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Abstract: The problem is the vaccination of a large number of people in a short time period, us-
ing minimum space and resources. The tradeoff is that this minimum number of resources must
guarantee a good service for the patients, represented by the time spent in the system and in the
queue. The goal is to develop a digital twin which integrates the physical and virtual systems and
allows a real-time mapping of the patient flow to create a sustainable and dynamic vaccination center.
Firstly, to reach this goal, a discrete-event simulation model is implemented. The simulation model is
integrated with a mobile application that automatically collects time measures. By processing these
measures, indicators can be computed to find problems, run the virtual model to solve them, and
replicate improvements in the real system. The model is tested in a South Tyrol vaccination clinic
and the best configuration found includes 31 operators and 306 places dedicated for the queues. This
configuration allows the vaccination of 2164 patients in a 10-h shift, with a mean process time of 25
min. Data from the APP are managed to build the dashboard with indicators like number of people
in queue for each phase and resource utilization.
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1. Introduction

Since the beginning of 2020, the world has been facing a devastating pandemic called
COVID-19, which has caused more than 150 million infected people and 3 million deaths
as of the end of April 2021 [1]. To combat the virus, in the second half of 2020, different
mass testing campaigns were carried out in Europe, such as the Slovakian mass testing,
implemented in November 2020 to break the chain of contagion [2]. A second action carried
out to face the pandemic was the establishment of local lockdown on the most affected
areas. To do that, it could be important to predict the contagion trend in a specific region
and prevent future problems such as full hospitals. Kim et al. [3] presented a model that,
according to the characteristics of the dataset, finds the classification algorithm which better
predicts future trends. They demonstrated that this model provides a solution quickly and,
thus, allows digital technologies to save time and electrical power and be more sustainable
from different perspectives. Moreover, as a new promising way to defeat the coronavirus,
in December 2020 the first vaccine against COVID-19, developed by Pfizer-BioNTech, was
approved by European Medicines Agency (EMA), which recommended the administration
to people above 16 years of age [4]. This vaccine is stored in trays which contain 195
multidose vials, each of which contains five doses. One issue of this vaccine is that it
must be transported at very low temperatures, between −60 ◦C and −80 ◦C, which can be
reached through ultra-cold freezer [5]. Very few countries had these refrigerators and, thus,
all the other European nations had to improve their cold chain to deal with this logistic
problem [6]. Besides Pfizer-BioNTech, several vaccines have been approved and provided
to all the countries, many of which require higher temperatures [7].
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These different vaccine types are a relevant support to reduce the infectability of this
coronavirus, represented by the indicator R0. This indicator is important in a Susceptible-
Infected-Recovered (SIR) model to understand whether the pandemic can be contained and
how much time it takes. R0 is strongly affected by the probability of contact between two
people and, consequently, it depends on the beginning and the duration of the restrictions.
By knowing the start and the duration of a lockdown, it is possible to predict the time of
occurrence and the impact of a future new wave of the pandemic and test the different
scenarios according to the delay in starting a lockdown [8]. As stated above, vaccination
plays an important role in lowering the epidemic. Sandmann et al. demonstrated that a
massive vaccination campaign in the UK can reduce both the number of infections and the
number of deaths over 10 years without recurring physical distancing restrictions [9]. To
dramatically decrease the pandemic infections, the Centers for Disease Control and Pre-
vention suggested administering the vaccine first to residents and personnel of long-term
care facilities and healthcare workers because they are in the vulnerable population [10].
Because the proportion of population to vaccinate in this first phase is low, the number
of doses is limited, and most countries have organized the vaccination in existing clinics.
When the majority of the population needs the vaccine, nations will have to be ready to
organize large mass vaccination structures to vaccinate many people every day [6]. Some
countries have already designed the settings for a mass coverage. In Belfast, for example,
the SSE Arena will become the mass vaccination center for the Northern Ireland adult
population under the age of 60. It will open in April and will be a supporting structure for
vaccination besides the normal pharmacies [11]. Furthermore, Israel administered almost
one million doses up until the end of 2020, in a population of 9.3 million people. This
rapid roll-out of the vaccine is due to specific characteristics of this country. Firstly, the
number of people over the age of 60 is very low and, thus, the number of doses requested
were limited. In addition, the urbanization made the distribution to the single settings
easier. Moreover, Israel is used to national emergencies and, consequently, has ready access
to large facilities for a national mobilization. All these factors helped Israel administer
950 thousand doses in 10 days, from 20th to 30th of December 2020, becoming the third
country, after China and the US, for administered doses [12]. The switch from existing
basic settings to mass vaccination clinics introduces logistic issues because the latter shares
some characteristics in common with industrial setting, where the efficiency becomes a key
factor and resources must be effectively utilized. Since these mass clinics can be considered
as manufacturing systems, and since manufacturing in Industry 4.0 has been spreading
very fast during recent years, the Fourth Revolution technologies can also be applied in the
vaccination process, even if it is a service process.

Since the last decade, the industrial sector has entered into the so-called Industry 4.0
era. This is considered the fourth industrial revolution and aims at digitalizing industrial
processes. It is characterized by technologies like Cyber-Physical Systems (CPS) and
Internet of Things (IoT) which enable both connection between different devices and
gathering of data, to improve the entire system in real time [13]. Industry 4.0 principles
can be applied to assembly systems to reduce set-up costs, enable fast learning, and to
increase the flexibility of these systems. Devices are connected and can exchange data that
are then translated into usable information. This information is used by the production line
to self-adapt in response to changes caused by external factors [14]. IoT is linked to Radio
Frequency Identification (RFID) technology which provides data about each machine or
device with a RFID-tag attached to them [13]. RFID is used in industrial processes such
as assembly. Andriolo et al. developed a RFID pick-to-light system which leveraged
a wearable RFID reader and RFID tags on the shelves to send data to a central server.
According to the picking list of the operator, the central server highlights the stock location
with a specific color light unless the location is incorrect and, consequently, a red light
informs the operator of the mistake [15]. The connection between machines created by IoT
helped the development of digital twins, which are virtual models that represent physical
systems and their modification in real time. Digital twins exploit sensors, anchors and



Sustainability 2021, 13, 7396 3 of 26

other IoT technologies to gather real-time data of the physical system and become more
reliable. Then, they can simulate several scenarios and predict what could happen in the
real world if a specific event occurred. Thus, there is a bidirectional flow of data, both from
the physical system to the virtual system and vice-versa. The former is performed through
IoT technologies that allow the digital twin to change in real time. The latter improves
the real process after having checked the results through virtual simulations [16]. Many
contributions in the literature show that Industry 4.0 improves both the environmental and
the social performance of the companies. From the environmental perspective, Industry
4.0 reduces waste, energy consumption and greenhouse gases emission through data
analysis of production and service processes. From the social point of view, digitalization
supports employees in arduous and repetitive activities, increasing their satisfaction and
motivation [17]. With respect to environmental sustainability, IoT can help to implement
simulation tools for the Food Supply Chain management. In particular, this simulation tool
can run multiple scenarios and find the decisions that minimize food waste [18]. Authors
of [19] showed how the COVID-19 pandemic has increased the investment on Industry 4.0
technology in Italy, like digitalization of working or purchases on digital technologies. They
also underlined that organizations which invested more on digitalization in recent years
faced the pandemic better than the others. As stated by Vaccari et al., IoT technologies are
useful to collect data regarding patient’s health conditions and, consequently, to develop
machine learning algorithms to refine the mechanism of symptoms identification [20].
Especially for the COVID-19 pandemic, the IoT can collect data through its architecture
from the physical layer and send them to the digital counterpart to be analyzed. The
real-time data analysis allows the prediction of pandemic evolution or the continuous
monitoring of infected people to treat them remotely where possible [21,22].

Starting from the gaps highlighted in the previous paragraphs, this paper develops a
digital twin for the design of a walk-in vaccination clinic and its real-time management.
The study has been specifically applied to mass vaccination against COVID-19 which
would be of particular interest in 2021 to severely impede the growth of this pandemic and
reverse the trajectory. This work is among the first that deals with the development and
implementation of a Digital Twin in a mass process like the mass vaccination campaign.
Moreover, to create this digital framework, the technology used is cost-efficient and easy
to install since it exists just in common smartphones with a pre-installed new application.
This digital twin integrates the simulation of a real vaccination process, to find the ideal
configuration of the clinic, with information systems, to collect data and observe the
physical system in real-time. Indeed, the specific motivation that has guided this work is
threefold: the possibility to digitalize a real service process which could fall into severe
inefficiencies, the collection of real data that can make the virtual model more reliable,
and the acquisition of real-time information from the physical vaccination center that
can present in real-time. This mapping of the real-world is important to improve the
planning of the clinic in an adaptive way. This digital twin becomes a sustainable solution
because it uses fewer physical resources and space to dedicate to a huge event such as a
mass vaccination.

The remainder of the paper is organized as follows. Section 2 reports a brief literature
review on simulation models in healthcare and the use of digital twin in different sectors.
In Section 3, the problem is defined, with the description of the vaccination process and
the importance of the data collection to increase its reliability. Section 4 presents the
mathematical model and the technology used for the digitalization of the process of
collection. In Section 5 there is a description of the case study while Section 6 reports the
results obtained. Finally, Section 7 contains the conclusions of the paper and future research
on this topic.

2. Literature Review

Computer Simulation is an Operation Research method and a simulation model is a
virtual representation of the real world which can be used to test alternate scenarios and find
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the best one according to specific outputs [23]. This method is widely used in healthcare,
especially during the last two decades when simulation has been more studied. Indeed,
much of the literature about simulation modelling in healthcare has been written after 2000.
Among the different simulation techniques, Discrete-Event Simulation is the second most
applied technique for medical purposes such as resource planning and risk assessment [24].
For example, simulation techniques were implemented to assess the risks and benefits of
administering the vaccine against Rotavirus to infants in France. The quantitative benefit-
risk models (qBRms) are more precise but more complicated, so the researchers applied a
Discretely Integrated Condition Event (DICE) simulation. They collected all the conditions
as inputs, performed changes which could cause a modification on the parameters and
found the outputs of the problem to understand the pros and cons of the vaccination in
terms of hospitalizations and deaths [25]. Ahmed and Alkhamis [26] performed simulation
and optimization to solve a planning problem for emergency department healthcare in
Kuwait. They modeled the actual physical system via simulation, and improved it with an
optimization model, to create a decision support system. The output parameters optimized
were the throughput, that is the number of patients processed per hour, and the average
waiting time in the system. Hernandez et al. [27] presented another integration between
simulation and optimization modelling. Here, the goal was to design an ideal Point of
Dispensing (POD) by minimizing the waiting time and maximizing the throughput. The
process is more complex than the one in [26] because it considered the possibility for a
patient of having already filled in the form or being rejected after the medical evaluation.

Simulation models are particularly useful in modeling mass campaigns, where many
people must be processed in few days. Hupert et al. [28] developed a simulation model to
predict the system behavior and plan the antibiotic distribution after a bio-terroristic attack.
They tested three scenarios with different levels of disease prevalence to find, for each
situation, the optimal staffing in each phase of the process. In their paper, the researchers
used statistical distribution for working times and considered different paths according to
the patient category. A drawback of the paper is that the arrival rate was represented by
a statistical distribution which stayed constant for the entire working day. Another mass
event was the one presented by [29] whose authors developed a discrete-event simulation
model to configure a mass vaccination walk-in clinic. The peculiarity of their study is
the collection of data through tables at the beginning of each phase, where the timestamp
is recorded. On the other hand, this kind of data collection is static and represents just
the specific situation tested because there is no communication between the tables and
the virtual system. A discrete-event simulation model was developed to design a drive-
through clinic in the city of Louisville, Kentucky, for the mass vaccination against H1N1
pandemic in 2009 [30]. The objective was to find the best configuration in terms of average
cycle time and average waiting time in the consent tent. For this model, the researchers
supposed exponential distributions for the interarrival times and triangular distributions
for the working times. They tested multiple scenarios to find the ideal number of operators
to allocate to each phase of the process. As also confirmed by [31], the best scenarios were
compared with the real situation measured by the University of Louisville during the mass
vaccination campaign. Starting from the Kentucky example, Asgary et al. [32] presented
a simulation model to plan a drive-through clinic against COVID-19. The limit of these
last two papers is the creation of multiple queues, one for each resource of a phase, which
decreases the efficiency of the entire process. A problem shared by all these aforementioned
papers is the creation of static models based on pre-collected data, without a dynamic
real-time adaptation according to what is happening on the physical system. In other
words, the literature has numerous papers pertaining to simulation models in healthcare,
but there are few contributions on the digital twin concept.

The digital twin concept was introduced for the first time in 2003 at the University
of Michigan and it consists of a three-part system. The first part is the physical object,
the second part is the virtual object that represents the physical object in a reliable way,
and the integration of data and information between these two objects [33]. For example,
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the virtual object can virtually represent a shoe for a football player by inserting into the
physical shoe a sensor which communicates information like speed and position. With
this information, coaches and trainers can test different scenarios and improve the players’
performance [34]. NASA and the U.S. Air Force also adopted the digital twin to test their
vehicles. In fact, before the introduction of this concept, they created a model based on
a probability and reliability methodology which failed when the real system changed
and thus did not represent the changed reality. Digital twin collected all the data from
sensors, fleet history and maintenance to mirror the behavior of the real system in a virtual
environment. Through this virtual system, it was possible to study the physical system
status in real time and predict if the mission would have been successful [35]. Coelho
et al. [36] improved the concept of digital twin in manufacturing, expanding its dimensions
from three to six. Besides the physical system, the virtual system, and data integration,
they added the service system, the decision-support system (DSS) and the connection
between all these dimensions. Their paper focused on the virtual system and the DSS
dimensions. The former was developed for both the distribution and the production
system and it was validated comparing its result with the real values collected in the
physical system. The latter dimension was a consequence of the validation because, once
validated, the simulation model can be used as a tool for the decision support for industrial
logistics. Digital twin as a decision-support tool in manufacturing can be leveraged to
increase the efficiency of the company. For example, it was used in a German food logistic
company to plan the employees’ working shifts and find the optimal number of workers
every day. To test the efficacy of the model, the planning was performed both with and
without the digital support and an improvement was found on resource utilization [37].
Digital twin is also used in healthcare even if it is more complex than in manufacturing
because of the physiology of everyone. This technology can collect data, through sensors, to
represent a virtual patient even at the molecular level. By providing information about each
patient, digital twin could enable doctors to monitor and treat people remotely [38]. Liu
et al. [39] developed a digital twin to support Elderly Healthcare System with a real-time
health monitoring. The physical part was represented by the patients, with some wearable
sensors attached to them, and medical equipment. The virtual part is designed to display
the physical condition of each patient and communicate each disease in real-time to the
doctor. Digital twin often exploits mobile applications for Android or iOS. In healthcare,
for example, the trend of heart monitoring through smart watches and mobile Apps is
increasing dramatically. Authors of [40] developed an Android application to monitor the
heart rate of the patients and communicate in real time, through a WhatsApp message, with
the doctor if some values are not ok. These values are collected through wearable sensors
which transfer the data to the smartphone through Bluetooth Low Energy technology. Thus,
mobile applications integrated with physical devices, provided to the operators, allow
the efficient development of a digital twin for any healthcare process. Karakra et al. [41]
leveraged digital twin framework to address planning problems, such as staff scheduling
or the reduction in waiting time. They integrated a discrete-event simulation model, which
virtually represent the physical system, with IoT technologies, which collect data to update
the model in real time. By testing different scenarios, they could find the optimal number
of resources that increases the efficiency of the real system, in terms of waiting time on
each phase and number of patients which enter and exit the system.

In this paper, simulation is integrated with Industry 4.0 creating a digital twin where
the virtual and physical environment continuously communicate with each other. Indeed,
after discovering and implementing the best settings for the clinic, the physical system
is constantly observed and real-time interventions on it can be decided on if the virtual
system detects some problems. To obtain information about the system behavior, a mobile
application has been developed which collects the time measures and sends them to the
decision-makers every day. Then, these data are analyzed and processed to understand the
real situation in terms of queues and resource utilization, and to immediately fix any issue.
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3. Problem Description

The problem involves vaccinating as many people as possible in the shortest time
interval by leveraging the least amount of resources and space, and creating short queues
and waiting times. We propose the development of a digital twin to plan and design a
clinic for the vaccination process that dynamically changes through a constant bidirectional
flow of information, from the physical to the virtual system and vice versa.

The first issue addressed is the design and planning of a clinic for any kind of walk-in
mass vaccination, here applied for the vaccination against the specific pandemic of COVID-
19. To deal with it, it is necessary to analyze the process in all its peculiarities (Figure 1).
First, the process contains some differences both in terms of probability of an event and
in terms of working times, according to the patient category vaccinated. Indeed, every
phase is based on statistical distributions which represent the duration of the activity in
a more reliable way than the single average measures. In addition, some of these phases
are characterized by a probability for a particular event to occur, which makes patients
take different paths according to the event occurrence. As can be observed from the figure
below, the process includes four decision blocks which divide the flow according to these
events. The first phase of the process is the entry control, where some volunteers measure
the temperature of each person and give them both the anamnesis and privacy form to
be filled if they have already completed them. If the temperature is under 37.5 ◦C, the
patient can proceed to the phase B and check-in. Otherwise, they are rejected and exit
the clinic. In the check-in phase, some volunteers simply direct the patient flow. People
who have already filled the forms are directed to the anamnesis control phase (phase D),
while the others are asked to fill in the modules in a specific area (phase C). In phase D,
a doctor checks the patient’s health conditions and depending upon the answers on the
anamnesis form, they can decide to not vaccinate the patient because of the underlying
risk. Patients who respect all the necessary health conditions proceed to the inoculation
phase (phase E), where nurses prepare and administer the vaccine. After the inoculation,
patients must wait in a specific area for about 15 min to detect possible side effects, and this
waiting is actually a part of the vaccination process (phase F). If, during this time, people
need help, a specialized doctor intervenes to treat them (phase G), otherwise people can
exit the system after waiting for 15 min. For the side effects treatment, this process also
considers the eventual fear of this new vaccine which can lead people to ask for a treatment
even if they do not have any reaction to the inoculation. The registration phase (phase
H) is an activity performed by administrative people independently of the patient and
consists of registering the personal information and the anamnesis of each patient on the
informatic system.

Figure 1. Flowchart of the vaccination process.

To improve the reliability of a simulation model, data from the physical system are
collected. In this way, decision makers rely on a well-structured model in which the
working times and probabilities used are like the real ones. To be reliable, a model needs at
least 50 measures of the same parameter, and the development of the statistical distribution
which better fits these collected values. Indeed, a simulation model is more reliable if the
working times of each phase follow a probabilistic trend rather than being defined by the
fixed average value. Moreover, if the data collection is continuously performed, the virtual
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model provides a real-time mapping of the physical situation. Therefore, the integration of
a static simulation model, which reflects the initial status of the vaccination process, with a
tool for the automatic collection of real-time data is the solution for a dynamic and reliable
system, even called digital twin.

4. Materials and Methods

In this section, we present the two parts that constitute the digital twin: the static
simulation model and the digital technology for data collection.

4.1. Simulation Model

Beginning with the vaccination process flowchart described above, the simulation
model is developed to virtually represent this process. First, the simulation model contains
two entities, form and patient. The former represents forms such as anamnesis and privacy
policy, which must be registered in the information system and, thus, is present just in a
single phase (phase H) of the process. The latter is the main entity because it is present in the
entire process. The resources of the model are all the operators which work in the different
phases of the process. In particular, there are three kinds of resources: administrative
employees, who perform the registration phase; volunteers, who can perform the entry
control or the check-in phase, or can control the exit of the patients from the system;
and healthcare workers (nurses or doctors), who can perform the anamnesis control, the
inoculation or the side-effects treatment. The activities are represented in the virtual
environment by one or more modules that contain all the parameters which characterize
the module, such as time or number of resources (Figure 2). As described in Section 3, all
the time-related parameters are defined by statistical distributions. The first module is the
patient arrival inside the system. One of the parameters of this module is Sgroup which
is the size of the group that enters the system at a specific instant and has a probability
Pgroup related to each size. Another parameter is the time between two consecutive group
arrivals (tarrival) which determines the hourly arrival rate. The second module is the queue
of entry control which represents the waiting before the entry control phase. This module
is characterized by QA, the maximum number of places to dedicate to the queue in phase
A. This phase is the only one that includes a single queue for each resource, while the
others have just one queue for the entire phase to increase the efficiency of the system.
When at least one resource in phase A is idle, the patient proceeds to the performance of
entry control module where there are NA volunteers carrying out the activity in a time tA,
which is the statistic distribution of time to perform all the actions contained in the entry
control phase. Module 4 is the decision module, where the probability that a patient can be
rejected because the body temperature is higher than 37.5 ◦C is Ptemp. If the temperature
is normal, the patient flows through modules 5 and 6 which represent phase B. Module
5 is the queue of phase B and, thus, it contains the parameter QB, while module 6 is the
activity and is characterized by the time tB and the number of check-in operators NB. Then,
a second decision module (module 7) appears with a probability Pfill-in of having already
filled in the forms. If it is false, the patient proceeds to module 8, which represents phase
C (forms fill-in). In this module, the parameter QC represents the maximum number of
places to dedicate to the forms fill-in because phase C does not have any queue. The other
parameters of module 8 are the duration of the activity tC, and the number NC of volunteers
allocated to this phase. If the patient has already filled in the forms, he/she proceeds to
phase D, contained in modules 9 and 10. As for the other phases, the former module is the
queue, whose parameter QD represents the maximum number of places in the queue to
dedicate to phase D, while the latter is the performance itself, characterized by the duration
tD, which changes if the health conditions are ok or not, and the number of resources ND.
The third decision module (module 11) manages the rejection due to health conditions and
contains a probability that the values of the anamnesis are all good Panam. If the condition
is not satisfied, decision module 12 defines the probability Prej to be rejected because some
negative conditions do not affect the vaccination. Patients admitted to the vaccination flow
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through phase E. Here, they wait in module 13, characterized by QE, and then are processed
in module 14, defined by duration tE and number of nurses NE. After the inoculation
phase, patients must wait for possible side effects for an aleatory time tF in module 15.
This can be considered as a queue with QF the maximum number of places to dedicate
for the waiting. Module 15 is linked to the decision module 16 that manages possible side
effects which can occur with a probability Peff. If the condition is true, modules 17 and
18 represent the side-effects treatment phase, with QG as maximum number of patients
in queue, tG as the duration of the performance and NG as the number of doctors staffed.
Time tG varies according to the fact that the patient shows real side effects or is just scared.
Otherwise, patients exit the system through module 19. From module 14 the forms flow
starts and reaches the module 20 which represents the registration of the information in the
informatic system. The activity is performed by NH administrative operators in a time tH.

Table 1 lists the parameters described above, with their units of measure. All the
time-related parameters represent statistical distributions, based on the values collected,
and not a fixed value.

Table 1. List of input parameters.

Name Symbol Units of Measure

Group size Sgroup patients
Probability of a specific group size Pgroup %

Inter-arrival time tarrival sec
Probability of having a body temperature lower

than 37.5 ◦C Ptemp %

Probability of having already filled-in the forms
at home Pfill-in %

Probability that the anamnesis is completely ok Panam %
Probability of being rejected because of the

anamnesis Prej %

Probability of experiencing side effects Peff %

Working time of a specific phase i ti
i = A, . . . , H sec

Number of resources needed in a specific phase i Ni
i = A, . . . , H resources

Number of places to dedicate in queue for a
specific phase i

Qi
i = A, . . . , H places

A simulation model must be tested to find the best scenario for multiple situations. The
best scenario amongst these is the solution that optimizes the output indicators previously
defined by the decision makers. Thus, it is important to list the output parameters in this
specific model. The main output parameter is the number of patients vaccinated every hour
per nurse (Npat/nurse). This parameter gives a measure of the system efficiency because
it relates the number of people vaccinated with the number of resources available. In
addition, the total number of patients vaccinated in a day (Npat) is a relevant measure to
study the capacity of the system. Two time-related output indicators are the average and
maximum time spent in the system (Tsys-avg and Tsys-max) and in the queue (Twait-avg and
Twait-max) by each patient. These values give us an idea of the speed of the process and the
percentage of the time lost for non-value-added activities. Finally, the third group of output
parameters is the resources utilization (Ui, with i = phase of the process) which reflects
both the effort in using the minimum number of resources and the avoidance of resource
overutilization to reduce employee’s burnout and unsatisfaction. All these outputs are
summarized in Table 2.
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Figure 2. Simulation model developed to mirror the real system.
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Table 2. List of output parameters.

Name Symbol Units of Measure

Number of patients vaccinated per hour per nurse Npat/nurse Patients/nurse × hour
Number of patients vaccinated per day Npat Patients/day

Average time spent in the system by a patient Tsys-avg min
Maximum time spent in the system by a patient Tsys-max min

Average time spent in queue by a patient Twait-avg min
Maximum time spent in queue by a patient Twait-max min

Resource utilization for each phase i Ui
i = A, . . . , H %

4.2. Digital Technology

The data collection is automated through a digital technology that measures, stores
and sends to the decision maker the time values. According to the information provided by
this tool, planners can map the real process in an adaptive way and change some settings
to adequate the system (Figure 3). This digital technology is composed of a hardware
architecture and a software application. The hardware part is represented by readers, such
as common mobile phones equipped with Near Field Communication (NFC) technology,
and NFC tags, such as badges. The mobile phones can write or read information on the tag
by simply getting closer to it through a novel software application developed and installed
on them. This new mobile application was specially developed for this work with some
properties that are useful for this specific purpose. The APP is designed in such a way that,
during the scan activity, the screen is turned off and the smartphone can last the entire
working day without being charged. Moreover, to detect the beginning and the end of each
measurement, the application emits a sound both when the badge-phone contact begins
and when this contact ends.

Figure 3. Conceptual framework of the digital technology.

This software application can read the information on the NFC tag, write new infor-
mation on it, visualize all the measures, and send them to the decision maker, as illustrated
in Figure 4a. These activities are implemented by giving the smartphones to the employees
and a badge to each patient. It is important to highlight the fact that the badges are anony-
mous and, because the number of patients is not previously known, are re-used when a
patient exits the system. For the first phase, some settings must be decided before starting
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the reading, such as the process and the specific phase. The reading can be carried out
in two ways. When the service is carried out by a resource, the badge is placed by the
resource on the smartphone during the entire activity, collecting both the beginning and the
duration of the activity. When the activity is carried out by the patient, such as forms fill-in,
the contact badge-smartphone lasts just few milliseconds and is performed by the patient
at the beginning and at the end of the activity to store the two timestamps (Figure 4b). The
second phase is the visualization and sending of the collected measures. To perform this
phase, operators must select the right folder and press the “share” button to send the data
to the decision maker via email. The last phase is the writing of the badge, made before the
system activation. Here, planners must write the new information in the specific pane and
place each badge on one of the smartphones to move this information to the NFC tag.

Figure 4. (a) Main screen of the mobile app, with the 3 possible activities; (b) 3 screens of the reading part where the planner
defines the process and the phase and activates the reading.
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The data are sent by each smartphone to the decision maker as a .csv file. Thus,
the decision maker receives as many files as the number of operators that use the digital
technology and joins these files to create a single dataset converted into Excel format
(Figure 5).
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From Figure 4, it can be noted that the column “Start of the reading” contains the
Unix time stamp, which is a common informatic language that represents the number of
milliseconds from 1st January 1970. To make this information more suitable for all the
users, the last two columns translate these values in Date and Time. The digital twin
consists of the fact that this dataset from the physical system represents the input of the
virtual system. Indeed, the dataset is elaborated through Excel to develop a dashboard
which sums up the behavior of the real system and highlights emerged problems. Then,
planners run the virtual model previously described to test various scenarios and find
the best solution that solves these emerged issues. When a solution is defined that helps
dealing with the problems, this is replicated in the physical system and the digital twin
cycle is closed (Figure 6).
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Figure 6. Loop of the digital twin of the COVID-19 vaccination center.

5. Case Study

The model was tested during a mass vaccination campaign against COVID-19 in
South Tyrol. Although the model developed manages situations with multiple patient
categories, in the case study the model is implemented just for adults. This results in
lower working times, especially for forms fill-in, because elderly people are slower in
writing their personal information, and for vaccine inoculation, because elderly people
often wear a suit and tie and take more time to undress. In addition, some probabilities
change between adults and elderly people, such as Pfill-in which is higher for adults since
they are more used to technology and are likely to print the form at home. As argued
before, the model needs real data to be reliable and, thus, researchers have visited several
clinics for flu vaccination, in October and November 2020, to collect many measurements
on those parameters that could be useful for the COVID-19 vaccination too. For each phase,
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about 100 time-related values were measured which are then inserted in a data-fitting
software to find the statistical distribution that better represents these data. Researchers
also collected measures of the time between two consecutive groups’ arrivals, and Table 3
shows the distribution for each time parameter in seconds. In particular, there are three
main distributions that represent these time-measures: the triangular distribution (TRIA),
the gamma distribution (GAMM) and the Weibull distribution (WEIB). From the process
observation and the conversation with the clinic’s managers, the probability measures are
defined and inserted in the simulation model (Table 4).

Table 3. Statistical distribution of the time-related parameters.

Time-Related Parameter Statistical Distribution [s]

tarrival = time between 2 consecutive arrivals TRIA(51,120,510)
tA = working time of entry control phase 7 + WEIB(17.2, 1.03)
tB = working time of check-in phase 6.5 + GAMM(6.27, 2.22)
tC = working time of forms fill-in phase 54 + WEIB(73.6, 1.15)

tD = working time of anamnesis control phase OK: 24.5 + WEIB(19, 1.54)
NOT OK: 32 + WEIB(24.4, 1.51)

tE = working time of vaccine inoculation phase 67 + GAMM(21.7, 2.12)
tF = waiting time after the inoculation TRIA(480,780,960)

tG = working time of side effects treatment phase REAL EFFECTS: TRIA(240,420,600)
FEAR: TRIA(60,120,180)

tH = working time of registration phase TRIA(42.5,75.5,122)

Table 4. Values of the probability parameters.

Probability Parameter Value [%]

Ptemp = Probability of having a body temperature lower than 37.5 ◦C 99
Pfill-in = Probability of having already filled-in the forms at home 60
Panam = Probability that the anamnesis is completely ok 30
Prej = Probability of being rejected because of the anamnesis 5
Peff = Probability of experiencing side effects 5

A second hypothesis to consider is the space available to implement a mass vaccination
clinic. The most feasible solution is a sports arena because it is sufficiently large to receive
a huge number of people every day. For this reason, researchers considered the standard
dimensions of a sports arena and adapted them reaching a space of 67 m × 37 m. A
smaller space would not have been feasible for a mass campaign while, if a larger space
was necessary, the single layout could be replicated several times. The reference center
considered for the clinic design was the Bozen expo Point of Dispense (POD) This POD is
chosen because seems like the ideal system designed with the simulation model in terms of
phases and queue type (a single queue for each phase instead of a specific queue for each
resource of a phase). In addition, it is large enough to test a huge number of people every
day, about 1000, because its available space is similar to the sports arena layout supposed
in the virtual model.

To implement a complete digital twin framework, the mobile application is tested in
a smaller clinic. Researchers give the devices to the operators in each phase to cover all
the process and to map the flow of the patients from their entrance to their exit. The data
collected are useful to build a dashboard that sums up all the most important indicators
that a decision-maker wants to check. This dashboard contains both tables and graphs that
change dynamically according to the new incoming data. The smaller case is used as a
Beta-test to check if the application and the dashboard work well and to teach operators
the use of the application. Then, the decision-makers could extend the framework to a
bigger case by adding new smartphones and new badges. Therefore, they could use this
digital technology as a support either to design a new mass vaccination clinic or to analyse
the clinic’s situation in real-time and apply some changes in the clinic’s configuration
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dynamically. A relevant point is that the designed configuration cannot be simply extended
if the clinic is bigger because there is no linear relation. Consequently, the digital twin
must be implemented for each specific clinic because it gives different best configurations
according to the system dimension and other properties.

6. Results

After the input definition, the simulation model was implemented using a commercial
software to carry out a sensitivity analysis which found the best scenario for this specific
case, according to the output indicators previously decided. The two variables which
were changed during this analysis were tarrival and the number of resources (Ni), both
medical and non-medical. The time between two consecutive arrivals ranged between
TRIA(54,127,540) and TRIA(42,99,420), with a step of 7-s decrease in the mean value. For
the number of resources, researchers started from the maximum number of resources
feasible inside the defined layout and reduced this number until the system deteriorated.
In particular, the number of non-medical employees varied from 22 to 14 while the medical
personnel varied from 22 to 18. Thus, combining all these different possibilities, the
total number of tested scenarios was 225. Many scenarios were tested because a larger
number of resources does not result in a more efficient system, but a balanced integration
of the different kind of resources is necessary. For example, if the maximum number of
doctors is chosen, the anamnesis control phase will become very fast and this creates a
bottleneck in the following phase (vaccine inoculation). Thus, the objective is to find the
right number of doctors according to the other resources. From the 225 scenarios, the
best five scenarios selected are the ones that maximized the main parameter Npat/nurse

and are compared to find the optimal (Table 5). This scenario has the highest value of
Npat/nurse but it is also feasible. To be feasible, the solution must respect layout boundaries
related to the maximum number of people allowed in the queue or chairs dedicated for
the forms fill-in and for the waiting after the inoculation. After a study of the layouts
available, this total number was set to 310 places. Each of these five scenarios has some
strengths and weaknesses. The first respects all the layout boundaries, has accepted values
of Ui, but, since it has high interarrival time, fewer patients are vaccinated. The second
scenario has the same interarrival time distribution of the third scenario but it needs one
more nurse and so it is less efficient in terms of patients vaccinated by each nurse. The
fourth and last scenarios would be the best, according to the Npat/nurse indicator, but they
exceed the layout boundaries and so they are not feasible. In addition, the fifth scenario
overutilizes the anamnesis, inoculation, and registration resources because the value of
Ui is higher than 85%. Thus, the best scenario among those considered was the third one
because it maximized Npat/nurse, respecting the space limit. This configuration increases
the sustainability of the system both socially, with an acceptable workload for the operators,
and economically, because the target number of patients is vaccinated in the least number
of days and with the most efficient use of resources. This reduces costs due to the center
opening and due to the workers’ salary.
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Table 5. Comparison of the best 5 scenarios.

PARAMETERS SCENARIOS

1 2 3 4 5

Triangular coefficients
for interarrival time [s]

A 54 51 51 48 42
B 127 120 120 113 99
C 540 510 510 480 420

Number of resources
(Ni)

i = A, . . . , G
or

i = “Exit control”

A- Entry control 4 4 4 4 4
B- Check-in 3 3 3 3 3

D- Anamnesis
Control 4 4 4 4 4

E- Vaccine
Inoculation 12 13 12 12 13

H- Registration on PC 6 6 6 6 6
G- Side effects treatment 2 2 2 2 2

Exit control 2 2 2 2 2

Num tot medical resources 18 19 18 18 19
Num tot non-medical resources 15 15 15 15 15

NUM TOT RESOURCES 33 34 33 33 34

Resource utilization (Ui)
i = A, . . . , G

A- Entry control 33.8% 36.5% 36.3% 38.1% 44.0%
B- Check-in 38.1% 41.2% 40.8% 42.9% 49.5%

D- Anamnesis
Control 71.6% 77.4% 76.6% 80.4% 91.8%

E- Vaccine
Inoculation 75.0% 74.7% 80.2% 84.1% 88.4%

H- Registration on PC 71.6% 77.4% 76.5% 80.5% 91.4%
G- Side effects treatment 19.4% 22.6% 21.9% 23.2% 25.4%

Time [min]

Tsys-avg 23.7 23.9 25.1 26.4 32.8
Tsys-max 52.7 59.3 60.9 64.1 97.3
Twait-avg 4 3.4 5.4 5.9 12.4
Twait-max 38.4 44.3 48 56 83.4

Number of places to
dedicate in the layout

(Qi)
i = A, . . . , G

A- Entry control 26 32 25 27 43
B- Check-in 29 30 30 29 33

D- Anamnesis
Control 101 136 116 143 320

E- Vaccine
Inoculation 43 17 64 74 20

F- Waiting post
Inoculation 66 68 67 67 70

G- Side effects treatment 3 4 4 3 3

Num tot places in the layout 268 287 306 343 489
Npat 2026 2192 2164 2270 2567

Npat/nurse 16.9 16.9 18.0 18.9 19.8

An important support to understand the efficiency of the solution is the 3D visual-
ization of the optimal configuration that shows all the phases and the queues in the ideal
clinic. It helps to understand how to place the multiple phases in a fixed layout and to
determine whether the clinic is too crowded (Figure 7a). The 3D layout also shows the kind
of queue designed in this clinic, with a single long queue for the entire phase, and people
that flow in an “S” path (Figure 7b).
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Figure 7. (a) 3D visualization of the designed clinic; (b) zoomed-in detail of a phase queue.

This configuration maximizes the main parameter Npat/nurse which represents the
efficiency of a clinic. In detail, the value of this indicator is 18.03 patients vaccinated/hour
per nurse, which means that, if we suppose a 10-h shift, each nurse vaccinates about
180 people each day. This is a very high value that is combined with other KPIs such as
the total number of patients vaccinated every day (Npat) which is equal to 2164 for this
best configuration. Other parameters are time-related, such as the average time in system
(Tsys-avg), which is 25 min, and the average time in queue (Twait-avg), which is 5.4 min. This
means that just 20% of the time spent by a patient in the system is expended in non-value-
added activities. These two measures are also computed for their maximum values to
understand the worst-case scenario. To conclude, the third set of output parameters is the
resources utilization (Ui) that stays under 85%, which can be considered as a limit besides
which employees are overutilized and burnout or unsatisfaction phenomenon can arise
(Table 6).

Table 6. Values of the output parameters.

Output Parameter Value Units of Measures

Npat/nurse 18.03 Patients/nurse × hour
Npat 2164 Patients/day

Tsys-avg 25.1 min
Tsys-max 60.9 min
Twait-avg 5.4 min
Twait-max 48 min

UA 36.3 %
UB 40.8 %
UD 76.6 %
UE 80.2 %
UG 21.9 %
UH 76.5 %

From the mobile application, data are collected and sent to the data analyst. With the
use of 10 smartphones, 10 datasets are created, each one representing a specific phase of
the process. Through programming code, many parameters are computed starting from
the input data, such as:

• Duration of each phase for each patient and average durations.
• Timestamps of the beginning and the end of each phase.
• Number of patients in each queue in every minute.

From these parameters, researchers calculate the outputs relevant for the decision-
makers and draw a dynamic dashboard with all these indicators together. This dashboard
contains the most relevant KPIs that can support the decision-maker in defining future
improvements and deal with occurring problems. Because the test case is very small,
the indicators found are lower than the ones reported above regarding the ideal clinic
simulated, but they are reliable and relevant as well. The first section of the dashboard
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represents the number of patients in the various queues and in the overall system (Figure 8).
In detail, this case study presents queues before and after the inoculation phase. In all
the three graphs an empty interval is visible between 1 PM and 2 PM which represents
the lunch break. These graphs allow analysts to understand the exact time at which the
situation deteriorates and too many people are in the system simultaneously. Indeed, by
drawing a vertical line across the three graphs it is possible to study the number of people
in each queue at a particular minute of the day.

The second section of the dashboard concerns the mean and maximum values of the
queue, especially number of patients and time (Figure 9). In terms of number of patients,
the waiting after inoculation is the most critical phase because the values are much higher
than the values for the inoculation queue. In terms of time, the distinctive characteristic is
the constant time of 15 min for the post-inoculation waiting, due to a strict control of the
operators on the patients.
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Figure 9. Second section of the dashboard. (a) the histogram reports the average number of people
in queue in each phase; (b) the histogram reports the maximum number of people in queue in each
phase; (c) the histogram reports the average time that a patient spends in queue for each phase;
(d) the histogram reports the maximum time that a patient spends in queue for each phase.

The third section of the dashboard regards the overall time-related KPIs which describe
the situation of the entire system rather than the situation of a specific phase (Figure 10). It
can be observed that the average time in system is low (about 25 min) because, considering
a constant 15-min time of waiting after the inoculation, the process from the beginning
to the inoculation lasts just 10 min. The maximum time in the system is almost doubled
because, during some crowded moments of the day, the time in queue for each phase
increases by a lot.
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Figure 10. Third section of the dashboard. The histogram shows the average and the maximum time
in system spent by each patient.

The next part of the dashboard shows the resources utilization (Figure 11). In this
small case study, the percentages are lower than the ones in a normal situation but give
an idea of the most used resource. Indeed, the doctors allocated to the anamnesis control
phase are the critical resource because their utilization is more than twice the utilization of
nurses allocated to the inoculation phase.

Figure 11. Fourth section of the dashboard. The histogram shows the resources utilization in
percentage.

The last section of the dashboard contains two tables (Figure 12). The first table collects
all the relevant KPIs reported in the graphs, adding the Npat and Npat/nurse indicators.
The second table shows the number of patients processed by each single resource and
it is important to understand if some resources are more exploited than others during a
working day.

The dashboard shows which are the critical points and where to focus the new imple-
mentation of the simulation model. In this case study, the dashboard reports a long queue
at the beginning of the day in the inoculation phase, which may be due to an anticipated
arrival of patients which generates an increased flow. However, observing the resources
utilization histogram, the most used resource is the doctor in the anamnesis control phase.
From this remark, a possible improvement can be a dynamic shift between doctors and
nurses during the day so that for the first period of the day one doctor can perform the
inoculation and then, when the inoculation queue decreases, one nurse can perform the
anamnesis to reduce the doctors utilization.
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Figure 12. Fifth section of the dashboard. (a) Table with all the most relevant KPIs, such as Npat and Npat/nurse; (b) Table
that shows the number of patients processed by each resource.

7. Conclusions

This paper describes the development of a digital twin for the mass vaccination
process against the COVID-19 pandemic. The problem was to vaccinate many people
in a very short time, leveraging the minimum number of resources, especially when
healthcare workers are scarce. First, we developed a virtual system, which replicated the
physical clinic, based on some real information like time-related measures and probability
measures. The former was collected in the field to determine the statistical distribution
of the working time of each phase. Once developed, the simulation model was tested
for many scenarios to find a sustainable solution according to specific output parameters
previously defined. In particular, the most relevant KPI considered was the number of
patients vaccinated every hour by a single nurse (Npat/nurse) because it gave a measure
of the system efficiency. The best configuration found included 31 total resources, 18 of
which medical, and provided a Npat/nurse equal to 18 patients vaccinated by each nurse
every hour. This high efficiency allows dedicating a smaller space which leads to lower
waste and energy consumption. After the definition of the static ideal clinic, the model was
expanded with a smartphone application that helped to digitalize the entire process and
change it dynamically. The application is based on NFC technology, where operators have
an NFC reader (a smartphone) and each patient has an NFC tag (a badge) that is read by
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the smartphone for the entire duration of an activity. These durations are then sent to the
data analysts to be managed. Through this application, researchers were able to collect
time measures in real time from the physical system, analyze them to find the drawbacks
of this system, run the virtual model, and translate the improvements found in the physical
clinic, creating a typical digital twin. Because it is still in a preliminary state, this digital
twin developed was tested in a small POD but it gave different improvement cues as well.
Indeed, the outcomes of the digital twin suggested a dynamic shift between nurses and
doctors to deal with both the huge queue before the inoculation phase at the beginning of
the day and the high doctor utilization during the entire day.

A detected limitation of the model is the difficulty for the operators in the adoption
of the technology. Indeed, the data collected in the first period of testing at the small
clinic were not considered because they could be affected by the learning phase of the
individuals. This work can be enhanced in different ways. First, the paper reports an
example of a walk-in clinic but the digital twin model can also be used in drive-through
systems. Therefore, a possible future work can be the testing of the simulation model and
the mobile application in a drive-through environment which has different time measures
and some differences in phases. In addition, this research can be expanded by adding new
smartphones to digitalize a bigger clinic like the one in Bozen expo. In this way, decision
makers map the flow for a large number of patients and in a configuration similar to an
industrial process, where entities flow continuously from one phase to the next and the
objective is to reduce the bottlenecks. This expansion provides a more reliable dashboard
and a stronger support of decision making for managers which could lead to an increasing
sustainability of the vaccination clinic.
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