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Abstract: This study investigated the accuracy and suitability of several methods commonly used to
estimate riverine nitrate loads at eight watersheds located southwest of Lake Erie in the Midwestern
United States. This study applied various regression methods, including a regression estimator with
five, six, and seven parameters, an estimator enhanced by composite, triangular, and rectangular
error corrections with residual and proportional adjustment methods, the weighted regressions on
time, discharge, and season (WRTDS) method, and a simple linear interpolation (SLI) method. Daily
discharge and nitrate concentration data were collected by the National Center for Water Quality
Research. The methods were compared with subsampling frequencies of 6, 12, and 24 times per year
for daily concentrations, daily loads, and annual loads. The results indicate that combinations of the
seven-parameter regression method with composite residual and rectangular residual adjustments
provided the best estimates under most of the watershed and sampling frequency conditions. On
average, WRTDS was more accurate than the regression models alone, but less accurate than those
models enhanced by residual adjustments, except for the most urbanized watershed, Cuyahoga.
SLI was the most accurate in the Vermilion and Maumee watersheds. The results also provide
some information about the effects of rating curve shape and slope, land use, and record length on
model performance.

Keywords: five, six and seven parameters; discharge; nitrate concentration; residual correction; SLI;
Midwestern United States; WRTDS

1. Introduction

Pollutant loading, from nonpoint sources in particular, can pose significant problems
in water bodies. To protect and improve the water quality of the Great Lakes, the Great
Lakes Water Quality Agreement was established in 1972 [1]. The National Center for Water
Quality Research (NCWQR) at Heidelberg University has been monitoring the nutrient
loads of the major watersheds of Lake Erie since the 1970s, and many studies have analyzed
the water quality characteristics using monitored water quality data.

Unlike river discharge (streamflow) data, water quality monitoring data typically
contain temporal data gaps [2–4]. These gaps produce uncertainties in the estimation of
constituent loads. Such uncertainties can be alleviated by filling in the missing water quality
monitoring data using regression between water quality and discharge, commonly known
as the rating curve approach. Cohn et al. [5] noted the inaccuracy of linear interpolation
in estimating nutrient concentration, and attempted to rectify this issue using a multiple
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log–linear regression equation based on the rating curve of nutrient concentration and
river discharge. Extending Cohn’s approach, Runkel et al. [6] developed load estimation
(LOADEST), a program for estimating constituent loads in streams. Stenback et al. [7]
applied the seven-parameter method to estimate the nitrate and total phosphorus loads at
Iowa’s river stations; however, the model results fluctuated and showed poor precision.

The authors noted the need for improvements in nutrient estimation methods by
identifying the relationships between nutrient concentrations and discharge or other related
variables. Aulenbach and Hooper [8] proposed a new composite approach in which they
used residual concentrations from the regression model to adjust the model outputs. In
an attempt to fine-tune the composite method, Verma et al. [9] applied the composite,
triangular, and rectangular residual correction techniques, the seven-parameter regression
method, and the ratio- and flow-weighted average methods. The authors evaluated model
performance at different stratified sampling frequencies with a root mean square error
(RMSE) based on the Upper Sangamon River and the Vermilion River in the Illinois River
basin. They also demonstrated that the recommended residual correction techniques
produced higher accuracies than the original models did. However, the six years of data
for the Upper Sangamon River (1993 to 1999) and the ten years of data for the Vermilion
River (1988 to 1999) were much shorter record periods than those available in the NCWQR
datasets. To resolve this issue, Park et al. [10] applied copula models by estimating the
uncertainty of the nitrate concentration and discharge in the lower Illinois River. As a
result, it was deemed necessary to verify the improved error correction techniques for
denser sampling and datasets spanning longer periods.

Pellerin et al. [11] determined that nitrate load estimates based on simple linear
interpolation (SLI) of discrete concentration data may better characterize anomalies in
nitrate concentrations than regression-based approaches, such as the LOADEST, weighted
regressions on time, discharge, and season (WRTDS), and composite methods. Lee et al. [12]
compared 11 nutrient simulation models, including five- and seven-parameter regression
models, with the composite, SLI, and WRTDS methods in estimating the nitrate loads for
four watersheds in the United States. For nitrate pollution, the LOADEST seven-parameter
model with the composite method encountered smaller errors than the WRTDS and the
original LOADEST five- and seven-parameter models using constituent type and sampling
frequency in the error analysis. Overall, Lee et al. [12] proved that SLI could provide better
simulation results than other methods for nitrate loads, which generally depend on the flow
characteristics, sampling frequency, and watershed characteristics. Their study, however,
applied different five-parameter regression models and did not consider combined residual
correction techniques to improve the nitrate load estimates.

This study attempted to provide a better understanding of the relationship between
nitrate concentration and streamflow and nitrate load estimation models through a compar-
ison in the Lake Erie and Ohio River watersheds, which are characterized by a daily record
length of approximately 25–50 years, using different sampling frequencies, monitoring
record lengths, and watershed characteristics. This study also adopted a subsampling
validation approach, sampling at frequencies of 6, 12, and 24 times per year, to assess and
compare the performances of the models with observed data, similarly to Guo et al. [13].
Various models have been applied to estimate nitrate loads: the five-, six-, and seven-
parameter regression models [5], the regression models combined with residual correction
methods [8,9], SLI [12], and the WRTDS method [14]. Model performance was evaluated by
estimating the daily concentration, daily load and annual load, and comparing these results
with the observed data. The Nash–Sutcliffe efficiency (NSE), RMSE standard deviation ratio
(RSR), and coefficient of determination (R2) were applied as normalized error evaluation
methods to analyze the priority ranking of the load estimation models for different stations
and data collection frequencies.
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2. Methods
2.1. Study Area

The NCWQR monitored various water quality parameters once per day including
total suspended solids, total phosphorus, particulate phosphorus, dissolved reactive phos-
phorus, nitrate, total Kjeldahl nitrogen, and chloride. The present study used a long-period
daily time series of water quality data monitored by the NCWQR at eight watersheds in
the Midwestern area of the United States, as shown in Figure 1. Six of the watersheds,
Cuyahoga (CY), Grand (GD), Maumee (MM), Raisin (RS), Sandusky (SD), and Vermilion
(VM), were located around Lake Erie in the Lake Erie basin. Two of the watersheds, Great
Miami (GM) and Muskingum (MS), were in the Ohio River basin, as shown in Table 1. The
water quality monitoring period differed by watershed. The monitoring of water quality
data began in 1975 for MM and SD; in the 1980s for CY, GD, and RS; the 1990s for GM and
MS; and in 2001 for VM.
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Figure 1. Location of gaging stations and the corresponding watersheds used in this study.

Table 1. Characteristics of applied gaging stations and the corresponding watersheds [15,16].

USGS Station
Number

Monitoring
Period

Watershed
Size (km2)

Years
Selected

Land Use (%)

Agriculture Urban Wooded

Lake Erie basin
Cuyahoga (CY) 04208000 1982–2017 1843 36 17 47 35

Grand (GD) 04212100 1989–2006 1758 18 37 10 52
Maumee (MM) 04193500 1975–2017 16,427 43 81 11 8

Raisin (RS) 04176500 1982–2017 2755 36 72 11 16
Sandusky (SD) 04198000 1975–2017 3285 43 83 9 8
Vermilion (VM) 04199500 2001–2008 697 8 71 1 26
Ohio River basin

Great Miami (GM) 03271601 1996–2017 6953 22 82 5 10
Muskingum (MS) 03150000 1995–2017 19,208 23 52 2 43

The eight selected watersheds from the NCWQR database are located southwest of
Lake Erie in Michigan, Indiana, and Ohio. Land-use data for the CY, GD, MM, RS, and SD
basins are shown in Table 1 [15,16]. Other land-use data for the VM, GM, and MS basins
were reported by Verma [17]. The shortest monitoring length is 8 years for VM, and the
longest is 43 years for MM and SD. According to Table 1, except for CY and GD, six of the
eight watersheds report agriculture as the prevailing land use. The primary land uses at
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the CY and GD stations are urban and wooded land, respectively [15]. The MM and MS
stations each cover a watershed area of over 10,000 km2, whereas the other six watersheds
each cover an area less than 10,000 km2, and the smallest watershed area, station VM, spans
approximately 700 km2. The relationship between the discharge and nitrate concentration
data for the eight stations is shown in Figure 2. The data relations at all stations are positive
exponential, except at station CY (Figure 2a), which has a negative exponential relation
between discharge and nitrate concentration. The R2 values of the exponential regressions
at all eight stations are between 0.1 and 0.68.
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2.2. Sampling Frequency

This study applied three sampling frequencies for the observed concentration. A
resampling procedure to evaluate the concentrations for models of observed concentration
data was used to assess and compare the performances of the models with the observed
sampling data, and the accuracies between the model simulation and all observed data
are evaluated in Figure 3. The low, medium, and high frequencies were represented
by sampling times of 6, 12, and 24 per water year, respectively. These time intervals
likely correspond with many water quality monitoring program protocols around the
country [18,19]. Sampling months are usually not evenly distributed across the year. To
ensure even sampling intervals of 6, 12, and 24 sampling times per year (water year), this
study averaged the results of 1000 iterations of each sampling frequency for all the applied
estimation methods, as shown in Table 2.
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Table 2. Applied daily concentration, daily load and annual load estimation methods in this study and their symbols.

Estimation
Methods

Regression
(RS)

Composite
Residual

(CR)

Composite
Proportional

(CP)

Triangular
Residual

(TR)

Triangular
Proportional

(TP)

Rectangular
Residual

(RR)

Rectangular
Proportional

(RP)

5-parameter 5RS 5CR 5CP 5TR 5TP 5RR 5RP
6-parameter 6RS 6CR 6CP 6TR 6TP 6RR 6RP
7-parameter 7RS 7CR 7CP 7TR 7TP 7RR 7RP

Simple
Linear

Interpolation
SLI

WRTDS WRT

2.3. Water Quality Estimation

The Water Quality Laboratory database monitors daily or subdaily pollutant concen-
trations and flow data for each of the eight watersheds, as shown in Table 1. Based on
the monitoring data for each water year, the annual nitrate loads were estimated via a
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simple numeric integration of daily loads [8,9,13,20–23]. The daily loads were estimated
as follows:

Load = k
∫

C(t)Q(t)dt (1)

where k is the unit conversion factor, C is the pollutant concentration, Q is the flow, and
dt is the duration of the sample. Figure 4 shows a schematic of the load evaluation in this
study. This study first applied three regression models (5-, 6-, and 7-parameter). Next, each
of the regression models incorporated six residual correction models. Finally, the WRTDS
and SLI models were applied to the same dataset. The 23 estimation methods are listed in
Table 2 and are explained in the following text.
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2.4. Regression Model with Five, Six, and Seven Parameters

Log-transformed daily flow and decimal time, including seasonal factors with the
7-parameter regression model, were considered to estimate the log-transformed daily
concentration, following Cohn et al. [24], as shown below:

ln(C) = β0 + β1ln
(

Q
Q′

)
+ β2

[
ln
(

Q
Q′

)]2
+ β3

(
T − T′

)
+ β4

(
T − T′

)2
+ β5 sin(2πT) + β6 cos(2πT) + ε (2)

where ln denotes the natural log, βi refers to the fitting parameters, T denotes the
decimal time, Q indicates the streamflow, Q′ and T′ denote the centering variables used in
the model, and ε refers to a model residual, as shown below [1,9]:

T′ = T +
∑n

i=1
(
Ti − T

)3

2 ∑n
i=1
(
Ti − T

)2 (3)

Q′ = Q +
∑n

i=1
(
Qi −Q

)3

2 ∑n
i=1
(
Qi −Q

)2 (4)

T =
∑n

i=1 Ti

n
(5)
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Q =
∑n

i=1 Qi

n
(6)

where Ti and Qi refer to T and Q at time i, respectively, and n is the number of observed
data points. The fitting parameters βi are calculated via multiple regression in MATLAB
software (Mathworks, Natick, MA, USA).

In the present work, the seven parameters in Equation (2) can be simplified by remov-
ing the terms corresponding to the linear (β3) and quadratic (β4) terms without considering
the effect of time trends on concentration, because time trends are less significant than
seasonality and linear and quadratic dependence on flow, and by applying the modified
regression equations to the 5- and 6-parameter equations, as follows:

ln(C) = β0 + β1ln
(

Q
Q′

)
+ β2

[
ln
(

Q
Q′

)]2
+ β3

(
T − T′

)
+ β5 sin(2πT) + β6 cos(2πT) + ε (7)

ln(C) = β0 + β1ln
(

Q
Q′

)
+ β2

[
ln
(

Q
Q′

)]2
+ β5 sin(2πT) + β6 cos(2πT) + ε (8)

All fitting parameters (βi) for each station are different from the resampling data
because Equations (3)–(6) are changed by the data.

2.5. Weighted Regressions on Time, Discharge, and Season (WRTDS) and Simple Linear
Interpolation (SLI)

The WRTDS method was proposed by Hirsch et al. [14], and one of its important
features is that newly collected data have only minimal effects on previous season and
water quality trends. The performance of WRTDS is significantly enhanced when there are
over 200 observations for at least 20 years [14]. The WRTDS uses the following equation to
calculate daily concentration:

ln(C) = β0 + β1T + β2 ln(Q) + β3 sin(2πT) + β4 cos(2πT) + ε (9)

In the WRTDS method, a unique set of coefficients is estimated for each combination
of daily streamflow (Q) and decimal time (T) in the recorded period. For every combination
of Q and t, the fitting parameters in Equation (9) are estimated by weighted regression. The
weights of each observation in the calibration dataset are based on the distance in time,
streamflow, and season between the observed daily streamflow and decimal time. The
WRTDS involves a flow normalization method that reduces the effect of random stream
variation on the estimated annual flux. The flow normalization estimates of concentration
are computed for a given date using weighted regression to estimate the concentration on
that date with the streamflow value set to each of the historical streamflow values for that
day. The flow normalization concentration on that date is then calculated as the mean of
the estimated concentration values from each of these weighted regressions [14].

SLI involves computing pollutant concentrations for nonsampled days via linear
interpolation. This method divides the observed daily concentration, daily load (estimated
by the product of daily concentration and daily discharge), and annual load data by the
sum of the daily load for the SLI of the daily concentration, daily load, and annual load,
respectively. SLI is generally sensitive to the timing and number of individual samples.

2.6. Shape of the Residual Adjustments

This study used a method characterized by gradual linear interpolation and triangular-
and rectangular-shaped distributions to allocate adjustments around a known residual
between the observed and model-simulated values from Figure 5. It also used the com-
posite method defined by Aulenbach and Hooper [8], who demonstrated that this method
improved the load estimation accuracy. A schematic of the approach is shown in Figure 5a.
Verma et al. [9] developed triangular-shaped (Figure 5b) and rectangular-shaped (Figure 5c)
distributions to distribute residual adjustments in the proximity of a known residual. The
triangular distribution computes the magnitude of the residuals as the maximum value on
the observed days and linearly changes it to zero at midpoints of the temporal intervals
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between two continuous observation days. The computed residual value on the nearest
observed day in the rectangular distribution is considered the residual for a missing ob-
servation day. These residual correction methods account for the temporal correlation
in modeling errors by assigning residuals for missed observation days based on known
residuals between the model-simulated and observed values, such as daily concentration
on proximate sampled days. More detailed descriptions of the triangular and rectangular
distributions of the residual values can be found in Verma et al. [9].
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2.7. Residual and Proportional Adjustment Methods

The present analysis applied residual and proportional adjustment methods. The
residual adjustment method proposed by Aulenbach and Hooper [8] was applied on
the sampled days by finding the difference between the model-simulated and observed
concentrations. The midpoints of the time intervals between all pairs of consecutively
sampled days were then determined. These midpoints were then set as vertices in the
estimation of the residuals on adjacent unsampled days:

Ri = [Oi −Mi] (10)

where Ri is the model concentration obtained using the residual adjustment method, Oi
is the observed or adjusted observed concentration from the adjusted method, Mi is the
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original model concentration, and i is a time step. This adjustment is referred to as the
residual adjustment method.

Verma et al. [9] proposed another correction technique called the proportional adjust-
ment method, as follows:

Pi =

[
Oi
Mi

]
(11)

where Pi is a concentration obtained using the proportional adjustment method. The
proportional adjustment is defined as the ratio between the observed concentration and
the measured concentration on a sample day. Once the set of proportional concentrations
or load ratios was computed for all sample observations, the composite, rectangular, and
triangular distributions were again applied to allocate the concentrations or loads on
proximate sample days.

2.8. Accuracy Evaluation

The study used three normalized indicator methods to evaluate the performance of
the model [25–30]. The three indicators were calculated using the same dataset. The RSR
normalizes the RMSE with the standard deviation of the observation as a normalization
factor [31]. The RSR ranges from 0 to any positive value. The optimal value is 0. The
equation for the RSR is as follows:

RSR =

√
∑n

i=1
(
Ysim

i −Yobs
i
)2√

∑n
i=1

(
Ysim

i −Yobs
)2

(12)

where Ysim
i is the model value of the ith time point, Ysim

i is the measured value of the ith
time point, and Ysim

i is the mean of the measured values.
The NSE, proposed by Nash and Sutcliffe [32], is a normalized indicator of model

performance that is advantageous for long-term simulations [31]. Its value ranges from any
negative number to 1, and the optimal value is 1. The equation for the NSE is as follows:

NSE = 1−
∑n

i=1

(
Ysim

i −Yobs
i

)2

∑n
i=1

(
Ysim

i −Yobs
)2 (13)

R2 represents the magnitude of the relationship between the observed and measured data.
R2 has been used in many studies, although it is oversensitive to extreme values [31]. R2

ranges between 0 and 1, and the optimal value is 1. The equation for R2 is as follows:

R2 =


∑n

i=1

(
Ysim

i −Ysim
)(

Yobs
i −Yobs

)
√

∑n
i=1

(
Ysim

i −Ysim
)2
√

∑n
i=1

(
Yobs

i −Yobs
)2


2

(14)

2.9. Priority Ranking of 23 Estimation Methods

In this study, we investigated the priority rankings of the estimation methods.
Equation (15) combines all three error analysis methods applied in this study, as follows
(modified from Pellerin et al., 2014):

E =

√
(R2 − 1)2 + (NSE− 1)2 + RSR2 (15)

where E is the evaluation combining the three error evaluation methods. The optimal
value is 0, and the worst possible value is +∞. Using this equation, we can obtain priority
rankings that depend on the stations and sampling frequencies.
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3. Results

The five-, six-, and seven-parameter regression methods, their combinations with
correction methods, and the SLI and WRTDS models were evaluated to assess their perfor-
mances, as shown in Table 2. A total of 23 models were considered in the analysis. The
performance differed based on various watershed characteristics, sampling frequencies,
and target variables, e.g., daily concentrations, daily loads, or annual loads. Figure 6 shows,
for example, the daily concentration estimation with seven-parameter regression incor-
porating residual adjustment methods, as well as the WRTDS method using 12 observed
concentration samplings per year. Seven-parameter regression does not match the observed
concentration, but seven-parameter regression with the adjustment methods and WRTDS
matches the observed concentration. In particular, six seven-parameter regression methods
combined with adjustment methods and WRTDS generate different concentrations. This
is because the interpolation algorithms between observed data are different for the six
adjustment methods and WRTDS.
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3.1. Uncertainty Analysis of the Model Estimation Performance

Figure 7 presents the error analysis of all daily concentration, daily load and annual
load performance results at the eight stations. The error bars for CY, MM, RS, and SD are
smaller than those of the other stations. This result indicates that the correlation between
the observed discharge and nitrate data is relatively strong, as R2 ranges from 0.35 to 0.68
in Figure 7, with smaller error bar widths. However, GD, GM, MS, and VM show larger
error bar widths for the RSR and NSE evaluations. The R2 values for these four stations are
as low as 0.01–0.28, as shown in Figure 7.

Figure 8 shows the error bars for the 23 estimation methods in Table 2 after combining
the daily concentration, daily load, and annual load estimates for the eight stations. The
5RS, 6RS, 7RS, and WRT approaches produce greater errors than the other approaches
for stations GD, GM, and VM, as shown in Figure 8. However, while the means and
variances of the five-, six- and seven-parameter regression methods incorporating residual
adjustments decrease for GD, GM, and VM compared with those for the 5RS, 6RS, 7RS, and
WRT methods, they appear to be similar for the other five stations. In particular, with the
exception of the original estimation methods, such as 5RS, 6RS, and 7RS and the WRTDS
approaches, the SLIs for all eight stations show error bars similar to those of the five-, six-,
and seven-parameter regression methods incorporating the adjustment methods. Error
analyses with the RSR and NSE show similar values, but the error bars for R2 illustrate
different results because R2 is sensitive to high/extreme values and insensitive to additive
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and proportional differences between the observed and model data. On the other hand,
the NSE and RSR approaches can be characterized by including normalization factors, and
are relatively robust to continuous long-term data [28].
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Figure 9 shows the error bars when combining 23 estimation methods based on
three resampling frequencies (6, 12, and 24 resampling per year) for the simulated daily
concentration, daily load, and annual load conditions. In general, the estimates of daily
concentration by all approaches show greater mean errors than those of the daily load and
annual load estimates. However, the daily load and annual load estimates show the similar
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means and variances determined by all approaches. This result occurs because the load
estimate includes discharge data, and the load is estimated with a lower error variance
than that of the observed concentration. In particular, the daily concentrations for 5RS,
6RS, and 7RS have greater mean errors and variances than those of the other approaches.
This result also indicates that estimation approaches incorporating adjustment methods
are better than the original estimation methods themselves. The SLI approach produces
mean errors and variances for daily concentration, daily load, and annual load that are
similar to those of the EGR approach.
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Figure 10 presents the error analyses of the combination approaches for the daily
concentration, daily load, and annual load estimations for all eights stations for the low,
medium and high (6, 12, and 24) sampling frequencies using the 23 estimation methods.
The variances in the error bars and the mean decrease as the sampling frequency increases.
Specifically, the 5RS, 6RS, and 7RS methods have high error bar variances. The remaining
20 estimation methods show small variances in the error bars. Moreover, the means and
variances in the error bars for the WRT method are similar, irrespective of the sampling
frequency. The SLI approach provides remarkably smaller error bars as the sampling
frequency increases, which indicates that SLI is more sensitive to the sampling frequency
than the other 22 estimation methods.
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3.2. Priority Rankings of Estimation Methods Based on Characteristics of the Stations

The present work investigated combinations of error evaluations for the daily concen-
tration, daily load, and annual load estimation approaches depending on the sampling
frequency for each station (Figure 11 and Table 3). In Figure 11, the NSE and R2 are
represented via the x and y axes, respectively, whereas the RSR is expressed by the z axis.
Table 3 lists the priority rankings of the estimation methods and shows that the 7CP for
the GD and GM stations, SLI for the VM station, 7CR for the RS and SD stations, WRT for
the CY station, and 6CR for the MS station provide the lowest error. The top ten rankings
include the 6CR method for all eight stations and the 5CR, 7CR, and 7RR approaches for
seven stations.

Table 3. Priority rankings (Equation (15)) of estimation methods based on the combined daily and annual load estimations
in each watershed.

Ranking Cuyahoga
(CY)

Grand
(GD)

Great Miami
(GM)

Maumee
(MM)

Muskingum
(MS)

Raisin
(RS)

Sandusky
(SD)

Vermilion
(VM)

1 WRT 7CP 7CP SLI 6CR 7CR 7CR SLI
2 6CP 6CP 6CP 5CR 5CR 6CR 6CR 7CR
3 7CP 5CP 7RP 6CR 7CR 5CR 5CR 7RR
4 5CP 7CR 6RP 7CR 7TR 7RR SLI 5CR
5 5RP 6CR 5CP 5RR 7TP 7CP 7RR 6CR
6 6RP 5CR 7CR 6RR 6TR 6CP 6RR 5RR
7 7RP 7RR 5RP 7RR 6TP 5CP 5RR 6RR
8 5CR 6RR 6CR 5TP 6RR 6RR 7TR 7TR
9 6CR 5RR 7RR 5TR 5RR 5RR 5TR 6TR
10 5RR 6RP 6RR 7TP 7RR 7RP 6TR 5TP
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The most accurate or ideal value would be one, with larger NSE and R2 and smaller
RSR values indicating better performance (Figure 11 and Table 3). The most accurate
estimation method was the WRT method at CY station (Figure 11a). As noted earlier, the
CY station is characterized as a highly impervious area in an urban watershed. As shown
in Table 3, the SLI method is the most accurate estimation method for the MM and VM
stations, and the fourth most accurate for the SD station. However, the SLI approach is not
included among the top ten methods for the other five stations. This result indicates that
the SLI method is less reliable for unknown watersheds or monitoring data lengths.

The priority rankings of the estimation methods using unsampled observed and
simulated concentrations applied to the daily concentration, daily load, and annual load
are evaluated in Figure 12 and Table 4. Overall, the five-, six-, and seven-parameter
estimation methods, combined with the CR, RR, and CP methods, are ranked among the
top ten, as shown in Table 4. In particular, the 7CR method is ranked first with regard
to daily concentration and annual load and second with regard to daily load. The 5CR
method is ranked fourth, first, and second with regard to daily concentration, daily load,
and annual load, respectively. Moreover, the 6CR method is ranked second, third, and fifth
in terms of daily concentration, daily load, and annual load, respectively.

Table 4. Priority rankings (Equation (15)) of estimation methods based on daily concentration, daily
load, and annual load estimations.

Ranking Daily Concentration Daily Load Annual Load

1 7CR 5CR 7CR
2 6CR 7CR 5CR
3 7RR 6CR 7RR
4 5CR SLI 5RR
5 6RR EGR 6CR
6 5RR 5RR 6RR
7 5CP 7RR 5RP
8 7CP 7TR 6RP
9 6CP 6RR 5CP
10 5RP 6TR 6CP
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Figure 13 and Table 5 show the performance priority rankings for the 23 estimation
methods when combining daily concentration, daily load, and annual load based on
sampling frequency. For the low and medium sampling frequencies, the top three rankings
are assigned to the five-, six-, and seven-parameter load estimation equations incorporating
the CR and RR adjustments. For a high sampling frequency, the SLI method provides the
most accurate results, followed by the 5-, 6-, and 7RR and CR methods. In contrast, SLI
does not appear in the top ten lists for either the low- or medium-frequency conditions.
This result indicates that SLI can be used for load estimation when sufficient observed
data are available. On the other hand, the CR and RR methods can provide reliable load
estimation results even when the quantity of data appears insufficient.

Table 5. Priority rankings (Equation (15)) of estimation methods combining daily concentration,
daily load and annual load estimations with eight stations based on sampling frequency.

Ranking Low Frequency Medium Frequency High Frequency

1 6CR 7CR SLI
2 7CR 6CR 5RR
3 5CR 5CR 7RR
4 6RR 7RR 6RR
5 7RR 5RR 5CR
6 5RR 6RR 7CR
7 6TR 7TR 6CR
8 7TR 5CP 5CP
9 5TR 6TR 7CP
10 WRT 6TP 6CP
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In addition, the performance priority rankings of the annual load estimation for the
23 estimation methods were analyzed for different sampling frequencies, as shown in
Figure 14 and Table 6. Note that the annual load is one of the most significant factors in
nutrient management. The most accurate estimation methods for the low, medium, and
high sampling frequencies are the 6RR, 7CR, and 5RR methods, respectively. The 7CR and
7RR methods are ranked within the top four for all three frequencies. Moreover, the 5RR
and 5CR methods are ranked within the top six for all three frequencies. The differences
in the annual load estimation errors of all the CR and RR methods are small. Based on
Figure 13 and Table 6, the 5-, 6-, and 7CR and RR methods are more reliable than the other
methods for annual load estimation.

Table 6. The priority rankings of estimation methods combining eight stations for annual load
depend on sampling frequency.

Ranking Low Frequency Medium Frequency High Frequency

1 6RR 7CR 5RR
2 6CR 7RR 5CR
3 7RR 5CR 7CR
4 7CR 5RP 7RR
5 5RR 6CR 6RR
6 5CR 5RR 6CR
7 5TR 6RR 5RP
8 6TR 5CP 5CP
9 WRT 5TP SLI
10 5TP 6RP 7RP
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4. Discussion

One of the purposes of this paper was to investigate the results of various models
based on long-term nitrate load datasets. Three issues were discussed: (1) the applicability
of the SLI method; (2) the most effective estimation method for urban watersheds; and
(3) the effects of nitrate load estimation using regression methods with adjustment methods.

4.1. Suitability of the Linear Interpolation Method

The SLI method was the most accurate method for station MM. Figure 15 shows the
binning plots of the observed streamflow and nitrate at eight stations. The monitoring
data at the MM, SD, and VM stations in Figure 15d,g,h, respectively, show wider ranges
of flows (0.37 to 1097 m3/s, 0.37 to 403 m3/s, and 0.01 to 148 m3/s, respectively) and
nitrate concentrations (0.01 to 20.10 mg/L) than those of the other stations. Additionally,
the relation of logarithmic flow and logarithmic nitrate concentration is positively linear
at the MM, SD, and VM stations. The VM station (Figure 15h) shows a high logarithmic
nitrate concentration in low-flow classes (0.01 and 0.02 m3/s) compared with that in higher
flow classes (0.05 and 1 m3/s). However, the quantity of data in low-flow classes is not
large, and is negligible. Therefore, the high-concentration data in the low-flow class do
not affect the positive linearity of other logarithmic nitrate concentration and logarithmic
flow classes in Figure 15h. The SLI method for the SD station is ranked as the fourth
most accurate, as shown in Table 3. From Table 3, for the six stations other than the
MM and VM stations, we can see that the most accurate methods for combining daily
concentration, daily load, and annual load are the WRT, 6CR, 7CR, and 7CP methods.
These models are based on logarithmic regression models (Equations (2) and (7)–(9))
incorporating adjustment methods. The accuracy of the logarithmic regression methods
decreases because the relationship between nitrate and streamflow data does not follow a
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positive linear, quadratic, or cubic relationship [12]. Consequently, for the MM and VM
stations, the SLI estimates the nitrate concentration with greater accuracy than that achieved
by the other 22 methods. This result suggests that the distribution of nitrate concentration,
depending on the streamflow class, is an important factor in the performance of nitrate
concentration estimation methods.
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4.2. Selecting the Best Estimation Method for Urbanized Watershed Stations

As shown in Figure 11a and Table 3, the best fitting method for station CY is the
WRTDS method. In total, 47% of the watershed for this station is urbanized, whereas the
other stations are urbanized to an extent of 1–11%. In Figure 2a, the relationship between
the discharge and nitrate concentration data for station CY is negative and exponential,
although this relationship for the other seven stations is positive and exponential. This re-
sult implies that the nitrate concentration decreases as the flow increases because high flow
dilutes the nitrate concentration in an urban-dominated watershed [33–36]. On the other
hand, the nitrate concentration increases as the flow increases because the characteristics
of agricultural watersheds are proportional to the nitrate loading with discharge, includ-
ing effects from both dilution and concentration [37–39]. Additionally, Hirsch [40] noted
that while the relationship between the logarithmic discharge and nitrate concentration
obtained via the regression models is positive, WRTDS indicates a nonpositive relation.
Therefore, the WRTDS method is more suitable than the five-, six-, and seven-parameter re-
gression models as an estimation approach for the CY station given the negative correlation
between the log-transformed discharge and the concentration.

4.3. Regression Method with Adjustment Methods

According to Figures 11–14, the original regression methods, namely, 5-, 6-, and 7RS,
have low-priority ranks. This result implies that the original regression methods do not
provide accurate results, and that they must be modified by adding residual adjustments to
improve the model performance. Based on Tables 3–6, the residual adjustment variations
of all five-, six-, and seven-parameter methods have higher priority ranks than the five-,
six-, and seven-parameter methods alone. This result shows that the residual adjustments
are more effective than the proportional adjustment method regardless of the number
of parameters in the regression model. In other words, an adjustment method, either
residual or proportional, makes the parameter regression methods more effective. Thus,
the composite correction method provides more accurate results than the triangular and
rectangular correction methods. The variability of the results based on the number of
parameters in the regression methods is not significant compared to the magnitude of
improvement achieved by the residual adjustment methods because the suitability of the
regression methods differs depending on the site conditions. In other words, the results
of the regression methods do not differ substantially with the number of parameters, and
the errors of the five-, six-, and seven-parameter regression methods can be reduced con-
siderably using residual correction and adjustment techniques. Moreover, Figure 15a and
Table 3 show that the regression and WRTDS methods are more suitable for urban water-
sheds than agricultural or forested watersheds, as indicated by the negative correlation
between logarithmic nitrate and logarithmic streamflow.

5. Conclusions

This study applied the five-, six-, and seven-parameter regression methods with
combinations of correction/adjustment methods, SLI and WRTDS, and compared the
results in terms of the estimation units, including daily concentration, daily load, annual
load, gaging stations, and sampling frequencies. In cases in which the relationship between
the nitrate concentration and streamflow is strong, the five-, six-, and seven-parameter
regression methods incorporating composite, triangular, and rectangular correction with
residual adjustments provide a better fit than the original five-, six-, and seven-parameter
estimation methods. Additionally, the present work indicates that when the relation
between logarithmic concentration and discharge is positively linear, the SLI method
provides a more accurate estimate of nitrate loads and concentrations than do the five-,
six-, and seven-parameter estimation methods. WRTDS was the most suitable method for
the urban-dominated watershed CY, for which the correlation between the logarithmic
discharge and nitrate concentration was negatively linear.
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The combinations of regression methods with the corrections (composite, triangular,
and rectangular) and adjustment methods (residual and proportional) were more accu-
rate than the original regression methods (without corrections) for most conditions in
this study. The estimation results were more sensitive to the type of correction and the
adjustment methods applied than to the number of parameters in the regression model.
While WRTDS provided better estimates than the original regression models (5RS, 6RS,
and 7RS), it was typically less accurate than the regression models combined with the
residual correction methods. This paper provides recommended priorities to estimate
riverine nitrate loads with various methods, but the most appropriate method for a specific
watershed should be identified by carefully analyzing the monitoring frequency, watershed
scale, and target units.
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