in manufacturing plants. Hence,
the energy consumption of specific machines can be derived using fewer sensors, and
energy efficiency is calculated more easily [100]. Waiting time models (e.g., queues of
products in processing lines) were modelled as Markov chains by Abedi et al. [101]. Thus,
waiting times at production lines can be reduced or production time can be predicted [101].
Jonas et al. [102] used Markov Chains for the repair process in the industrial electronic
sector. Hence, the probability of specific process steps and process time required for the
repair can be determined, improving process planning and product quality, and saving
resources [102]. Xu and Cao [103] evaluated the energy efficiency and productivity of
machine tools based on a Markov chain. Thus, the scheduling of maintenance operations
can be optimized [103]. By applying Markov chain, Tsiliyannis [104] improved the forecast
of the return of products, which can be used for remanufacturing. Another approach is the
Pattern Recognition, used by Chin [105] for automated visual inspection in manufacturing.
Bhagat [106] applied pattern recognition to the prediction of heat transfer fouling and to
increase tube bundle heat transfer efficiency. Consequently, operation and maintenance
times can be adjusted. In order to simulate occupant behavior and usage patterns, Dong
and Burton [107] used pattern recognition to evaluate data collected by sensor networks,
e.g., temperature and humidity. O’Driscoll et al. [108] applied pattern recognition to
characterize different machine components according to their energy consumption. Wang
et al. [109] optimized heating systems within buildings, especially offices, in terms of
comfort and energy efficiency, using RNN and LSTM. Meyes et al. [110] analyzed the
product quality during production by predicting component defects with an RNN.

Alper Selver et al. [111] applied Hierarchical Clustering to evaluate the quality of
marble and, thus, automatically sort out unsuitable slabs during the production process.
Kain [112] determined the characteristics of biogenic wood filaments produced via ad-
ditive manufacturing using hierarchical clustering. A k-means clustering was used by
Yiakopoulos et al. [113] to automatically inspect ball bearing manufacturing parts and
check for defects. When optimizing a sensor network, e.g., to digitize a manufacturing
plant, Park et al. [114] used k-means. Thus, the battery life of sensors can be extended,
and energy consumption can be reduced [114]. Moll et al. [115] developed a method for
investigating the fabrication of workpieces in the Fiber Injection Molding Process with
k-means, and hence preventing errors in mold filling. Gould et al. [116] used k-means
to optimize the assembly process. By doing this, they achieved improvements regarding
assembly time, energy, water and auxiliary material consumption. Water consumption is
measured by smart meters by Kanyama et al. [117]. The collected data are analyzed for
anomalies using a k-means and Local Outlier Factor [117]. Lane et al. [118] used PCA to
monitor a polymer production process and detect anomalies preventing a low product
quality. Jagadish and Ray [119] optimized the process parameters of electrical discharge
machining using PCA and linear regression, considering aerosol concentration, energy and
dielectric consumption. Yang et al. [120] used Q-Learning for a warehouse management
system by improving the scheduling system of picking operations.

5. Discussion

This section is divided into two subsections. The first section analyses the identified
papers in detail, identifying the applied AI methods and differences within these clusters
when addressing resource efficiency aspects. Derived from the identified papers and the
analysis, the second subsection determines typical use cases of AI applications, increasing
resource efficiency within manufacturing companies.

5.1. Analysis of the Identified Research Papers

In total, 70 research papers published between 1982 and September 2020 were iden-
tified during the literature research process. Figure 4 presents the distribution of the
identified sources over time. In general, the number of publications increased over time.
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The most publications were found for 2017 and 2019. As only the literature from before
September 2020 was considered, the lower number in 2020 can be explained. However,
the significant decrease in publications in 2016 cannot be explained by the authors. As AI
applications become more frequent and available within research as well as industry, and
the need for manufacturing companies to improve resource efficiency increases, the trend
of relevant sources increasing over time is not surprising.

Figure 4. Distribution of sources found by year of publication.

In addition, the distribution of the identified sources can be analyzed regarding the
AI method used, and, thus, the AI tasks. Figure 5 illustrates the proportion of methods
and tasks. The majority of papers apply CNN (12 papers) or linear regression (12 papers),
followed by SVM (9 papers). This result is especially unsurprising regarding linear regres-
sion, as linear regression has been used in this context since 1983, by [55]. However, linear
regression is also a frequently applied method in current sources.

Figure 5. Proportion of research papers with specific AI Tasks and AI Methods.
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Other AI methods are not used as frequently, as only five papers apply Naive Bayes
classification, decision trees, LSTM, pattern recognition, Markov chain, k-means, and
PCA. Isolation forest, Local Outlier Factor and Q-Learning were only used once, while
SARSA, DQN, DDQN, and Transformer were not applied at all. Therefore, the most
frequently employed AI tasks are classification, with 23 papers, followed by modelling
and language processing, with 17, trend analysis, with 13, and image recognition, with
12 papers. Only one paper addressed learning tasks and, thus, reinforcement learning.
From the literature review, it appears that papers dealing with reinforcement learning
applications are more frequently developed for scheduling problems, robot collaboration,
or supply chain problems [121–123]. However, as these papers neglect the aspect of resource
efficiency, they are beyond the scope of this literature review and were not further analyzed.

Figure 6 presents the number and distribution of research papers addressing resource
efficiency within a specific business unit. The majority of papers look at influences on
resource efficiency in production planning and optimization, while only a few papers focus
on facility management, development, logistics, or procurement.

Figure 6. Number of research papers addressing resource efficiency in a specific business unit.

Table 2 also analyzes the influence on resource efficiency within manufacturing com-
panies. As stated in Figure 7, the majority of papers, in total, 60 papers, confirm the impacts
on energy efficiency. Papers dealing with influences on GHG emissions are also numerous,
due to the fact that GHG emissions and energy are closely related. Only for the latter two
aspects could a high potential be determined, meaning an improvement of 1%. A high
influence could be found for neither material efficiency nor water efficiency. Furthermore,
only 46 papers show a potential influence on material efficiency and 12 papers show an
influence on water efficiency. This can be explained by the fact that energy savings count
among the resource efficiency improvements that are most frequently addressed by com-
panies. Energy management systems, in particular, make companies more aware of their
energy consumption and of potential measures [124]. By contrast, material and water
saving measures are usually neither approached nor implemented, due to their having
more complex solutions and the nonexistence of comparable management systems.
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Figure 7. Number of research papers with influence on the different aspects of resource efficiency.

On average, one research paper addresses roughly 2.5 of the predefined resource
efficiency aspects. This means that if a source deals with resource efficiency, it usually takes
several aspects directly into account. Even if GHG emissions are not considered because
of their close relation to energy sources, there is still an average of 1.7 aspects of resource
efficiency being addressed.

The identified papers were also examined for the use of AI tasks, AI methods and
the potential impact they had. On average, 60% of the resource efficiency aspects are
potentially influenced by the identified papers (Figure 8). Small differences between
AI tasks can be observed. While papers with AI task classification address 73% of the
resource efficiency aspects, trend analysis and learning tasks only address around 50% of
the resource efficiency aspects. A possible interpretation of this is that the AI classification
task is applied in a wider context, and mostly addresses three out of the four resource
efficiency aspects (incl. GHG emissions) at the same time. In contrast, the applications of
trend analysis and learning tasks mainly influence two of the four aspects.

Figure 8. Distribution of identified influences on resource efficiency by AI tasks (the number of identified papers with this
AI task is indicated in brackets).

As can be seen in Figure 9, the share of addressed resource efficiency aspects differs
more significantly among AI methods than among AI tasks. Only SVM, CNN, Pattern
recognition, RNN, and LSTM showed a high potential to influence resource efficiency.
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Furthermore, the application of some AI methods addresses all four predefined resource
efficiency aspects, such as Isolation Forest, while the found AI application of Local Outlier
Factor only addresses one of these aspects. However, due to the small sample size of the two
AI methods, it is better to interpret these extreme features with caution. It can still be noted
that some AI methods seem to be better-suited to improving resource efficiency within
manufacturing companies. However, more research is needed to prove this assumption.

Figure 9. Distribution of identified influences on resource efficiency by AI method (the number of identified papers with
this AI method is indicated in brackets).

Although most of a product’s environmental impact is determined at the development
phase and although there is a high potential for AI applications in materials science
(particularly due to the high variability and data availability), this review did not find an
AI application which highly impacts resource efficiency during development. However,
supporting activities, such as facility management and logistics, seem to use more AI
applications that highly impact resource efficiency (see Figure 10).

Figure 10. Distribution of identified influences on resource efficiency by business division.

The identified research papers were analyzed with a focus on the objective of intended
improvement. It was investigated whether improving resource efficiency is an explicit goal
of an AI application, or whether it is only viewed as a side effect by the authors. In total,
only 23 papers address resource efficiency improvements as an explicit goal, although only
papers related to resource efficiency were included. Within 47 papers, this was just seen as
a positive side effect. Energy efficiency is by far the most explicitly considered resource
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efficiency aspect (Figure 11). This also supports the findings of Figure 7, as well as the
relevance and focus of manufacturing companies on energy savings. Only five papers
specifically address material efficiency, while three relate to water efficiency. However,
material and water efficiency are mainly considered to be part of a holistic approach to
improving resource efficiency in general [54,71,116]. Thus, AI applications used solely for
improving material or water efficiency are extremely rare, and were only found once by this
literature review, in the approach of [52]. The analysis of studies with an explicit objective
of reducing GHG emissions is to be viewed with caution, as this was not specifically
searched for.

Figure 11. Share of papers having the improvement in an aspect of resource efficiency as an essential objective.

5.2. Identification of Typical Use Cases of AI Application Increasing Resource Efficiency

In general, a high variety of AI applications was found during the literature review;
for example, papers dealing with human–machine interaction, material science, or route
optimization in logistics. By clustering the identified papers according to their application,
typical use cases for AI improving resource efficiency within manufacturing companies
can be defined. These are not meant to be conclusive, but rather present an assessment
of those AI applications that are currently most commonly used for this purpose in the
literature. These typical AI use cases include:

- Predictive Maintenance [57,59,69,70,80,83,84,86,95,113];
- Production planning [52,54,61,65,72,77,78,101,102];
- Fault detection and prediction/predictive quality [58,62,74,82,87,89,93,94,110,111,115,118];
- Increasing energy efficiency in production [56,63,85,99,100,103,108,114,119] and facil-

ity management [53,67,76,107,109].

Predictive maintenance, in this context, is made possible by recording relevant time
series data over the use phase of a machine. These are intended to map and monitor the
condition of the infrastructure being analyzed. The objective is to find patterns, in order to
predict failures and prevent them through early maintenance measures. By efficiently main-
taining machines, increases in material and energy efficiency can be achieved. Unwanted
material and energy losses due to wear and tear on tools and machines are prevented, and
components are only exchanged if needed.

Production planning can be supported by AI applications to determine future require-
ments, and thus to configure optimally designed production lines. Production planning
can additionally be supported by analyzing and classifying different production methods,
e.g., with regard to efficiency. In particular, classification and trend analysis methods are
used for this purpose.

Another typical use case of AI in the field of process optimization is fault detection
in production. This can be used for the automated quality control of components and
products. In addition, some methods enable fault prediction, which allows for predictive
intervention in the production process (process control) to avoid faults. Methods from
almost all AI tasks from classification, dimension reduction, and image recognition are
used for this application.
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The increase in energy efficiency was identified as being the most commonly ad-
dressed resource efficiency aspect, and the use cases for the increase in energy efficiency in
production and facility management are defined accordingly. These include the optimiza-
tion of different production processes, such as green electrical discharge machining, and
machine components, such as electric drives, via various AI methods. Despite the use of
such a variety of AI methods, methods of the AI task Modelling and Language Processing
are the most frequently applied. Furthermore, the optimization of building infrastructure,
such as heating, cooling and lighting, is identified as typical use case.

The use cases illustrate promising approaches to increasing resource efficiency with
AI applications and serve as a starting point for practitioners and applied research, con-
tributing to the diffusion of AI applications, with resource efficiency in mind.

6. Conclusions

To address climate change and the pressing environmental challenges such as biodiver-
sity loss, the integration of sustainability into business operations is becoming increasingly
important for companies and a key competitive advantage. In addition, AI applications are
becoming more relevant for practice and attractive for companies, due to current develop-
ments in the IT field. Therefore, possible contributions by AI applications to sustainability
should be included from the beginning. This paper contributes to the necessity of inte-
grating sustainability with AI applications by explicitly examining the aspect of resource
efficiency increases caused by AI applications in manufacturing companies.

After analyzing 70 research papers, it was found that only a minority of papers had
resource efficiency as an explicit objective. Among those, energy efficiency was the most
commonly addressed resource efficiency aspect. Additionally, only a few papers were
identified that highly influence resource efficiency, and differences were found in the
AI tasks and AI methods used to address the resource efficiency aspects. The focus of
some AI applications is very narrow, and they only address two out of four predefined
aspects, for example, Trend analysis with linear and non-linear regression or clustering
with Hierarchical Clustering. It needs to be taken into consideration that energy efficiency
and GHG emissions are closely related and, thus, only a few papers address these aspects
separately. Other AI tasks and AI methods consider several resource efficiency aspects at
once, and thus have a broader focus, such as classification with decision tree and logistic
regression. Regarding business units, in most papers, the (potential) influence on resource
efficiency occurs within production planning and optimization.

Providing an overview of current AI applications, typical use cases were identi-
fied, including predictive maintenance, production planning, fault detection and predic-
tion/predictive quality, as well as increasing energy efficiency in production and facility
management. Moreover, the link between AI and resource efficiency could be displayed in
more detail. The identified AI applications showed that there is potential for improvements
in both focused applications, such as increasing energy efficiency in lighting, and broad
applications, such as holistic process improvement, taking all four impact categories of
resource efficiency into account.

6.1. Limitations

This paper presents an extensive literature review, which aims to provide an overview
of current AI applications to increase resource efficiency in manufacturing companies.
However, this literature review is not without limitations. Through the definition of the
search string, methods involving machine learning were selected as the focus of this re-
search. An attempt was made to counteract this selection by including the overarching
term AI. However, further work could add to the selected methods, and thus provide a
more complete picture of AI applications for resource efficiency. In particular, AI methods
such as agent-based modeling, expert systems, e.g., with fuzzy systems or evolutionary al-
gorithms should be investigated for this purpose, since these are common AI methods, but
not machine learning methods, and therefore were not assessed in this paper. Additionally,
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this paper focuses on resource efficiency aspects, which have a direct impact on the natural
resources comprising energy, material and water efficiency. Other aspects, such as human
resources, system or product efficiency, are not considered in this paper and could be part
of further research. The various efficiency aspects should also be placed within a broader
context, as, in some cases, it may be more effective to increase resource efficiency in the
use phase of a product than in production. Therefore, hotspots for a specific AI application
should be identified, e.g., by an evaluation of the environmental impact via Life Cycle
Assessment. As well as this, a variety of industry sectors and, thus, production processes,
was included in the literature review, as the focus was narrowed down to manufacturing
companies only. Therefore, rather heterogeneous industries and production processes
were included, from semiconductor manufacturing to textile processing, and from plasma
etching to additive manufacturing and materials science. A differentiation and analysis of
the suitability of AI applications within a specific industry sector or production process
was, therefore, not possible. Further research could focus on these aspects. A similar aspect
is the view on rather different levels of a manufacturing company. Improvements in both
entire factories and individual components, such as ball bearings, were considered. In the
future, detailed analyses could be prepared for such differing levels. Within this research,
the majority of papers were identified as (potentially) improving resource efficiency in
the business unit of production. For ongoing analysis, it is suggested to further detail the
business unit and to specifically classify maintenance and quality management applica-
tions. The identified use cases in Section 5.2 present a suitable first approach for such a
detailed classification.

6.2. Theoretical and Practical Implications

This paper provides an overview for researchers and practitioners of AI applications
and methods for increasing resource efficiency by examining their (potential) influence.
It is shown that AI methods have already been applied to increase resource efficiency in
manufacturing companies, but only to a limited extent. Future research should, therefore,
address more AI applications with this explicit objective. Additionally, this paper offers
a first insight for practitioners regarding which AI applications could be beneficial for
their specific use case. In this context, the identified use cases can serve as a starting point
for practitioners and applied research, and provide a promising approach to increasing
resource efficiency with AI applications, leading to more frequent dissemination and
consideration of resource efficiency within AI research.

Furthermore, this literature review highlights the fact that only few researchers have
taken the direct environmental impact caused by training and implementing AI into ac-
count, although this may result in multiple possible savings of energy and resources. For
example, training an AI algorithm may consume five times as much energy as a passenger
car over its entire life cycle [75]. Furthermore, many data centers are being built because of
the large amount of computing capacity required. In the USA, these already account for
2% of total, energy consumption, whereas worldwide, information and communication
technologies currently consume about 1% of total global energy and could be responsible
for up to 20% of global energy in 2030 [125,126]. Thus, it is strongly suggested that the
research field of AI should also consider at least the energy and material consumed by
implementing AI applications to increase the transparency of the environmental impact.
Taking this a step further, more research is needed that explicitly considers sustainability
in the development and use phase of AI solutions. This includes the sustainability im-
provement of AI applications themselves (Green AI) and by AI (Green by AI), similar to
the research fields of Green IT and Green IS [127]. The first approaches can already be
found in the literature [128]. Hence, more interdisciplinary research is required, connecting
sustainability and AI research fields.

By analyzing 70 research papers, this paper identifies the research gaps and con-
tributes to the scientific discourse on how AI applications can support sustainability and, in
particular, resource efficiency in manufacturing companies. To increase resource efficiency
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and, consequently, sustainability, AI is a promising technology, which helps to identify and
improve the products and processes of manufacturing companies. However, it does not
lead to greater sustainability on its own, but needs to be embedded in a sustainable frame-
work with specific objectives. Despite the stated limitations, it is our strong conviction that
this paper adds significant value to the sustainability research field and AI, and lays the
foundation for the further analysis of AI applications for increasing resource efficiency in
manufacturing companies.
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