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Abstract: Considering the impact of the number of potential new coronavirus infections in each
city, this paper explores the relationship between temperature and cumulative confirmed cases
of COVID-19 in mainland China through the non-parametric method. In this paper, the floating
population of each city in Wuhan is taken as a proxy variable for the number of potential new
coronavirus infections. Firstly, to use the non-parametric method correctly, the symmetric Gauss
kernel and asymmetric Gamma kernel are applied to estimate the density of cumulative confirmed
cases of COVID-19 in China. The result confirms that the Gamma kernel provides a more reasonable
density estimation of bounded data than the Gauss kernel. Then, through the non-parametric method
based on the Gamma kernel estimation, this paper finds a positive relationship between Wuhan’s
mobile population and cumulative confirmed cases, while the relationship between temperature and
cumulative confirmed cases is inconclusive in China when the impact of the number of potential
new coronavirus infections in each city is considered. Compared with the weather, the potentially
infected population plays a more critical role in spreading the virus. Therefore, the role of prevention
and control measures is more important than weather factors. Even in summer, we should also pay
attention to the prevention and control of the epidemic.

Keywords: nonparametric; temperature; COVID-19; bounded data; Copula

1. Introduction

A typical pneumonia caused by a new coronavirus, called COVID-19, broke out in
Wuhan, Hubei Province, China on 31 December 2019. Cases have been spread to other
cities in China and in foreign countries, which has turned into a pandemic outbreak. As
of 13 May 2020, China had 84,458 cumulative confirmed cases, and 4,250,812 cases were
diagnosed worldwide. The new coronavirus has caused a social shutdown, which has led
to the decline of industries other than a few, such as the gaming and eSports industries,
and online education [1–3]. What is more depressing is that the new coronavirus may
accompany humans for a long time [4]. The epidemic situation of COVID-19 caused severe
pressure on the long-term accumulation of global innovation, hindering the innovation
ability of enterprises, which is an important factor for the sustainable development of the
country [5–7]. Therefore, in order to better formulate the relevant epidemic prevention
measures and recover the economic development of various countries as soon as possible,
subjects such as the rate of an epidemic, transition methods, prevention methods, remaining
time of the virus in the environment, and the effects of environmental factors on virus
infection rate must be paid more attention to [8–10].

Previous studies have shown that meteorological variables can affect the transmission
and survival of coronaviruses. For example, Pirouz et al. [8] used the data of Iran, Italy,
Germany, Spain, and the United States to conclude that there is a certain negative correlation
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between daily average temperature and the prevalence of the coronavirus. Preliminary
evidence from Bannister et al. [11] shows that in the global reported cases before 29 February
2020, the incidence rate of higher temperatures is associated with a lower incidence of
COVID-19. In addition, one result obtained by Mofijur et al. [12] in Dhaka, Bangladesh,
was that the average temperature was significantly associated with new COVID-19 cases.
Prata et al. [13] indicated that temperatures had a negative linear relationship with the
number of confirmed cases in Brazil. Conversely, some studies have found no significant
relationship between the temperature and the transmission of COVID-19 [14,15]. Hence,
there is still no clear evidence of the negative correlation between environmental variables
and transmission. One of the most important reasons for unclear conclusions could be that
these previous studies did not consider the impact of the number of potential infections,
which would be the most critical factor in the transmission of COVID-19. In addition, most
previous studies used traditional models, which were too simple to deal with complex
nonlinear models, and environmental factors often have unknown nonlinear effects [16,17].
Currently, a non-parametric approach, commonly known as the kernel method, is used to
describe the association between variables. For example, Fan et al. [18] applied the kernel
method to compare the PM2.5 density estimates between summer and winter, rush and
non-rush hours, respectively. Unlike the parameter method, which can only obtain the
mean information of variables, one important benefit of using the kernel method is that
one can comprehensively analyze the relationship between variables by comparing the
distribution of variables to better and more robustly describe the relationship between
variables. Another benefit of using the kernel method is that we can visually explore the
relationships between variables.

Although there is relevant literature on the relationship between temperature and
confirmed cases in China [19,20], the literature does not consider the impact of the number
of potential infections, which would be the most critical factor in the transmission of
COVID-19. Hence, considering the impact of the number of potential new coronavirus
infections in each city, this study aimed to explore the relationship between temperature
and cumulative confirmed cases of COVID-19 in China with a kernel method to improve
our knowledge of the spread of the virus. In this paper, the floating population of each
city in Wuhan refers to the floating population in Wuhan that originates from other cities
in China and is taken as the proxy variable for the number of potential new coronavirus
infections. Since Wuhan was the first city to break out of a new coronavirus in China
and the time of its outbreak is approaching China’s Lunar New Year, Wuhan’s floating
population has been returning to their hometown for the Chinese New Year. Moreover,
since the prevention measures of the Chinese government are very timely, after Wuhan
was locked down on 23 January 2020, the population between cities in the whole country
basically stopped flowing. Therefore, the floating population of Wuhan in each city can be
regarded as a proxy variable of the potential infection number of the city. Specifically, based
on the non-parametric method, this paper explores the relationship between temperature
and cumulative confirmed cases of COVID-19 in mainland China. Firstly, since the non-
parametric method needs to identify the density estimation of data correctly, we compared
symmetric kernel and asymmetric gamma kernel density estimations of the cumulative
confirmed cases and found that the asymmetric gamma kernel fits the data better. Next,
by applying an asymmetric gamma kernel, this paper estimates the probability density of
cumulative confirmed cases every 14 days from 24 January to 20 March 2020. The results
show that measures such as Wuhan’s lockdown and other cities’ strict epidemics prevention
are effective. Then, based on the Copula model, the multivariate density of temperature
and cumulative confirmed cases are estimated. By comparing the benchmark multivariate
density, the preliminary results show a certain correlation between the cumulative number
of confirmed cases and the urban temperature in China. Finally, this paper compares the
density estimations of cumulative confirmed cases of COVID-19 between the cities with
low and high mobile population from Wuhan, and cities with low and high temperatures.
The results show that Wuhan’s mobile population is positively related to cumulative
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confirmed cases of COVID-19, while the relationship between temperature and the number
of cumulative confirmed cases is inconclusive in mainland China when the impact of the
number of potential new coronavirus infections in each city is considered.

The rest of the paper is organized as follows. Section 2 describes nonparametric
density estimation methods. Section 3 presents the empirical results. Section 4 concludes.

2. Nonparametric Density Estimation

Let X1, X2, . . . , Xn be a random sample from a probability distribution with an
unknown probability density function fX(x).

2.1. Symmetric and Asymmetric Kernel Density Estimators

For any x ∈ χ, where χ is the unbounded support, the conventional or fixed band-
width symmetric kernel estimator of unknown fX(x) is as follows:

f̂kernel(x) =
1

nh

n

∑
i = 1

K
(

x− Xi
h

)
(1)

where K(·) is a kernel function and h is the bandwidth. A kernel function with a symmetric
density satisfies the following:∫

K(t)dt = 1,
∫

tK(t)dt = 0,
∫

t2K(t) < ∞

The Gauss kernel is the most used symmetric kernel, which is expressed as:

K(u) =
1√
2π

exp
(
−1

2
u2
)

Equation (1) is the consistent estimator of the true density function where h→ 0 and
nh→ as n→ ∞ [21–23].

When the unknown density has support on [0, ∞], the gamma kernel estimator, one of
the asymmetric kernel density estimations, is given by the following:

f̂gamma(x) =
1

nh

n

∑
i = 1

Kρh(x),h(Xi) (2)

where:

Kρh(x),h(t) =
tρh(x)−1exp

(
− t

h
)

hρh(x)Γ(ρh(x))
, ρh(y) =

{
x
h , x ≥ 2h

1
4
( x

h
)2

+ 1, 0 ≤ x < 2h

Remark. Standard fixed bandwidth symmetric kernel-type density estimators are known to en-
counter boundary problems for positive random variables with a large probability mass close to zero.
It is shown that, in such settings, alternatives to asymmetric gamma kernel estimators are superior
for the following reasons [24,25]:

The gamma kernel estimator is non-negative and free of boundary bias;
The shape of the gamma kernel function changes with the position of sample points, and then the
smoothness of each estimation point is adjusted naturally.

Moreover, the farther the points of estimation move away from the boundary, the
more the estimator’s variance decreases. It leads to an advantage in situations of naturally
unbalanced scattered design points, in particular for densities with sparse areas.
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2.2. Selection of Bandwidth

This paper calculates the bandwidth h of the symmetric kernel density estimation of
Equation (1) based on the least squares cross-validation method [18], which is given by:

CVf (h) =
1

n2h

n

∑
i = 1

n

∑
j = 1

K
(Xi − Xj

h

)
− 2

n(n− 1)h

n

∑
i = 1

n

∑
j = 1

K
(Xi − Xj

h

)
(3)

where K(v) = 1√
2π

exp
(
− 1

2 v2
)

, K(v) = 1√
4π

exp
(
− 1

4 v2
)

.
The bandwidth h of gamma density estimation is obtained by minimizing the following:

CVf (h) =
1
n2

n

∑
i = 1

n

∑
j = 1

∫
Kρh(x),h(Xi)Kρh(x),h

(
Xj
)
dy

− 2
n(n− 1)

n

∑
i = 1

n

∑
j = 1,j 6=i

Kρh(Xi),h
(
Xj
)

(4)

2.3. Semiparametric Multivariate Density Estimation

For the joint probability density kernel estimation of the temperature and the number
of cumulative confirmed cases, the semi-parametric multivariate density estimation for
positive data is used here [26]. Let Y1, Y2, · · · , Yn be a random sample from a probability
distribution with an unknown probability density function fY(y).

From Sklar (1959), it is well-known that the distribution function of a vector (x, y) can
be expressed via a copula [27–31]:

F(x, y) = C(FX(x), FY(y)) (5)

Derivate the two sides of (5), we can obtain:

f (x, y) = c(FX(x), FY(y)) fX(x) fY(y) (6)

The Gumbel–Hougaard copula is used here:

c(u1, u2) =
exp(−(v1 + v2)

1/β){ln(u1) ln(u2)}β−1({v1 + v2}1/β + β− 1)
u1u2{v1 + v2}2−1/β

where vi = (−ln(ui))
β.The estimate of (6) is given by the following estimation steps [23]:

(1) β̂ = (1− τ̂n)
−1 with τ̂n is the sample Kendall’s tau.

(2) The distribution function of X and Y are estimated by the empirical distribution.
(3) fX(x), fY(y) adopt (1) (2) kernel estimation method.

3. Empirical Findings

Daily data of cumulative confirmed cases of COVID-19 in mainland Chinese cities is
gathered from the website (https://lab.isaaclin.cn/nCoV/, accessed on 5 January 2020)
from 23 January to 20 March 2020. Xi represents the cumulative confirmed cases in the
i-th city.

3.1. Density Estimation of Cumulative Confirmed Cases

The Gauss kernel and gamma kernel density of COVID-19’s cumulative confirmed
cases in mainland China on 20 March 2020 are firstly investigated. As shown in Figure 1,
the density curve of the Gauss kernel is rather wiggly up-and-down, and it is an unexcepted
density curve in reality. Meanwhile, the Gauss kernel leads to an underestimated estimation
because it gives weight to the negative value, while the cumulative confirmed cases are

https://lab.isaaclin.cn/nCoV/
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non-negative. It indicates that the fixed bandwidth symmetric kernel is not applicable to
sparse data.
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Figure 1. Gauss vs. Gamma COVID-19 density estimates, 20 March 2020 in mainland of China. Note:
hgauss = 2.5, hgamma= 4.89.

While the gamma kernel density estimator is non-negative and can change with the
position of sample points, the smoothness of each estimation point is adjusted naturally.
From Figure 1, the gamma density estimators show a large probability mass close to zero.
Meanwhile, we can observe that the condition of the shoulder is satisfied here, which
means that the gamma kernel estimator is boundary-problem-free [25,31].

To sum up, the gamma kernel can generate a positive and a reasonably smooth
density, while a free boundary problem for the cumulative confirmed cases. Therefore, all
the following analyses proceed with the gamma kernel density estimation.

The gamma kernel estimations of the cumulative confirmed cases for every 14-day
interval since 24 January 2020 are displayed in Figure 2. The result shows that the den-
sity curve of the cumulative confirmed cases on 7 February 2020 is higher than that on
24 January 2020, on the support [11, +∞). That is, the amount of cumulative confirmed
cases increases quickly in the first 14-day interval. Then, it is gradually reduced in the
following several 14-day intervals by taking severe measures such as Wuhan’s lockdown.
Governments at all levels investigate the suspected cases and their contact population,
especially the population from the “epidemic area”, Hubei, villages, and communities that
are in lockdown. That is, the measures are sufficient to control the spread of COVID-19.
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3.2. Relationship of Wuhan’s Mobile Population and Cumulative Confirmed Cases

With the coming of the Spring Festival (25 January 2020), many migrant workers return
to their hometowns from Wuhan [32]. The mobile population is a potential carrier for virus
transmission. Hence, this paper explores the correlation between Wuhan’s migrants and the
cumulative confirmed cases by comparing the density between cities with different scales
of the mobile population from Wuhan. According to the standard defined by Fan et al. [32],
we divide the sample into two sub-groups, the cities with a large mobile population from
Wuhan (LMG) and the cities with a small mobile population from Wuhan (SMG).

As the cumulative confirmed cases in mainland China are relatively stable, we only
investigated the density curve of cumulative confirmed cases on 20 March 2020. The result
is displayed in Figure 3. It shows that the density of LMG is significantly higher than
that of SMG over the support [20, +∞), which indicates that Wuhan’s mobile population
was positively correlated with the cumulative confirmed cases of COVID-19. That is, it
is necessary for other regions to take on 14-days-isolation-and-observation measures on
personnel from Hubei, especially from Wuhan.
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3.3. Preliminary Relationship of Temperature and Cumulative Confirmed Cases Based on
Multivariate Density

Temperature, one of the critical environmental factors, is a non-negligible factor
influencing the coronavirus’s behavior [8]. We need to estimate the probability density of
city-level temperatures accurately.

As shown in Figure 4, there is a north–south difference in city-level air temperature
in China. If the probability density of temperature in Chinese cities is estimated by a
parameter model, this difference cannot be reflected. Moreover, the temperature can be
regarded as “unbounded” data, so it is suitable to use the traditional symmetric kernel to
estimate its probability density (Figure 5).
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Figure 5. The kernel density of city-level average temperature in China from January 2020 to
February 2020. Note: hgauss = 3.42.

Based on formula (6), we estimate the multivariate density of temperature and the
cumulative number of confirmed cases. The kernel density of temperature is estimated by
Gaussian kernel density, and the kernel density of cumulative confirmed cases is estimated
by the Gamma kernel density. The benchmark multivariate kernel density is estimated
assuming f(x,y) = f(x)f(y) means that X is independent of Y. If the multivariate density
of temperature and cumulative confirmed cases is different from its benchmark, then we
initially consider that these two factors are related.

The contrast between Figure 6a,c and Figure 6b,d shows that the graph of Figure 6b,d
is symmetrical, whereas Figure 6a,d has a clockwise shape. Therefore, we initially be-
lieved that there was a certain relationship between the temperature and the cumulative
confirmed cases.
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Figure 6. (a) The multivariate density of the number of cumulative confirmed cases by 20 March 2020 and the average
temperature of January to February. (b) Benchmark multivariate kernel density estimation which assumes f(x,y) = f(x)f(y).
Note 1: hgauss = 3.42, hgamma = 4.89, ˆτn = 0.1584, ˆβn = 1.188. Note 2: (c) is the contour of (a). Similarly, (d) is the contour
of (b).
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3.4. Relationship of Temperature and Cumulative Confirmed Cases

To investigate the relationship between the temperature and the amount of COVID-
19’s cumulative confirmed cases in China, we divided the sample into two sub-groups
according to the temperature. The city is classified into the high-temperature group
(HTG) if its temperature is equal or higher than 6 ◦C; otherwise, it is classified into the low-
temperature group (LTG). The kernel curve (seen in Figure 5) of daily average temperatures
in January and February 2020 of 179 cities in Mainland China has two kurtoses, where
T = 6 ◦C is the middle of the two kurtoses. Hence, we take it as the standard.

The kernel densities of the two sub-groups are shown in Figure 7. The results show that
the density of the cumulative confirmed cases of HTG is relatively higher than that of LTG in
the support [15, +∞]—(45,70). It indicates a positive relationship between the temperature
and cumulative confirmed cases, which is contrary to the results of Pirouz et al. [8]. A
possible explanation is that cities with higher temperatures are almost all coastal cities,
and most of these cities are economically developed regions, where they have higher
population mobility.
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Figure 7. The kernel density of COVID-19’s cumulative confirmed cases of HTG and LTG.

To prove the assertion, the relationship between temperature and cumulative con-
firmed cases is investigated by controlling population mobility. Figures 8 and 9 display the
kernel densities of HTG and LTG within LMG and SMG, respectively. Within LMG, the
negative correlation of temperature and cumulative confirmed cases exists in the support
(22, 78), while it turns out to be positively correlated in the support (78, +∞). Within
SMG, a weak positive correlation between temperature and cumulative confirmed cases
exists. Hence, the relationship between temperature and cumulative confirmed cases is
inconclusive. Other factors such as population density may be ignored, which should be
further studied in future research.
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4. Conclusions

Considering the impact of the number of potential new coronavirus infections in each
city, this paper explores the relationship between temperature and cumulative confirmed
cases of COVID-19 in mainland China through the non-parametric method. In this paper,
the floating population of each city in Wuhan is taken as a proxy variable for the number of
potentially infected people. In order to use the non-parametric method correctly, this paper
applies a symmetric kernel and an asymmetric gamma kernel to estimate the probability
density of cumulative confirmed cases of COVID-19 in mainland China. The results
show that the asymmetric Gamma kernel provides a more reasonable fit for COVID-19’s
cumulative confirmed cases.

By comparing the densities of COVID-19’s cumulative confirmed cases between LMG
and SMG, and HTG and LTG, we find that Wuhan’s mobile population is positively
related to cumulative confirmed cases. Moreover, the preliminary result shows a certain
correlation between the cumulative number of confirmed cases and the urban temperature
in China based on the Copulas method. However, the relationship between temperature
and cumulative confirmed cases is inconclusive when the impact of the number of potential
new coronavirus infections in each city is considered. Compared with the temperature,
the potentially infected population plays a more important role in spreading the virus.
Therefore, the role of prevention and control measures is more important than weather
factors. Even in summer, we should also pay attention to the prevention and control of
the epidemic.

Our results do not show a wide range of temperatures and their effects because if we
expand the data, for example, into the summer period, we cannot reasonably obtain the
proxy variables for the number of potential infections. Our next study goal is to figure out
how to find a proxy variable for the number of potentially infected people in the general
setting or in a high-temperature metropolis.
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