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Abstract: Slow-paced breathing has been shown to enhance the self-regulation abilities of athletes
via its influence on cardiac vagal activity. However, the role of certain respiratory parameters (i.e.,
inhalation/exhalation ratio and presence of a respiratory pause between respiratory phases) still
needs to be clarified. The aim of this experiment was to investigate the influence of these respiratory
parameters on the effects of slow-paced breathing on cardiac vagal activity. A total of 64 athletes
(27 female; Mage = 22, age range = 18–30 years old) participated in a within-subject experimental
design. Participants performed six breathing conditions within one session, with a 5 min washout
period between each condition. Each condition lasted 5 min, with 30 respiratory cycles, and each
respiratory cycle lasted 10 s (six cycles per minute), with inhalation/exhalation ratios of 0.8, 1.0, 1.2;
and with or without respiratory pauses (0.4 s) between respiratory phases. Results indicated that
the root mean square of successive differences (RMSSD), a marker of cardiac vagal activity, was
higher when exhalation was longer than inhalation. The presence of a brief (0.4 s) post-inhalation and
post-exhalation respiratory pause did not further influence RMSSD. Athletes practicing slow-paced
breathing are recommended to use an inhalation/exhalation ratio in which the exhalation phase is
longer than the inhalation phase.

Keywords: cardiac vagal activity; slow-paced breathing; respiratory parameters; RMSSD

1. Introduction

During sport competitions, athletes are required to effectively regulate their emo-
tions [1–3] and cope with stressors [4,5]. Among the strategies addressing athletes’ emo-
tional regulation, slow-paced breathing (SPB), the voluntarily slowing down of breathing
frequency, has been increasingly used (e.g., [6–9]). However, the effectiveness of varying
certain parameters of SPB, such as the inhalation/exhalation ratio and the presence of a
respiratory pause (i.e., brief cessation of air flow) between respiratory phases, still needs
to be understood. Consequently, the current study aims to further understand the role of
varying these two parameters on the effectiveness of SPB, as measured by cardiac vagal
activity (CVA), an indicator for self-regulation mechanisms [10–16].

SPB is a technique used to decrease overall activation and trigger relaxation [17]. It in-
volves timed inhalation and exhalation periods (“paced”), at a rate of around six cycles per
minute (cpm), which is at least half as slow than the spontaneous breathing rate, normally
ranging between 12 and 20 cpm [18,19]. The exact mechanisms by which SPB influences
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emotion regulation are still debated, but they are likely to involve the strengthening of
the baroreflex, the action on pulmonary afferents, as well as specific oscillations in brain
networks involved in emotion regulation [20–25]. Overall SPB is suggested to trigger the
activation of the vagus nerve [21], the main nerve of the parasympathetic nervous system
which is responsible for rest and digest functions, as well as self-regulation within the
body [11,26,27].

Heart rate variability (HRV), the variation in the time intervals between adjacent heart
beats [10,28,29], is a non-invasive indicator of CVA, as explained by the neurovisceral
integration model [11,27]. Among the time domain measures of the HRV parameters that
index CVA, the root mean square of successive differences (RMSSD) is commonly used. The
interpretation of the physiological underpinnings of HRV frequency parameters requires
taking into account the respiratory frequency. When breathing frequency is higher than 9
cpm, CVA is reflected in the high-frequency (HF) band [10,28,29]. However, when breathing
frequency is lower than 9 cpm, CVA is then shifted to low-frequency (LF) HRV [30]. Given
that RMSSD is relatively free from respiratory influences, and more statistically reliable
than frequency-domain indicators [31,32], it is the main outcome of interest in this study.

CVA, whether considering its resting, reactivity, or recovery levels [12], has been found
to be related to different cognitive and physical aspects of sport performance. For example,
morning resting measurements have been used to monitor the effects of training loads,
to adjust training loads, and to predict subsequent performance [33–35]. Additionally,
CVA has been linked to executive cognitive performance in athletes [36–40], to their
coping effectiveness with stress and pressure [37,41–46], and to sport performance, such as
shooting [47,48] and dart throwing performance [49]. Consequently, increasing CVA can
be considered an appropriate aim for athletes.

Among the methods used to increase CVA [50–52], SPB has been found to be effective
in athletes, either combined with biofeedback [53,54] or without biofeedback (e.g., [6–9]).
Biofeedback includes displaying physiological variables of interest (e.g., heart rate, heart
rate variability, respiratory frequency) to the person being monitored, through real-time
measures realized with a dedicated device, smartphone, or a computer [55]. The use of
biofeedback may contribute to additional motivation through providing positive rein-
forcement to the client [25,55–57]. Additionally, biofeedback can assist in identifying the
breathing pattern that leads to the highest CVA increase [24,25,58,59]. Nonetheless, so
far, no clear evidence has emerged of the physiological benefits of adding biofeedback to
SPB [60]. Consequently, the current study focuses on SPB without biofeedback, given that
from an applied perspective, it requires athletes to use less technology.

SPB without biofeedback has been associated with positive cognitive and physiological
outcomes in athletes [8,9,61–63]. More specifically, positive effects were found on executive
functions such as inhibition in resting conditions [61,62], working memory, and cognitive
flexibility [62], and after physical exertion on inhibition [9]. A robust increase in CVA
during SPB has systematically been found, even if the effects tend to cease immediately
upon stopping SPB [8,62]. Importantly, long-term SPB interventions (15 min per day for 30
days) seem to trigger increases in resting CVA [63].

Regarding the characteristics of SPB, it is usually performed with a longer exhalation
than inhalation phase [24,25]. Adapting a longer exhalation phase is suggested to create
a larger increase in CVA, as can be explained through the properties of respiratory sinus
arrhythmia (RSA) [64,65]. RSA reflects the influence of respiration on heart rate—more
specifically, the fact that heart rate increases with inhalation, and decreases with exha-
lation [66,67]. Inhalation is driven by sympathetic nervous activity, and exhalation by
parasympathetic nervous activity. Theoretically, a longer exhalation would activate the
parasympathetic nervous system more strongly. This has been confirmed experimentally in
previous research [64,65], where a longer exhalation phase in comparison to inhalation was
found to provoke larger increases in RSA, as calculated by the difference between maximum
and minimum cardiac interbeat intervals per breath. Although this way of calculating RSA
is suggested to reflect CVA, it does not belong to the classic HRV parameters recommended
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to index CVA [10,28,29]. In addition, Strauss-Blasche, Moser, Voica, McLeod, Klammer
and Marktl [65] did not focus on SPB (10 cpm), SPB being characterized by breathing
frequencies lower than 10 cpm [22]. Additionally, the sample sizes used in those previous
studies were rather small, with N = 12 [65] and N = 23 [64]. The inhalation/exhalation
ratio was also investigated by Lin, et al. [68]. Contradictory to previous studies, they
concluded that an equal inhalation/exhalation ratio was the most beneficial regarding
HRV. However, this experiment presents several drawbacks: RMSSD was not reported,
and among the variables reported, only LF may have indexed CVA. However, the findings
are difficult to interpret, due to the use of a between-subject design involving N = 11 or
N = 12 in each of the four respiratory patterns (6 cpm 5:5; 6 cpm 4:6; 5.5 cpm 5:5; and 5.5
cpm 4:6). Finally, Edmonds, Kennedy, Hughes and Calzada [58] investigated the influence
of different breathing patterns around 6 cpm: 1:1 breathing ratio with post-inhalation
and post-exhalation respiratory pauses, 1:1 ratio with no respiratory pauses, 1:2 breathing
ratio with no respiratory pauses, 1:2 with post-inhalation and post-exhalation respiratory
pauses, and finally, a condition requiring the participants to breathe in sync with their
heart rate. The focus was not on between-subject analysis, but on within-subject analysis,
and the authors found that for each participant, a specific breathing pattern produced the
highest increase in LF. Moreover, all breathing patterns were found to produce a descriptive
increase in LF; however, no inferential statistics were run at the group level to investigate
differences between breathing patterns. To sum up, given the large interindividual vari-
ability of HRV frequency-domain variables [10,69] and the lower reliability of frequency
parameters when breathing characteristics are modified [31,32], we wanted to address
in this study the shortcomings of previous experiments by using a larger sample size,
measuring RMSSD as a robust indicator of CVA, which is relatively free from respiratory
influences, and by using a within-subject design.

The second parameter of interest in this study is the presence of a post-inhalation
and post-exhalation respiratory pause during SPB, an aspect that has received very little
attention so far (for an exception, see [70]). In [70], the authors tested the influence of a
post-exhalation respiratory pause on HRV (4 s). In comparison to a condition without post-
exhalation respiratory pause, a post-exhalation respiratory pause showed a higher HF-HRV,
while no differences were found regarding RMSSD and LF-HRV. The authors concluded
that a post-exhalation respiratory pause improves CVA and hence self-regulatory control.
However, this interpretation of the results is likely inaccurate, given that HF-HRV does
not reflect CVA when breathing frequency is lower than 9 cpm [10,28,29]. The pattern of
results based on the increase in both RMSSD and LF from baseline in both conditions, with
and without post-exhalation respiratory pause, suggests that they both trigger an increase
in CVA. Finally, the authors did not provide a physiological rationale for having a post-
exhalation respiratory pause besides triggering a higher HF-HRV. Other authors suggested
that a post-inhalation respiratory pause may trigger bradycardia via a rapid activation of
vagal activity, based on the effects of breath-holding [71]. It may be speculated that SPB
provokes a certain strain on respiratory muscles due to the forced and prolonged inhalation
and exhalation phases, and would potentially also result in hyperventilation with increased
tidal volume [70]. Consequently, the current study aimed to test the influence of a brief
post-inhalation and post-exhalation respiratory pause on CVA.

To sum up, research points to positive effects of SPB without biofeedback on CVA [8,9,62,63].
However, the influence of certain characteristics of SPB still needs to be clarified, such as the
influence of the inhalation/exhalation ratio, as well as the presence of a respiratory pause between
the respiratory phases. The current study therefore aims to address these issues. Regarding the
inhalation/exhalation ratio, we hypothesize that a longer exhalation phase in comparison to
inhalation would trigger larger increases in CVA [64,65]. Regarding the respiratory pause, we
hypothesized that a brief post-inhalation and post-exhalation respiratory pause may potentially
produce a bradycardia and reduce the demands on respiratory muscles, therefore resulting in a
greater increase in CVA [70,71].
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2. Materials and Methods
2.1. Participants

Regarding sample size, previous research on this topic using a within-subject design
had a rather low sample size, N = 12 for Strauss-Blasche, Moser, Voica, McLeod, Klammer
and Marktl [65], and N = 23 for Van Diest, Verstappen, Aubert, Widjaja, Vansteenwegen
and Vlemincx [64]. Following recommendations for HRV research [10,69], we recruited
66 athletes to take part in this research project. Athletes were here defined as individuals
regularly engaging in sport training. Recruiting a homogenous athletic sample helps to
limit inter-individual differences in HRV that can be found in the general population,
enabling a better interpretation of the findings [69]. Exclusion criteria were self-reported
cardiovascular diseases and other chronic diseases that might influence breathing or HRV
patterns, such as asthma, diabetes, psychiatric, and neurological diseases [10]. Due to tech-
nical issues, the data of 2 participants had to be excluded, and the final sample comprised
64 athletes (27 female; MAge = 22, age range = 18–30 years old; BMI: M = 23.10, SD = 2.16;
waist-to-hips ratio: M = 0.80, SD = 0.08; number of sport hours per week: M = 7.5 h;
SD = 3.2). The experimental protocol was approved by the Ethics Committee of the local
university (Project Identification Code 06/11/2014).

2.2. Material and Measures
2.2.1. Heart Rate Variability

HRV was measured with an ECG device (Faros 180◦, Bittium, Kuopio, Finland) at
a sampling rate of 500 Hz. Two disposable ECG pre-gelled electrodes (Ambu L-00-S/25,
Ambu GmbH, Bad Nauheim, Germany) were used. The negative electrode was placed in
the right infraclavicular fossa (just below the right clavicle) while the positive electrode was
placed on the left side of the chest, below the pectoral muscle in the left anterior axillary line.
From ECG recordings, we extracted RMSSD with Kubios (University of Eastern Finland,
Kuopio, Finland). The ECG signal was visually inspected for artefacts and these were
corrected manually in the cases required (<0.001% of the heartbeats), as recommended by
Laborde, Mosley and Thayer [10]. In order to provide an overview of the different HRV
parameters, following Laborde, Mosley and Thayer [10], we also extracted the R-R interval,
the heart rate, the standard deviation of the NN interval (SDNN) for the time-domain
and the frequency domain with Fast Fourier Transform LF (0.04 to 0.15 Hz), HF (0.15 to
0.40 Hz), and the LF/HF ratio. Respiratory frequency was computed via the ECG-derived
respiration algorithm of Kubios [72].

2.2.2. Slow-Paced Breathing

Similar to previous research (e.g., [8,73]), SPB was conducted with a video showing
a ball moving up and down at the rate of 6 cpm, based on the EZ-Air software (Thought
Technology Ltd., Montreal, Canada). Participants were instructed to inhale continuously
through the nose while the ball was going up, and exhale continuously with pursed
lips when the ball was going down. The video displayed a 5 min SPB exercise, with six
conditions, varying in the inhalation/exhalation ratio (inhalation = exhalation; inhalation >
exhalation; inhalation < exhalation) and the presence/absence of a respiratory pause (0.4 s)
after both inhalation and exhalation phases (see Figure 1). The inhalation/exhalation ratio
was 4.5 s/5.5 s and 5.5 s/4.5 s, based on Allen and Friedman [74]. The six conditions were
the following: 4.6 s/0.4 s/4.6 s/0.4 s (inhalation/exhalation ratio = 1.0); 4.1 s/0.4 s/5.1
s/0.4 s (inhalation/exhalation ratio = 0.8); 5.1 s/0.4 s/4.1 s/0.4 s (inhalation/exhalation
ratio = 1.2); 5 s/5 s (inhalation/exhalation ratio = 1); 4.5 s/5.5 s (inhalation/exhalation
ratio = 0.8); 5.5 s/4.5 s (inhalation/exhalation ratio = 1.2).
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Figure 1. The six breathing conditions, realized in a randomized order during the experiment. Note:
ascending arrows depict the inhalation phase and descending arrows depict the exhalation phase; I:
inhalation, E: exhalation; time indicated in seconds.

2.2.3. Procedure

Participants were recruited via flyers on the campus of the local university and via
posts on social network groups linked to the local university. In line with recommendations
for psychophysiological experiments involving HRV measurements [10], participants were
instructed to follow their usual sleep routine the night prior to the experiment, not to
consume alcohol or engage in strenuous physical activity in the previous 24 h, nor drink
or eat 2 h before taking part in the experiment. All participants gave written informed
consent before participation, and were informed that they could withdraw from the study
at any time without explanation and without any consequences. The participants attended
the lab once in accordance with the within-subject design. The whole session lasted 90 min
(the protocol is described in Figure 2). After being welcomed to the lab, they were asked to
fill out an informed consent form and a demographic questionnaire regarding variables
potentially influencing HRV [10,51,52]. The ECG device was attached, and participants
watched a 15 min familiarization video to get acquainted with SPB. The participants
started with a 5 min rest period (baseline), where they were breathing spontaneously, with
open eyes. After the 5 min rest period, they performed the six breathing conditions in
a randomized order, with a 5 min washout period between each respiratory condition,
similarly to Russell, Scott, Boggero and Carlson [70]. The washout period characteristics
were similar to those of the baseline. At the end of the experiment, the ECG device was
detached, and participants were thanked and debriefed.
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Figure 2. Experimental protocol.

2.3. Data Analysis

HRV variables were exported from the Kubios output. Data were checked for normal-
ity and outliers. Regarding outliers, 0.002% of the cases were found to be univariate outliers
(>2 SD, z-scores higher than 2.58; none were found being >3 SD, with z-scores higher than
3.29). Running the analyses without them did not change the pattern of results; therefore,
they were kept in the analysis. As the RMSSD data were non-normally distributed, a
log-transformation was applied, as is usually recommended for HRV research [10].

As a manipulation check, we first checked whether the participants were breathing at 6
cpm during the different conditions, and whether the breathing frequencies differed among
conditions, by conducting a repeated-measures ANOVA. Further, we conducted a series
of t-tests (two-tailed) to show whether the breathing conditions differed from baseline,
with log RMSSD as the dependent variable, with Bonferroni correction (0.05/6 = 0.008).
We conducted a repeated-measures ANOVA, with inhalation/exhalation ratio (inhala-
tion = exhalation; inhalation > exhalation; inhalation < exhalation) and respiratory pause
(with/without) as independent variables, and log RMSSD as the dependent variable.

3. Results

Descriptive statistics are presented in Table 1 for all study variables. The first ma-
nipulation check revealed that participants followed the 6 cpm breathing frequency, rang-
ing from 6.48 (SD = 0.20) to 6.55 (SD = 0.26). A repeated-measures ANOVA with the
Greenhouse–Geisser correction was conducted, and showed no significant effect of condi-
tion on breathing frequency, with F (4.401, 277.232) = 0.696, p = 0.608, and partial η2 = 0.01.
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Table 1. Descriptive statistics.

Conditions
HR SDNN RMSSD Log RMSSD LF HF LF/HF Breathing

Frequency

M SD M SD M SD M M SD SD M SD M SD M SD

Baseline 67.18 7.97 92.22 37.37 57.14 33.17 1.70 4.09 3.91 0.22 3735.74 6586.00 1266.25 1450.35 11.45 2.03
I > E RP 68.23 6.68 138.11 54.94 85.29 38.95 1.89 17.52 14.53 0.20 14,031.93 10,768.08 1427.02 1473.48 6.55 0.26
I < E RP 68.23 6.53 133.89 45.04 90.27 41.38 1.91 14.30 12.38 0.20 14,587.38 11,754.30 1954.86 1918.53 6.49 0.30
I = E RP 68.37 6.57 132.06 42.74 86.82 39.35 1.89 16.52 12.95 0.21 14,352.57 11,242.16 1664.05 1702.17 6.51 0.22

I > E no RP 68.91 7.06 127.94 39.02 82.44 38.09 1.87 16.92 12.22 0.20 12,761.97 9874.21 1415.16 1621.83 6.52 0.23
I < E no RP 68.59 6.86 161.10 42.80 89.93 41.39 1.91 16.13 13.15 0.20 14,580.16 11,277.36 1602.47 1403.40 6.54 0.32
I = E no RP 68.78 6.30 128.27 38.72 82.94 34.54 1.88 15.91 11.81 0.18 13,597.23 9134.12 1465.51 1506.67 6.48 0.20

Note: I: inhalation; E: exhalation; Rest: with post-inhalation and post-exhalation respiratory pauses; SDNN = standard deviation of all RR intervals; RMSSD: root mean square of the successive differences;
LF = low-frequency; HF = high-frequency; RP: respiratory pause.
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The first analysis showed that log RMSSD was significantly higher in all the breathing
conditions than in the baseline, for inhalation > exhalation (respiratory pause) with t
(63) = 8.693, p < 0.001, Cohen’s d = 1.09; for inhalation < exhalation (respiratory pause) with
t (63) = 10.853, p < 0.001, Cohen’s d = 1.36; for inhalation = exhalation (respiratory pause)
with t (63) = 9.925, p < 0.001, Cohen’s d = 1.24; for inhalation > exhalation (no respiratory
pause) with t (63) = 8.393, p < 0.001, Cohen’s d = 1.05; for inhalation > exhalation (no
respiratory pause) with t (63) = 9.428, p < 0.001, Cohen’s d = 1.05; and for inhalation >
exhalation (no respiratory pause) with t (63) = 8.944, p < 0.001, Cohen’s d = 1.12.

A repeated-measures ANOVA with the Greenhouse–Geisser correction was con-
ducted and showed a significant main effect of inhalation/exhalation ratio, with F (1.996,
125.753) = 8.778, p < 0.001, and partial η2 = 0.12; no main effect of respiratory pause, with
F (1, 63) = 2.495, p = 0.119, and partial η2 = 0.04; and no interaction effect between inhala-
tion/exhalation ratio and respiratory pause, with F (1.676, 105.567) = 0.141, p = 0.832, and
partial η2 = 0. Regarding the main effect of inhalation/exhalation ratio, further post-hoc
t-tests were conducted, applying Bonferroni’s correction with the alpha level adjusted
to p = 0.016 (0.05/3). Log RMSSD was found to be significantly higher in the condition
with inhalation < exhalation in comparison to inhalation > exhalation, with t (63) = 4.059,
Cohen’s d = 0.51, and p < 0.001; and in comparison to inhalation = exhalation, with t
(63) = 2.928, Cohen’s d = 0.37, and p = 0.012. No differences were found between the
condition inhalation > exhalation and inhalation = exhalation, with t (63) = 1.155, Cohen’s
d = 0.14, and p = 0.758. The results of this analysis are presented in Figure 3.
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Figure 3. Root mean square of successive differences (RMSSD) and inhalation/exhalation ratio.
Note: We display here the raw RMSSD values given that they are more informative for the reader,
as opposed to the log transformed values on which the analyses were based. The main effect of the
inhalation/exhalation ratio is shown here, meaning that the conditions with respiratory pauses and
without respiratory pauses are pooled for each ratio. I: inhalation; E: exhalation.

4. Discussion

The aim of this study was to investigate the influence of the inhalation/exhalation
ratio and of a respiratory pause on CVA during SPB. Regarding the inhalation/exhalation
ratio, findings showed that CVA is higher when the exhalation phase lasts longer than
the inhalation phase, confirming our hypothesis. Regarding the presence of a respiratory
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pause, contrary to our hypothesis, there was no evidence for CVA to be influenced by the
presence of a respiratory pause after the inhalation or exhalation phase.

Findings concerning the inhalation/exhalation ratio are in line with previous re-
search [64,65], with the exception of Lin, Tai and Fan [68]; however, their study suffered
from a number of methodological issues, regarding sample size, design, and HRV variables
reported, as noted in the introduction section. Based on the characteristics of RSA [66,67],
heart rate increases with inhalation and decreases with exhalation. Inhalation is driven
by sympathetic nervous activity and inhibits parasympathetic nervous activity, while
exhalation reactivates parasympathetic nervous activity. Consequently, we can assume
that a longer exhalation provokes a longer activation of the parasympathetic nervous
system, which is reflected in CVA. It is expected that at slow breathing frequencies, more
acetylcholine is released during exhalation, due to its longer duration [75]. Due to the
time constants of acetylcholine hydrolysis around 1.5 s to 2.0 s [76,77], longer exhalation is
suggested to provoke a summation of sinoatrial responses, and hence maximally inhibit
sinoatrial node firing. This longer exhalation in comparison to inhalation was also found
to trigger more benefits, for example in terms of pain perception [78]. However, we have
to note that the inhalation/exhalation ratio range was reduced in this study (0.8–1.2) in
comparison to other studies, such as 0.5–1 [58]; 0.4–2.3 [64], or 1–3.4 [65]. Our rationale
was to investigate whether slight variations in the ratio would already have an effect on
CVA, but larger ranges may reveal different physiological effects.

With regard to the respiratory pause during SPB, the findings did not show any
changes in CVA with the presence or absence of a respiratory pause. As we mentioned in the
introduction, Russell, Scott, Boggero and Carlson [70] concluded inaccurately that a post-
exhalation respiratory pause (4 s) increased CVA, drawing conclusions on HF-HRV during
SPB, which in this case does not reflect CVA [30]. Based on previous research [70,71], we
argued that a post-inhalation and post-exhalation respiratory pause may be less demanding
for the participant, by not requiring such a prolonged inhalation and exhalation, and that it
would additionally trigger a bradycardia. Given that no changes were observed in CVA, it
may be that the respiratory pause we chose in this design (0.4 s) may have been too short
to elicit these effects. Other research used a respiratory pause of 4 s but had an exhalation
phase of 2 s [70], which we deemed too short given that the inhalation phase lasted 4 s, and
regarding previous research, a longer exhalation triggers higher increases in CVA [64,65].

Our study had several strengths, such as a larger sample size than previous inhala-
tion/exhalation ratio-related research [64,65] and the investigation of RMSSD to index CVA,
as it is suggested to be relatively free of respiratory influences [31]. Limitations include first
the sample chosen, comprising only athletes. This limits the generalization of our findings,
given that athletes have higher resting HRV than the general population [79], and a ceiling
effect may appear with SPB. Future research must investigate this research question in
different samples. Additionally, demographics related to the sport practiced were collected.
Second, the 5 min washout period between the conditions might not have been sufficiently
long to cancel the effects of previous breathing techniques. Third, our equipment did not
allow us to control precisely the exact duration of the inhalation, exhalation, and respiratory
pauses, so it is not possible for us to evaluate how accurately the participants performed
the breathing techniques. Still, we were able to control for respiratory frequency, to assure
that our participants followed the 6 cpm rhythm, by using the respiration algorithm of
Kubios [72]. Additionally, the experimenter paid close attention that the participants were
following the breathing pacer. Finally, we also checked the visual display of R-R values
with Kubios, given that during slow-paced breathing, oscillations matching the respiratory
frequency can be observed [24]. Nonetheless, future research should use a respiratory belt
to offer an online measurement of respiratory frequency. The fourth limitation is the design
of the respiratory pause—future research should endeavor to disentangle the effects of a
post-inhalation and post-exhalation respiratory pauses by investigating them separately,
and should also consider respiratory pauses of different durations. We originally chose a
0.4 s respiratory pause duration to enable our participants to avoid switching abruptly from
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inhalation to exhalation, and from exhalation to inhalation. However, we acknowledge that
this duration is much shorter than those used in previous studies, such as 4 s in Russell,
Scott, Boggero and Carlson [70], and consequently, future research should investigate
whether longer respiratory pauses trigger different physiological effects. Additionally,
the inhalation/exhalation ratio range was reduced (0.8–1.2), and future research should
consider investigating larger ranges [58,64,65].

Furthermore, the investigation of a respiratory pause should also include gas exchange
measurement and consider, in particular, end-tidal CO2 values for enhanced understanding
of its consequences on CVA, as well as consider its impact on tidal volume, given the effects
of respiratory pauses on RSA [67,70,71]. Additionally, other variables related to HRV
may be considered, such as the RSA, calculated as the difference between the maximum
and minimum cardiac interbeat interval per breath. The RSA has also been suggested
to index CVA [80–82] and has been used in previous research investigating a similar
research question [64]. Finally, future research should also consider investigating the
inhalation/exhalation ratio at different breathing frequencies [64,68,83] and take into
account the effects on other cardiovascular parameters, such as baroreflex sensitivity [84]
and blood pressure [85]. Authors should discuss the results and how they can be interpreted
from the perspective of previous studies and of the working hypotheses. The findings and
their implications should be discussed in the broadest context possible. Future research
directions may also be highlighted.

5. Conclusions

In conclusion, the aim of this study was to investigate the role of two characteristics
of SPB on CVA, namely the inhalation/exhalation ratio and the presence of a respiratory
pause. Findings showed that adopting a respiratory pattern with a longer exhalation phase
triggered higher CVA in comparison to respiratory patterns with longer inhalation than
exhalation, or with equal duration of both phases. No changes in CVA were provoked by a
respiratory pause, but methodological limitations in our design guarantee further scrutiny
of this parameter in the future.

Manipulating the autonomic nervous system is often the target of sport psychological
techniques [86,87], with either activating or relaxing purposes, through methods such as
power posing [88] and hypnosis [13]. Within the autonomic nervous system, CVA is a
particularly desirable target for athletes, given its role in self-regulation [10–12,14–16]. In
contrast to other methods that exist to stimulate the vagus nerve, such as transcutaneous
vagus nerve stimulation [89–91], SPB without biofeedback does not require external devices
besides a respiratory pacer, and can be easily implemented as an acute [8,9,61,62] or
long-term intervention [63] in athletes. SPB with respiratory patterns involving a longer
exhalation phase compared to inhalation may therefore show potential as a performance
habit [92] in order to trigger the highest possible changes in CVA.
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