
sustainability

Article

Perceived Trip Time Reliability and Its Cost in a Rail
Transit Network

Jie Liu 1,2 , Paul Schonfeld 3, Jinqu Chen 1, Yong Yin 1,* and Qiyuan Peng 1

����������
�������

Citation: Liu, J.; Schonfeld, P.; Chen,

J.; Yin, Y.; Peng, Q. Perceived Trip

Time Reliability and Its Cost in a Rail

Transit Network. Sustainability 2021,

13, 7504. https://doi.org/10.3390/

su13137504

Academic Editors: João Carlos de

Oliveira Matias and Paolo Renna

Received: 15 May 2021

Accepted: 22 June 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China;
JieLiu.SWJTU@outlook.com (J.L.); Chenjinqu@my.swjtu.edu.cn (J.C.); qiyuan-peng@swjtu.edu.cn (Q.P.)

2 Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650093, China
3 A. James Clark School of Engineering, University of Maryland, College Park, MD 20740, USA;

pschon@umd.edu
* Correspondence: yinyong@home.swjtu.edu.cn

Abstract: Time reliability in a Rail Transit Network (RTN) is usually measured according to clock-
based trip time, while the travel conditions such as travel comfort and convenience cannot be reflected
by clock-based trip time. Here, the crowding level of trains, seat availability, and transfer times
are considered to compute passengers’ Perceived Trip Time (PTT). Compared with the average
PTT, the extra PTT needed for arriving reliably, which equals the 95th percentile PTT minus the
average PTT, is converted into the monetary cost for estimating Perceived Time Reliability Cost
(PTRC). The ratio of extra PTT needed for arriving reliably to the average PTT referring to the buffer
time index is proposed to measure Perceived Time Reliability (PTR). To overcome the difficulty of
obtaining passengers’ PTT who travel among rail transit modes, a Monte Carlo simulation is applied
to generated passengers’ PTT for computing PTR and PTRC. A case study of Chengdu’s RTN shows
that the proposed metrics and method measure the PTR and PTRC in an RTN effectively. PTTR,
PTRC, and influential factors have significant linear relations among them, and the obtained linear
regression models among them can guide passengers to travel reliably.

Keywords: perceived time; reliability; travel condition; Monte Carlo simulation; linear regression

1. Introduction

As travel demand increases, passengers in large cities experience increasing conges-
tion, crowding, and low time reliability. Time reliability not only reflects the service quality
of transportation networks, but also affects passengers’ route choices [1] and travel satisfac-
tion [2]. Passengers who require high time reliability, such as commuters, are willing to
pay for such reliability [3]. Both transportation managers and passengers consider time
reliability to be very important.

Many studies have explored time reliability for road networks [4,5], Rail Transit
Networks (RTNs) [6,7], and bus networks [8,9]. Although these studies have proposed
measures for evaluating the time reliability of transportation networks, travel conditions
such as the number of transfer times, crowding, and seat availability in vehicles that affect
passengers’ perceptions have been relatively neglected [10]. The reason is that time reliabil-
ity is measured based on clock-based trip time, which neglects travel conditions. Let us
assume that passengers A and B travel between the same Origin to Destination Station (OD)
pair and spend the same time to arrive at the destination station. However, if passenger A
gets a seat in an uncrowded vehicle while passenger B stands in a crowded vehicle, their
travel conditions vary greatly despite having the same time reliability. Therefore, both
clock-based trip time and the passengers’ travel conditions are incorporated here to mea-
sure the Perceived Time Reliability (PTR) and Perceived Time Reliability Cost (PTRC). The
extra PTT needed for arriving reliably equaling the difference between the 95th percentile
PTT and average PTT, is converted into the monetary cost for estimating PTRC. Referring
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to the buffer time index, the ratio of extra PTT needed for arriving reliably to the average
PTT is proposed to measure PTR. To reveal the relations among PTR and influential factors,
as well as the relations among PTRC and influential factors, multiple linear regression
models were developed and determined by applying the stepwise regression method [11].

The remainder of this paper is organized as follows: the literature review discusses
the previous research on time reliability. In the methodology section, the probability
distributions of trip time components are introduced, the metrics of PTR and PTRC are
proposed, multiple linear regression models are developed among PTR and influential
factors, as well as among PTRC and influential factors, after which the PTR and PTRC
estimation procedure are introduced. The PTR and PTRC for Chengdu’s RTN are estimated
in the case study. The results of applying the stepwise regression method for obtaining the
linear regression models are analyzed. Finally, the conclusions of the study are summarized.

2. Literature Review

The concept of time reliability was commonly associated with the variability of
time [12]. Researchers studied time reliability from the perspectives of operators [13],
travelers [14], and planners [15] in recent years. To measure the time reliability of trans-
portation networks from the perspective of operations, some indicators such as punctuality
of transportation schedule indicator, on-time classification, coefficient of headways’ vari-
ation, and weighted delay indicators [16,17] were proposed. Although those indicators
could measure the stability of transportation schedules and differences in the passengers’
waiting times, they could not guide the travelers’ decisions directly, nor did they analyze
the time reliability in terms of the travelers’ total trip time.

It has become much easier to obtain travelers’ trip times from Automatic Fare Collec-
tion (AFC) data, Global Positioning Systems (GPS) data, and Automatic Vehicle Location
(AVL) data. Therefore, researchers analyzed the time reliability for transportation networks
with these data [17]. The distribution of time in a road network was estimated according to
GPS data [18]. The time reliability of Chengdu’s urban rail transit network was measured
by using AFC data [7]. The AVL data were used to estimate path travel time variance
according to travel time variances on paths’ segments [19]. The AFC data were effective for
obtaining travelers’ trip time and analyzing time reliability for urban rail transit networks
or bus networks. However, these data could not be used to obtain travelers’ trip time for
different transportation modes. Thus, if a person took a train with one ticket and then
took a bus with another ticket, the trip time could not be fully determined from AFC data
since the identification numbers of the two tickets differed. It was a common phenomenon
that passengers used different tickets to travel on China’s RTNs since different companies
managed different modes of rail transit (such as urban rail transit, high-speed railway, and
suburban railway) and issued different kinds of tickets.

Various metrics were proposed to measure the time reliability of transportation net-
works, as shown in Table 1. The buffer time index was widely used for measuring time
reliability in transportation networks since it not only measured the time reliability but
also guided passengers to allow additional time for reliably reaching their destinations.
Thus, the time reliability of London’s Underground was evaluated with the buffer time
index according to the passengers’ trip time obtained from AFC data [20]. The buffer time
index for London bus routes was evaluated using AVL data [21]. The design criteria for the
time reliability metric from the passengers’ perspective were proposed by [22], who noted
that the buffer time index satisfied the criteria for measuring time reliability.
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Table 1. Time reliability indicators and description.

Indicators Description

Coefficient of variation [23] The ratio of the standard deviation to the mean.

Skewness of time [24]

The ratio of the difference between the 90th
percentile trip time and 50th percentile trip time to
the difference between the 50th percentile trip time

and 10th percentile trip time.

90th or 95th percentile trip time [25] 90th or 95th percentile trip time used as the reliable
trip time

Buffer time [26] The difference between the average trip time and
95th percentile trip time.

Buffer time index [26] The percentage of buffer time with respect to the
average trip time.

On-time arrival [27] The probability that a trip arrives within the trip
time budget.

Time unreliability [25] The fraction of late arriving trips.

Total time budget [27]
The minimum trip time threshold that satisfies a

certain reliability requirement given by
decision-makers at a certain confidence level.

Mean-excess total time [28]
The conditional expectation of trip times exceeding
the corresponding total trip time budget at a given

confidence level.

The methods found for measuring time reliability may be categorized into three
groups: analytical approaches, statistical approximation, and simulation approaches. The
analytical approaches can be applied under different traffic conditions. However, their
main drawback is the high complexity of their estimation process for time distributions at
the network level [29]. The Normal, Lognormal, Gamma, Truncated Normal/Lognormal,
and Weibull distributions have been applied to compute time reliability using statistical
methods [23,30]. The mixture of distribution models was used to measure time reliability
since the single distribution model could not well represent the time distribution. However,
it was difficult to determine the mix of distribution models. For simulation approaches,
the time reliability of a transportation network could be estimated in different scenarios
(extreme weather, transportation accidents, and transportation control). The simulation
approaches can also be applied to measure the time reliability when demand and capac-
ity fluctuate [31,32]. A simulation approach may be applied very flexibly, but at high
computation cost, to measure the time reliability of transportation networks.

The literature review shows that researchers emphasized measuring time reliability in
terms of variability of clock-based trip time. However, the passengers’ travel conditions
are neglected when measuring the time reliability of transportation networks. Here,
passengers’ Perceived Trip Time (PTT), which integrates travel conditions (i.e., the number
of transfer times, crowding, and seat availability in the vehicle), and the clock-based trip
time are computed and used for measuring the PTR and PTRC in an RTN. It is difficult
to apply analytical approaches and statistical approximation to measure the PTR for the
RTN because the passengers’ trip components are complex and the distributions of trip
time components are different. In addition, passengers may use different tickets to travel
on different rail transit modes, which complicates matching the ticket numbers to obtain
the passengers’ trip times. Therefore, a Monte Carlo simulation is used here to generate
passengers’ PTT for measuring PTR and PTRC in an RTN. The simulation process for a
large network only lasts a few minutes due to advances in computing power and speed.
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3. Methodology

In this section, the computation of the passengers’ PTT and the probability distri-
butions of clock-based trip time components are introduced. After that, the metrics for
measuring PTR and PTRC on paths, among OD pairs, on lines, and an RTN are proposed.
Then, the method for estimating PTR and PTRC based on passenger trip assignment and
Monte Carlo simulation is proposed.

3.1. Passenger’s Clock-Based Trip Time and PTT

The clock-based trip time on a path between an OD pair includes access, egress and
transfer walking time, waiting time at the origin and transfer stations as well as in-vehicle
time. The clock-based trip time components are shown in Figure 1. The clock-based trip
time is different from the passengers’ PTT. Studies show that the components of clock-based
trip time are perceived differently by passengers, e.g., waiting time has a much higher
perceived value than in-vehicle time in uncrowded vehicles. The number of transfer times,
crowding in vehicles, and reduced seat availability also increase the passengers’ PTT [33].
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The crowding level and seat availability in trains, as well as the number of transfer
times affect passengers’ PTT [34]. Therefore, the weighted in-vehicle time is computed
according to crowding level and seat availability in trains. The transfer penalty time is
computed according to transfer time and the number of transfer times. tod

n,k, which is
estimated with Equation (1), is the PTT for passenger n traveling from station o to station d
on path k:

tod
n,k = twalk

n,k,o + twait
n,k,o + ∑e∈Eod

k
tvehicle
n,e ·βe + ∑s∈Sod

k,trans
β1·
(

twalk
n,s + twait

n,s

)
·(mk)

β2 + twalk
n,k,d (1)

where twalk
n,k,o , twalk

n,k,d , and twait
n,k,o are walking time at station o, walking time at station d, and

waiting time at station o, respectively, for passenger n traveling from station o to station d
on path k. tvehicle

n,e , e ∈ Eod
k is in-vehicle time on link e. Eod

k is the set of links from station
o to station d on path k. twalk

n,s and twait
n,s , s ∈ Sod

k,trans are walking time and waiting time,
respectively, for passenger n traveling on path k. Sod

k,trans is the set of transfer stations from
station o to station d on path k. mk is the number of transfer times The time weights β1 = 1.1
and β2 = 0.5 are used here according to [35]. The values of β1 and β2 stay the same when
computing the PTTs for different paths. The time weight βe is related to crowding in trains
and seat availability on link e, e ∈ Eod

k . The load factor, which is the ratio of passengers to
seats on a vehicle, is used to reflect the train crowding. The values of βe at different load
factors when passengers sit or stand are shown in Table 2 according to [36].
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Table 2. Values of βe at different load factors when sitting or standing.

Load Factor (%) Sitting Standing

0–75 0.86 —-
75–100 0.95 —-
100–125 1.05 1.62
125–150 1.16 1.79
150–175 1.27 1.99
175–200 1.40 2.20

>200 1.55 2.44

3.2. Probability Distributions of Clock-Based Trip Time Components

The values of trip time vary since clock-based trip time components are random
variables subject to probability distributions. The probability distributions of clock-based
trip time components are obtained and used in Monte Carlo simulation [37] to generate
the passengers’ PTT.

3.2.1. Probability Distributions of Walking Time

The passengers’ walking time at stations is affected by many factors, such as the degree
of congestion, accessibility of facilities, and the passengers’ age and genders. Here, only two
essential factors, i.e., walking distance (considers walking distances on the passageways,
upstairs, and downstairs) and walking speed are considered when determining the walking
time distribution. The walking speed follows an N

(
µ, σ2) distribution on passageways,

upstairs, and downstairs. The values of µ and σ are shown in Table 3 according to [38].

Table 3. Values of µ and σ for walking speed distribution N
(
µ,σ2) [38].

Walking Place µ (m/s) σ

passageways 1.39 0.463
upstairs 0.79 0.236

downstairs 0.81 0.174

The walking time is the sum of the ratios of walking distance to walking speeds, and
thus the walking time distributions on passageways twalk

k,pass, upstairs twalk
k,up , and downstairs

twalk
k,down in path k are calculated following Equations (2)–(4):

twalk
k,pass ∼

lwalk
pass

N(1.39, 0.4632)
(2)

twalk
k,up ∼

lwalk
up

N(0.79, 0.2362)
(3)

tdown
k,walk ∼

lwalk
down

N(0.81, 0.1742)
(4)

where lwalk
pass , lwalk

up , and lwalk
down are walking distances on passageways, upstairs, and down-

stairs, respectively.

3.2.2. Probability Distributions of Waiting Time

The waiting time distributions on frequency-based lines and schedule-based lines
vary greatly because passengers can use their tickets for any trains on frequency-based
lines but only for a specific train on schedule-based lines. When passengers wait on a
frequency-based line, they may have an extra waiting time if some trains have insufficient
capacity. When passengers wait on a schedule-based line, they can board their intended
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trains as long as they have tickets for those trains since the tickets are sold according to the
trains’ capacities.

(1) Probability Distribution of Waiting Time on Frequency-based Lines

The passengers’ arrivals at stations on frequency-based lines such as metro lines are
Poisson-distributed [38]. Passengers waiting at frequency-based lines have normal waiting
time and extra waiting time. The normal waiting time means that passengers can board the
first arriving train. The normal waiting time is a uniformly distributed random variable
ranging from 0 to the headways on lines [39] as shown in Equation (5):

twait
o,normal ∼ U(0, ho); ∀o ∈ Sfrequency (5)

where twait
o,normal and ho are the passengers’ normal waiting times at station o and the headway

of a line that includes o. Sfrequency is the set of stations that are on frequency-based lines.
Passengers may have extra waiting times due to the first arriving train not having

enough capacity for all waiting passengers. One successful boarding at station o requires
m independent trials, each with a probability of success po [40]. In addition to the first
arriving train, the probability that passengers need to wait longer for arriving trains on the
platform represented as P (X = m) is estimated with Equation (6).

P(X = m) = (1− po)
m·po; m = 0, 1, 2, . . . , ∀o ∈ Sfrequency (6)

po is the probability that passengers board a train successfully at station o, o ∈ Sfrequency.
po is related to the passenger flow and remaining capacity of a link e in the direction of in-
tended boarding trains and connected with o directly, which is estimated with Equation (7):

po =
Cape − fe

Cape
(7)

where Cape and fe are the capacity and passenger flow on link e, which is in the direction
of intended boarding trains and connected with o directly.

According to Equation (6), the number of subsequent trains that passengers must wait
for is geometrically distributed [40]. Thus, the extra waiting time twait

o,extra at station o that
equals the headway ho multiplied by the number of subsequent passing trains m has the
following distribution (Equation (8)):

P
(

twait
o,extra = m·ho

)
= (1− po)

m·po; m = 0, 1, 2, . . . ∀o ∈ Sfrequency (8)

(2) Probability Distribution of Waiting Time on Schedule-based Lines

To avoid missing their intended boarding trains, passengers arrive at the stations in
advance. Passengers waiting on schedule-based lines have no extra waiting time since
the tickets are sold according to the trains’ capacities. The probability density function of
waiting time on schedule-based operation lines (such as high-speed railway lines) follows
the mixed distribution of beta and gamma distributions as Equation (9) according to [41]:

f
(

twait
o = x

)
= ζ· Γ(ω + θ)

Γ(ω)·Γ(θ) ·x
ω−1·(1− x)θ−1 + (1− ζ); ∀o ∈ Sschedule (9)

where to,wait are the waiting times at station o, o ∈ Sschedule. Sschedule is the station set
on schedule-based lines. ζ and 1− ζ represent the fractions of the beta distribution and
gamma distribution, respectively. Γ(ω), Γ(θ) and Γ(ω + θ) are gamma distributions.

The parameters in Equation (9) are related to the headways of waiting lines, which
can be determined from Table 4 according to [41].
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Table 4. Values of parameters in Equation (9) for different headways.

Headways (min) ζ ω θ

5 0.43 0.41 2.85
10 0.52 0.36 3.39
15 0.58 0.32 3.98
20 0.64 0.27 4.57
30 0.90 0.24 6.52

3.2.3. Probability Distribution of In-Vehicle Time

The trains’ running time on a link is normally distributed, and the expected running
time is proportional to the standard deviation, according to [40]. Therefore, the in-vehicle
times on a link tvehicle

e are normally distributed as Equation (10):

tvehicle
e ∼ N

(
uvehicle

e ,
(

uvehicle
e ·α

)2
)

; ∀e ∈ E (10)

where ue,vehicle is the expected in-vehicle time on link e, e ∈ E, which can be estimated with
the mean of train running time on link e. α is 0.04 according to [40]. E is the set of links in
an RTN.

3.3. PTR and PTRC Metrics
3.3.1. PTR and PTRC on a Path

The extra PTT needed for arriving reliably equals the 95th percentile PTT minus the
average PTT, computed with Equation (11). The ratio of the extra PTT needed for arriving
reliably to average PTT is used for measuring PTR and is computed with Equation (12):

tod
k,reliable = tod

k,95 − tod
k,∗; ∀o, d ∈ S (11)

rod
k =

tod
k,reliable

tod
k,∗

; ∀o, d ∈ S (12)

where tod
k,reliable, tod

k,95, and tod
k,∗ are the extra PTTs needed for arriving reliably, 95th percentile

PTT, and average PTT, respectively, from station o to station d on path k, o, d ∈ S. S is the
set of stations in an RTN. rod

k is PTR from station o to station d on path k.
The extra PTT needed for arriving reliably is converted to a monetary cost according

to Equation (13) to estimate PTRC.

cod
k = tod

k,reliable·γ; ∀o, d ∈ S (13)

where cod
k is the PTRC from station o to station d on path k. γ is the value of the time

parameter that converts PBT into a monetary cost, which is related to the passengers’
income [34].

3.3.2. PTR and PTRC among OD Pairs

The PTR and PTRC between an OD pair equal the average PTR and average PTRC for
passengers who travel between that OD pair. PTR and PTRC from station o to station d (rod

and cod) are estimated with Equations (14) and (15), respectively:

rod =
∑k=m

k=1 rod
k ·u

od
k

uod ; ∀o, d ∈ S (14)

cod =
∑k=m

k=1 cod
k ·u

od
k

uod ; ∀o, d ∈ S (15)
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where M is the total number of travel paths selected by passengers from station o to station
d. uod

k and uod are passenger trips from station o to station d on path k and from station o to
station d, respectively.

In Equations (15) and (16), uod
k

uod = λod
k , thus uod

k can be estimated by computing the
probability of path k being selected by passengers λod

k when they travel from station o
to station d. The probabilities of paths selected by passengers can be determined after
passenger trip assignments.

3.3.3. PTR and PTRC on Lines

The PTR rl computed with Equation (16) and PTRC cl computed with Equation (17)
on a line equal the respective average PTR and average PTRC for passengers whose origin
station or destination station is on that line.

rl =
∑o∈sl ∑d∈S rod·uod+rdo·udo

∑o∈sl ∑d∈S uod + udo ; ∀l ∈ L (16)

cl =
∑o∈sl ∑d∈S cod·uod+cdo·udo

∑o∈sl ∑d∈S uod + udo ; ∀l ∈ L (17)

where L is the set of lines in an RTN. Sl is the station set on line l. uod and udo are passenger
trips from station o to station d and from station d to station o, respectively.

3.3.4. PTR and PTRC in an RTN

The average PTR for all passengers computed with Equation (18) is used to estimate
PTR on the RTN:

R =
∑o∈S ∑d∈S rod·uod

u
(18)

where R is the PTR of the RTN and u is passenger trips on the RTN.
The PTRC in an RTN C computed with Equation (19) is estimated with the average

PTRC for all passengers:

C =
∑o∈S ∑d∈S cod·uod

u
(19)

3.4. PTR and PTRC Estimation Based on Passenger Trip Assignment and Monte Carlo Simulation

To measure PTR and PTRC in an RTN, passenger trips are assigned to the RTN to
determine load factors (which are shown in Table 2) and probabilities of paths being selected
by passengers. Here, a length-based C-logit stochastic user equilibrium model is applied
to assign passenger trips. The model is solved by the method of successive weighted
averages [42]. Then, a Monte Carlo simulation [37] is applied to generate passengers’ PTT
according to probability distributions of trip time components for computing PTR and
PTRC on the RTN.

3.4.1. The Length-Based C-Logit Stochastic User Equilibrium Model

The length-based C-logit stochastic user equilibrium model is applied to assign passen-
ger trips since it effectively reflects the overlapping effect among paths and the passengers’
travel characteristics [43]. The length-based C-logit Stochastic User Equilibrium model is
shown in Equations (20)–(27):

min Z( f ) =
1
ϑ ∑o∈S ∑d∈S,o 6=d ∑k=m

k=1 uod
k ·In(u

od
k ) + ∑e∈E

∫ fe

0
te(x)dx + ∑o∈S ∑d∈S,o 6=d ∑k=m

k=1 uod
k ·ω

od
k (20)

subject to:

ωod
k = ε·In

∑i=m
i=1

Lod
k,i√

Lod
k

√
Lod

i

∀o, d ∈ S (21)
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uod
k = uod·λod

k ; ∀o, d ∈ S (22)

λod
k =

exp(−ϑ·(tod
k,∗ + ωod

k ))

∑k=M
k=1 exp(−ϑ·(tod

k,∗ + ωod
k ))

; ∀o, d ∈ S (23)

fe = ∑o∈S ∑d∈S,o 6=d ∑k=M
k=1 uod

k ·δ
od
ek ; ∀e ∈ E (24)

Seate = cseat·ne; ∀e ∈ E (25)

Cape = ccap·ne∀e ∈ E (26)

loade =
fe

Seate
; ∀e ∈ E (27)

In the objective function, ϑ is a non-negative parameter. The higher the value of ϑ,
the higher the accuracy of the passengers’ perception of paths’ trip time and the closer
the assignment to the equilibrium assignment. te(x) is the PTT on link e, which equals
the in-vehicle time multiplied by its time weight (i.e., βe in Table 2). ωod

k , which is the
common factor for path k, is computed with constraint (21). It measures the similarities
of path k with other paths in the same OD pair according to length of common links. Lod

k,i
is the sum of common links’ lengths on paths k and i from station o to station d. Lod

k and
Lod

i are lengths of paths k and i, respectively, from station o to station d. ε is a parameter
in Equation (26). If ε = 0, then the length-based C-logit route choice model collapses to a
Multinomial Logit model. If ε = 1, then the route choice probabilities in the limiting case
of N coincident paths tend to 1/N of those computed with a Multinomial Logit model
applied while considering the coincident paths as a single path [44]. ε = 1 is used here
according to [45]. In constraint (22), uod

k equals the passenger trips traveling from station o
to station d (i.e., uod) multiplied the probability of path k being selected by passengers (i.e.,
λod

k which is computed with constraint (23)). fe is the passenger flow on link e, which is
computed with constraint (24). δod

ek is a binary variable, which is 0 if the path k from station
o to station d contains link e and 1 otherwise. Constraints (25) and (26) compute the hourly
number of seats on link e (i.e., Seate) and the capacity of link e (i.e., Cape), respectively;
they equal the frequency of trains passing through link e (i.e., ne) multiplied by the seats
per train (i.e., cseat) and the capacity per train (i.e., ccap). loade in constraint (27) is the load
factor on link e, which measures crowding levels in vehicles on that link.

3.4.2. The Method of Successive Weighted Averages

The Length-based C-logit Stochastic User Equilibrium model is solved with the
method of successive weighted averages [42] to assign passenger trips on the RTN, as
follows:

Step 1: Set the iteration’s number h = 1, the algorithm variable γ0 = 1, the algorithm
parameter a ≥ 0, and the stop iteration criterion ϕ. The effective path sets among
OD pairs are determined using Yen’s algorithm. The PTTs of paths in the effective
travel path sets are computed without considering passenger flow.

Step 2: Passenger trips are assigned to the RTN with Equations (23) and (24) according to
the PTTs of effective travel paths to compute passenger flow on each link, which is
represented as f h

e , ∀e ∈ E.
Step 3: The PTTs of effective travel paths among OD pairs are computed according to

the passenger flows on links f h
e , ∀e ∈ E. The passenger trips among OD pairs

are assigned to the RTN again. The passenger flow on each link, zh
e , ∀e ∈ E, is

recomputed.
Step 4: Let γh = γh−1 + ha, θh = ha

γh
and h = h + 1. Passenger flows on links are updated

with Equation (28):
f h+1
e = f h

e + θh·
(

zh
e − f h

e

)
(28)
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Step 5: Convergence assessment. If

√
( f h+1

e − f h
e )

2

∑e∈E f h
e
≤ ϕ, then stop iterating and f h+1

e is the

passenger flow after passenger trip assignment; otherwise, go to step 3.

The passenger flows on links and the probabilities of paths being selected by passen-
gers are determined according to the above five steps. The load factor on a link is estimated
as the ratio of hourly passenger flow on that link to the provided seats per hour on that
link. Thus, the weight of in-vehicle time βe is determined from Table 2.

3.4.3. The Method of Successive Weighted Averages

The PTR and PTRC are estimated by applying a Monte Carlo simulation after passen-
ger trips are assigned to the RTN. According to the probability distributions of clock-based
trip time components introduced in Section 3.2, the PTTs of H = 1000 passengers from
station o to station d on path k are generated by applying Monte Carlo simulation as follows:

Step 1: Initialize.
Initialize the iteration number h = 1 and set the maximum iteration step H = 1000;
Step 2: Generate PTT on path k for passenger n, n = h during h iteration.
Step 2.1: Generate walking times at stations for passenger n, n = h.
The walking distances on passageways lwalk

pass , upstairs lwalk
up , and downstairs lwalk

down at
origin station o, destination station d and transfer stations on path k are determined and
then passenger n’s walking times on passageways, upstairs, and downstairs at each station
are generated with Equations (2)–(4) in Section 3.2.1. Thus, passenger n’s walking times at
origin station o, destination station d, and transfer stations represented as twalk

n,k,o , twalk
n,k,d , and

twalk
n,s , s ∈ Sod

k,trans, respectively, are the sum of walking time on passageways, upstairs, and
downstairs at station o, station d and transfer station s, s ∈ Sod

k,trans.
Step 2.2: Generate waiting times at stations for passenger n, n = h.
Passenger n’s waiting times at origin station o and transfer stations s ∈ Sod

k,trans on
path k represented as twait

n,k,o and twait
n,s , s ∈ Sod

k,trans, respectively, are generated. To generate a
waiting time at a station for passenger n, the operation type of the line to which that the
waiting station belongs is determined.

If the operation type is a frequency-based line, then the waiting time at the station
is generated as follows: The normal waiting time at the station is generated according to
Equation (5); The link that is in the direction of intended boarding trains and connected
with the waiting station directly is determined. Then, the probability of successful boarding
is estimated with Equation (7). After that, an extra waiting time at the waiting station is
generated with Equation (8). The total generated waiting time is the sum of the generated
normal waiting time and the generated extra waiting time.

If a waiting station belongs to a schedule-based line, then passengers waiting at that
station do not have extra waiting time and the waiting time at that station is generated
with Equation (9).

Step 2.3: Generate the transfer penalty time for passenger n, n = h.
The equation ∑s∈Sod

k,trans
β1·
(
twalk
n,s + twait

n,s
)
·(mk)

β2 is used to computed the generated

transfer penalty time according to the generated walking time and waiting time at transfer
stations in steps 2.1 and 2.2.

Step 2.4: Generate the weighted in-vehicle time for passenger n, n = h.
The link set Eod

k on path k from station o to station d is determined. The weight of
in-vehicle time for each link e, e ∈ Eod

k (i.e., βe) is determined after passenger trips are
assigned. Passenger n’s in-vehicle time on each link e, e ∈ Eod

k (i.e., tvehicle
n,e ) is generated

according to Equation (10). Finally, ∑e∈Eod
k

tvehicle
n,e ·βe computes the generated weighted

in-vehicle time for passenger n on path k.
Step 2.5: Generate a PTT for passenger n.
Equation (1) computes the generated PTT for passenger n traveling on path k according

to generated times in steps 2.1 to 2.4.
Step 3: Stop assessment.
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Let h = h + 1. If h < H, return to step 2; otherwise, go to step 4.
Step 4: Estimate PTR and the PTRC from station o to station d on path k.
The passengers’ PTTs are generated according to steps 1 to 3. The 95th percentile PTT

is the 950th PTT in the generated 1000 PTTs’ rank sorted from smallest to largest. The
extra PTT needed for arriving reliably, represented as tod

k,reliable, equals the 95th percentile
PTT minus the average PTT. Thus, the PTR and the PTRC on path k are estimated with
Equations (12) and (13), respectively.

The steps for estimating PTR and PTRs from station o to station d on path k are shown
in Figure 2. Thus, PTR and PTRC among OD pairs, on lines as well as on the RTN are
estimated with Equations (14)–(19).
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4. Case Study

PTR and PTRC on Chengdu’s RTN are measured, and the regression relating PTRS
and PTRC to influential factors is analyzed in this section. Some measures for enhancing
PTR and reducing PTRC on Chengdu’s RTN are proposed based on the results.

4.1. Chengdu’s RTN

The transfer and terminal stations on lines, as well as the modes of lines in Chengdu’s
RTN are shown in Figure 3a. There were six metro lines (lines 1 to 6), including three
suburban railway lines (lines 7 to 9) and three high-speed rail lines (lines 10 to 12), as well
as 174 stations on Chengdu’s RTN in May 2019. Some details of the metro network are
shown in Figure 3b. The public transportation trips in urban and suburban areas, as well as
between Chengdu and other nearby cities are mainly served by metro lines and suburban
railway lines as well as high-speed rail lines.
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4.2. Chengdu’s RTN Operation Data and Surveyed Data

The operation type, headways, capacity per hour, and provided seats per hour on
Chengdu’s rail transit lines during morning peak periods (from 7:30 a.m. to 9:30 a.m.) are
shown in Table 5.

Table 5. Attributes of Lines in Chengdu’s RTN.

Line Operation Type Headway
(min)

Seats
(per Hour)

Capacity
(Passenger Trips per Hour)

1 frequency-based 2.00 348 × 30 1460 × 30
2 frequency-based 2.73 348 × 22 1460 × 22
3 frequency-based 3.00 348 × 20 1460 × 20
4 frequency-based 3.00 348 × 20 1460 × 20
5 frequency-based 4.00 348 × 15 1460 × 15
6 frequency-based 6.00 348 × 10 1460 × 10
7 schedule-based 10.00 250 × 6 680 × 6
8 schedule-based 15.00 250 × 4 680 × 4
9 schedule-based 15.00 250 × 4 680 × 4

10 schedule-based 15.00 610 × 4 1280 × 4
11 schedule-based 10.00 610 × 6 1280 × 6
12 schedule-based 10.00 610 × 6 1280 × 6

Seats= seats per train × frequency of trains; Capacity = capacity of train × frequency of trains.

With the support of the National Key R & D Program of China, our team conducted
surveys on Chengdu’s RTN. The average walking distances on passways, upstairs, and
downstairs for investigated stations are estimated to be nearly 300 m, 15 m, and 15 m,
respectively. Those walking distances are used to generate walking time using Monto Carlo
simulation when passengers access and egress stations since determining the walking
distances on passways, upstairs, and downstairs for 174 stations in Chengdu’s RTN is
difficult. The transfer walking distances on upstairs and downstairs are estimated to be
10 m. The transfer walking distances (sum of walking distances on passways, upstairs,
and downstairs) at all transfer stations, train running times on all links, as well as the OD
trip distribution in Chengdu’s RTN during morning peak periods, are obtained from an
operator and a survey [7]. The passenger trips among OD pairs are shown in Figure 4. The
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arcs represent the number of passenger trips traveling among OD pairs during morning
peak periods. Darker arcs represent higher passenger trips among OD pairs. To limit this
paper’s length, line 1 is taken as an example to show transfer walking distances on line
1’s transfer stations and train running times on line 1’s links, which are listed in Table 6;
Table 7, respectively.
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Table 6. Transfer walking distances at line 1’s transfer stations.

Transfer Station Transfer
Direction

Walking
Distance (m)

Transfer
Direction

Walking
Distance (m)

3 Line 1 to line 5 178 Line 5 to line 1 155
3 Line 1 to line 7 237 Line 7 to line 1 207
6 Line 1 to line 4 252 Line 4 to line 1 155
7 Line 1 to line 2 215 Line 2 to line 1 200
10 Line 1 to line 3 200 Line 3 to line 1 104
13 Line 1 to line 5 252 Line 5 to line 1 126

The passenger trips among OD pairs are assigned to the network using the Length-
based C-logit Stochastic User Equilibrium Model. The PTR and PTRC among OD pairs can
be estimated with Monte Carlo simulation according to the above data. In estimating the
PTRC, the value of time parameter equals 30% of household income per hour according to
economist Kenneth Gwilliam’s recommendation [46]. The average household income is
134,187 ¥/per year which is obtained from the “Chengdu Statistical Yearbook-2018” [47].
The work time per week is 46 h according to the data released by the National Bureau of
Statistics. There are nearly 52 weeks per year. Therefore, the work hours are 2392 h per
year and thus the average household income per hour is 56.10 ¥/hour. The value of time
parameter γ, which equals 30% of household income per hour, is 16.83 ¥/hour.
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Table 7. Train running times on line 1’s links.

Link
(Station–Station)

Running Time (min) Link
(Station–Station)

Running Time (min)

Upstream Downstream Upstream Downstream

1–2 1.87 1.88 18–19 1.35 1.33
2–3 2.08 2.07 19–20 1.38 1.37
3–4 1.47 1.47 20–21 1.57 1.57
4–5 1.57 1.58 21–22 1.95 1.92
5–6 1.22 1.25 22–23 1.50 1.50
6–7 1.35 1.33 23–24 1.83 1.83
7–8 1.15 1.20 24–25 1.70 1.78
8–9 1.15 1.17 25–26 1.78 1.77

9–10 1.32 1.32 26–27 1.93 1.93
10–11 1.27 1.28 27–28 2.00 2.25
11–12 1.35 1.33 28–29 1.75 1.50
12–13 1.40 1.45 29–30 1.77 1.77
13–14 1.63 1.63 30–31 1.58 1.58
14–15 1.50 1.50 31–32 1.50 1.50
15–16 1.17 1.17 32–33 1.33 1.33
16–17 1.20 1.20 33–34 1.87 1.87
17–18 1.78 1.78 34–35 2.00 2.00

4.3. PTR and PTRC Estimation
4.3.1. PTR and PTRC among OD Pairs

The PTRs and PTRCs on two paths from station 155 to station 13, which are shown in
Figure 5, are estimated. This is shown as an example of measuring PTR and PTRC on paths.
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The cumulative distributions of generated 1000 passengers’ PTTs on paths 1 and
2 using Monte Carlo simulation are shown in Figure 6a,b, respectively. The PTRs on
paths 1 and 2 are estimated to be 0.135 and 0.203, respectively, according to the mean
PTT and 95th percentile PTT on paths 1 and 2. The PTRCs on paths 1 and 2 are 1.345 ¥
and 1.827 ¥. This result illustrates that PTR on path 1 is more reliable than on path 2 and
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passengers pay less for traveling reliably on path 1 than on path 2. Passengers need to
allow 0.135 times and 0.203 times the average PTTs on Paths 1 and 2, respectively, to reach
station 13 reliably. The probabilities of paths 1 and 2 being selected by passengers are 0.417
and 0.583, respectively. Therefore, the PTR and PTRC from station 155 to station 13 are
0.175 and 1.626 ¥, respectively.
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to 0.3, which means that passengers should allow 0 to 0.3 times the average PTT to reach 
their destinations reliably. Figure 7b shows the fractions of OD pairs in different PTR in-
tervals during morning peak periods. It shows that only 1.57% of OD pairs’ PTRs exceed 
0.2, which demonstrates that only a few OD pairs have low PTR. 

Origin station number

D
es

tin
at

io
n 

st
at

io
n 

nu
m

be
r

[0, 0.05) [0.05, 0.1) [0.15, 0.2) [0.2, 0.25) [0.25, 0.3) [0.3, 0.35)
0

10

20

30

40

50

60

[0.1, 0.15)

1.18

55.05

36.77

5.43
1.41 0.15 0.01

Fr
ac

tio
n 

(%
)

PTTR intervals
(a) (b)  

Figure 7. (a) PTRs among OD pairs; (b) Fractions of OD pairs in different PTR intervals. 

The PTRCs among OD pairs are estimated according to PTRs among OD pairs. The 
contours of PTRCs among OD pairs and the fractions of OD pairs in different PTRC inter-
vals are shown in Figure 8a,b, respectively, on Chengdu’s RTN during morning peak 
hours. Figure 8a shows the PTRCs among OD pairs are between 0.72 ¥ to 5 ¥. It means that 
the extra costs of arriving at destination stations reliably for a passenger are between 0.72 
¥ to 5.98 ¥. The stations whose numbers exceed 156 are on suburban and high-speed rail-
ways. Figure 8a shows PTRCs among Metro, suburban railway, and high-speed railway 

Figure 6. (a) Cumulative distribution of generated 1000 passengers’ PTTs on path 1; (b) Cumulative distribution of generated
1000 passengers’ PTTs on path 1.

The PTRs among OD pairs are estimated according to the proposed metrics and
method. The contours of PTRs among OD pairs in Chengdu’s RTN during morning peak
hours are shown in Figure 7a. Figure 7a shows the PTRs among OD pairs are between 0 to
0.3, which means that passengers should allow 0 to 0.3 times the average PTT to reach their
destinations reliably. Figure 7b shows the fractions of OD pairs in different PTR intervals
during morning peak periods. It shows that only 1.57% of OD pairs’ PTRs exceed 0.2,
which demonstrates that only a few OD pairs have low PTR.
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The PTRCs among OD pairs are estimated according to PTRs among OD pairs. The
contours of PTRCs among OD pairs and the fractions of OD pairs in different PTRC intervals
are shown in Figure 8a,b, respectively, on Chengdu’s RTN during morning peak hours.
Figure 8a shows the PTRCs among OD pairs are between 0.72 ¥ to 5 ¥. It means that the
extra costs of arriving at destination stations reliably for a passenger are between 0.72 ¥ to
5.98 ¥. The stations whose numbers exceed 156 are on suburban and high-speed railways.
Figure 8a shows PTRCs among Metro, suburban railway, and high-speed railway are high.
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Figure 8b shows the fractions of OD pairs in different PTRC intervals during morning peak
periods. It shows that nearly 80% of OD pairs’ PTRCs are between 1 ¥ and 3 ¥.
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The PTR and PTRC on Chengdu’s RTN during morning peak hours are estimated to 
be 0.14, and 2.07 ¥, respectively. Therefore, on average, passengers should allow 0.14 of 
the mean PTT (equivalent to 2.07 ¥) to arrive at their destination stations reliably. The fare 
per passenger trip is 6.08 ¥ in Chengdu’s RTN during morning peak hours. Therefore, a 
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4.3.2. PTRs and the PTRCs on Lines and on the RTN

The PTRs and PTRCs on lines during morning peak hours are estimated with
Equations (16) and (17). They are shown in Figure 9a,b, respectively. A higher value
of the PTR indicates lower reliability. The PTR on line 6 is the lowest and PTRC on
line 8 is the highest in Figure 9a,b, respectively. Therefore, with limited operational
resources and manpower, priority can be given to improving the management of lines
with a high value of PTR and high PTRC to increase passengers’ PTR and decrease the
passengers’ PTRC.
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The PTR and PTRC on Chengdu’s RTN during morning peak hours are estimated to
be 0.14, and 2.07 ¥, respectively. Therefore, on average, passengers should allow 0.14 of
the mean PTT (equivalent to 2.07 ¥) to arrive at their destination stations reliably. The fare
per passenger trip is 6.08 ¥ in Chengdu’s RTN during morning peak hours. Therefore, a
passenger must spend over 1/3 of the basic travel fare in equivalent extra time to reach the
destination station reliably.

4.4. Regression Analysis Relating PTRs and PTRCs to Influential Factors
4.4.1. Regression Models Relating PTR and PTRC to Influential Factors

The regression models relating PTR and PTRC to influential factors are proposed.
In theory, more influential factors in a regression model increase its degree of fit and
interpretability. However, no model can include all the influential factors due to possible
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multicollinearity. Besides, too many factors in a regression model will lead to model
overfitting. The factors that are closely related to passengers’ PTT and can be quantified
are considered. Six influential factors (i.e., explanatory variables), which are the distances
of paths X1, walking distances on paths X2, the average trip times on paths X3, the average
waiting times on paths X4, average loading factor on paths’ links X5, and ratios of walking
distances on paths to distances of paths X6 are considered in developing multiple linear
regression models:

Y1 = µ0 + µ1X1 + µ2X2 + µ3X3 + µ4X4 + µ5X5 + µ6X6 + ε1 (29)

Y2 = τ0 + τ1X1 + τ2X2 + τ3X3 + τ4X4 + τ5X5 + τ6X6 + ε2 (30)

where Y1 and Y2 are PTRs and PTRCs on paths, respectively. µ1 to µ6 and τ1 to τ6
are regression coefficients for each explanatory variable. µi, ∀i = 1, 2, . . . , 6 means the
change in the mean of PTR corresponding to a unit change in Xi when other vari-
ables Xj, j 6= i & ∀j = 1, 2, . . . , 6 are held constant. τi, ∀i = 1, 2, . . . , 6 means the
change in the mean of PTRC corresponding to a unit change in Xi when other vari-
ables Xj, j 6= i & ∀j = 1, 2, . . . , 6 are held constant. µ0 and τ0 are constant values. ε1
and ε2 represent models’ error, which are random variables and whose mean is 0. The
influential factors in the multiple linear regression models may have correlations among
them. In addition, not all influential factors significantly influence the PTRs or PTRCs. The
stepwise regression method [11] is used here to reduce multicollinearity among influential
factors. It gradually introduces influential factors that have a high impact on the PTRs or
PTRCs into the regression models. During the process of introducing the factors into a
regression model, the significance test is performed for the new model when a new factor
is introduced into it.

4.4.2. Multiple Linear Regression Analysis for PTRs and Influential Factors

The result of applying the stepwise regression method to determine the appropriate
multiple linear regression model among PTRs and influential factors is shown in Figure 10.
Figure 10a demonstrates that with additional stepwise regression iterations, the root mean
square error (RMSE) decreases and the model fitting improves. The result of applying the
stepwise regression method shows that all factors except X2 (walking distances on paths)
are included in the model. The multiple linear regression model is shown in Equation (31).
The significance value of the model (i.e., the value of p in Figure 10b) is 6 × 10−6, which
is below 0.05 (0.05 is a commonly used value for judging whether the significance test is
passed). This demonstrates that the linear relation between PTR and influential factors is
significant. The coefficient of determination (i.e., R_square in Figure 10b) that quantifies the
degree of linear correlation is 0.82433. It indicates that Equation (31) has a high goodness-
of-fit.

Y1 = 0.11015 + 0.00048X1 − 0.08547X3 + 0.24889X4 + 0.0144X5 + 0.45231X6 (31)

4.4.3. Multiple Linear Regression Analysis for PTRC and Influential Factors

Figure 11 shows the RMSE after introducing factors into the regression model and
the result of applying the stepwise regression for determining the appropriate multiple
linear regression model that relates PTRC to influential factors. Figure 11a demonstrates
that applying the stepwise regression method can improve the fit of the model. The result
of applying the stepwise regression method shows that X1 (distances of paths) is not
introduced into the multiple linear regression model; 4 × 10−6 (i.e., the value of p in
Figure 11b) is the significance value of the model, which is below 0.05 (0.05 is a commonly
used value for judging whether the significance test is passed). Therefore, the linear relation
between PTRC and influential factors is significant. R_square in Figure 11b is 0.9014. It is
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close to 1 and thus demonstrates that Equation (32) has a high goodness-of-fit. The multiple
linear regression model between PTRC and influential factors is shown in Equation (32).

Y2 = −0.26522 + 0.32674X2 + 0.30112X3 + 6.26087X4 + 0.04168X5 + 1.34128X6 (32)
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4.4.4. PTR Enhancement and PTRC Reduction Analysis

The absolute coefficients’ values for X4 and X6 are much larger than the coefficient
values for other influential factors in Equations (31) and (32). This means that the average
waiting times on paths (X4) and the ratios of walking distances on paths to distances of
paths (X6) have a much higher influence on paths’ PTRs and PTRCs than other influential
factors. A higher value of Y1 means a lower PTR. In order to decrease the Y1 and Y2 and
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thus to enhance PTR as well as reduce PTRC on the network, the values of X4 and X6
should be decreased. The percent decreases in Y1 and Y2 are shown in Figure 12 when the
values of X4 and X6 are decreased.
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Figure 12 shows that reducing the values of X4 and X6 is effective in decreasing Y1
and Y2. Therefore, two ways for improving the PTR and decreasing PTRC on the RTN are
proposed: (1) decreasing the headway on lines to decrease the average waiting time on
paths, and (2) providing convenient facilities and channels for passengers to enter, exit,
and transfer at the stations, thereby decreasing the walking distances on paths.

5. Conclusions

Time reliability is one of the most important factors affecting the passengers’ sat-
isfaction with transportation services. The assessment of time reliability has attracted
considerable attention. However, the existing literature on time reliability neglects the
passengers’ travel conditions since the clock-based trip time, which does not contain travel
conditions, is used for measuring time reliability. This study measures the PTR according
to the passengers’ PTTs, which reflect passengers’ travel conditions (crowding and seat
availability in the vehicle and the number of transfer times on the path). The metrics for
estimating PTRs and the cost passengers pay for reaching destination reliably (PTRCs) are
developed. Due to the difficulty of obtaining passengers’ trip time traveling among multi-
ple modes of rail transit, a Monte Carlo simulation is used here for estimating PTTR and
PTRC that does not rely on massive passenger travel data and data analysis. The multiple
linear regression models relating PTR and PTRC to influential factors are developed and
determined by applying the stepwise regression method. The following conclusions are
drawn from applying proposed models and method to Chengdu’s RTN during morning
peak hours:

Only a few OD pairs on Chengdu’s RTN during morning peak hours have low PTR.
Nearly 80% of OD pairs’ PTRCs are between 1 ¥ and 3 ¥. The PTR on line 6 is the lowest,
and PTRC on line 8 is the highest. The PTR and PTRC on Chengdu’s RTN are estimated to
be 0.14, and 2.07 ¥, respectively. A passenger must allow 0.14 of the average PTT and spend
over 1/3 of travel fare in equivalent extra PTT to reach the destination station reliably.

The linear relations among PTR, PTRC, and their influential factors are significant. The
obtained multiple linear regression models have high goodness-of-fit. The average waiting
times on paths and the ratios of walking distances on paths to distances of paths affect
PTR and PTRC much more than other factors. Decreasing the headway on lines decreases
the average waiting time on paths, and providing convenient facilities and channels for
passengers to enter, exit, and transfer at the stations to decrease the walking distances on
paths are effective in enhancing PTR and reducing the PTRC in an RTN.
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The proposed models and method can measure PTR and PTRC in an RTN network
by integrating travel conditions and trip time. According to the evaluation results, the
lines with low PTR and with high PTRC can be identified, which helps operators allocate
operational resources and manpower to those lines with high priority to improve PTR
and reduce PTRC. The influences of factors on PTR and PTRC are quantified according to
obtained multiple linear regression models, which not only help guide operators in effec-
tively improving the PTR and reducing the PTRC in an RTN, but also guides passengers
to prepare extra PTT and select a path with high PTR. Although the metrics and method
only apply to an RTN, they can potentially apply to different transportation modes, such
as bus networks.

Although crowding level of trains, seat availability, and transfer times are considered
here to measure PTR, other factors that affect the time reliability, such as the stability of the
transportation and the probability of the transportation disturbances should be considered
in further studies. Many passengers require transfers among multiple public transportation
lines, such as rail transit and bus. Therefore, the PTR and PTRC evaluation should be
extended to public transportation networks that include rail transit and bus lines.
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