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Abstract: In the post-disaster response phase, an efficient relief distribution strategy plays a vital role
in alleviating suffering in disaster-stricken areas, which sometimes becomes challenging in humani-
tarian logistics. Most governments pre-located the relief goods at the pre-determined warehouses
against possible disasters. Those goods must be shipped to the relief distribution centers (RDCs) to
be further distributed to the victims in impacted areas upon the disasters. Secondary disasters can
occur due to the first disaster and can occur relatively close in time and location, resulting in more
suffering and making the relief distribution activities more challenging. The needs of additional
RDCs must be determined as well in response to the secondary disasters. A robust optimization
model is proposed to hedge against uncertainties in RDCs’ capacity and relief demand. Its objective
is to minimize the sum of transportation cost, additional RDC cost, and shortage of commodities.
The computational results are given to demonstrate the effectiveness of the proposed model. The
sensitivity analysis gives an insight to the decision-makers.

Keywords: humanitarian logistics; relief distribution; multi-commodity; robust optimization;
disaster logistics

1. Introduction

Humanitarian logistics has recently gained significant attention due to the increasing
frequency of natural and human-made disasters, and relief distribution has played a cen-
tral role. As the number of disasters grows steadily, studies on relief distribution models
have been growing extensively. Because of the deadly nature of disasters, a well-designed
disaster management system or humanitarian logistics operation is necessary to aid af-
fected people and reconstruct the affected areas. Various disasters such as earthquakes,
tsunamis, hurricanes, floods, volcanic eruptions, explosions, nuclear disasters, and con-
tagious diseases constantly threaten human lives. Among these disasters, earthquakes
are one of the most catastrophic. For instance, the Great Sichuan earthquake struck on 12
May 2008, in China’s Sichuan province, brought massive suffering to the stricken areas.
Approximately 374,000 people were injured, 88,670 people died, and there was enormous
property damage [1]. Another devastating earthquake that struck Kathmandu, the city of
Nepal, in 2015 had shaken northern India, northwestern Bangladesh, southern parts of
Tibet, and western Bhutan. The Nepal earthquake of 2015 killed more than 9000 people
and toppled more than 600,000 structures in Katmandu and nearby cities [2]. In the last
few years, there were many earthquakes worldwide, including but not limited to the 2018
Peru earthquake, 2019 Indonesia earthquake and 2020 Turkey earthquake [3]. Because of
the devastation of a disaster, it is challenging to transport essential supplies to the affected
areas to support basic living needs (water, medicine, food, and so on) for those who are
trapped in disaster-affected areas. Hence, humanitarian logistics is an important field
of study.
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In post-disaster relief logistics, decision-makers need to make two critical decisions,
i.e., tactical, and operational. Tactical decisions include selecting the locations of RDCs, the
number of multiple relief supplies to be mobilized, and transportation modes. Operational
decisions are about transportation plans between RDCs and affected areas. According to [4],
tactical decisions are made in the deployment phase of humanitarian logistics. The period
of the deployment phase is within 6 h after a disaster strike. In this phase, the decision
about RDCs is made. The existing buildings or vacant places are usually pre-determined
for the initial set of RDCs. This initial set of RDCs may have capacity ranges according to
the tactical decisions. However, the unpredictable nature of a disaster, including prolonged
disaster periods or secondary disasters, can make the initial set of RDCs in the deployment
phase unable to meet the demand of affected areas. Therefore, it is necessary to reform the
humanitarian logistics network.

The formation or reformation of logistics operations following large-scale disasters is
complex [5]. Reformation can come in front of public or private agencies because of the
uncertain capacity of RDCs and the unavailability of roads between RDCs and demand
points. Moreover, it is impossible to repair blocked, unavailable, or damaged roads quickly.
In such cases, it is necessary to build additional RDCs. A secondary disaster is a similar kind
of disaster, or different kind, that occurs at a relatively close time and location. For example,
the second earthquake or aftershock following a large earthquake after a few hours or days
causes mountain collapses, debris flows, landslides, flooding, and other problems called
secondary disasters, or a disaster chain. For instance, after the Great Sichuan earthquake in
2008, some aftershocks continued to occur in and around the primary focal area for up to
several months causing further casualties and damages [6].

In addition, Omi [7] discussed a vast number of aftershocks that occur after a large-
scale earthquake which can cause secondary disasters. After the first disaster, impromptu
organizations and government agencies attempt to work together, quickly provide relief
commodities and services that help save lives, provide comfort, and even restore entire
communities [5]. Nevertheless, the complexity of distributing multiple commodities
becomes more severe for aid providers when more than one disaster occurs in the same
area or closely spaced areas.

In general, the first 72 h after any disaster are called the “golden relief period.” During
this period, it is difficult for aid providers to measure the exact demand for relief goods
because of the damaged communication systems and the scarcity of relief goods (e.g., water,
medicine, food, etc.). Therefore, the demand for relief goods remains uncertain.

A robust optimization model is proposed for post-disaster relief distribution con-
sidering the demand and the initial RDC’s capacity uncertainties. The consideration of
uncertainty in humanitarian logistics led many studies to adopt a stochastic programming
approach.

However, there are two significant disadvantages of stochastic programming [8].
Firstly, a stochastic programming approach requires the probability distributions of uncer-
tain parameters. It is difficult to estimate the probabilities in real-life cases because of the
insufficient historical data of disasters. Secondly, the literature shows that most stochastic
programming approaches in humanitarian logistics are scenario-based, and the different
values of uncertain parameters represent different scenarios. An extensive set of scenarios
can lead to significant computational complexity.

Conversely, a robust optimization approach does not require the probability distri-
bution of uncertain parameters and scenarios [9]. In robust optimization, each uncertain
parameter is denoted by a specific interval, and the feasibility of the solution is guaranteed
by using a min-max approach. This study is motivated by the complex nature of disasters,
especially when it involves secondary disasters. Therefore, increasing the resilience of the
affected areas is the main priority of this study. In summary, the objectives of this study are
as follows.

• To propose a deterministic optimization model for the relief distribution problem.
• To propose a robust optimization model for the relief distribution problem.
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• To understand the significance of conservatism degrees and data variabilities of robust
models.

• To minimize transportation cost, additional RDC cost, and shortage of commodities.
• To understand the sensitivities of the proposed model against variations of shortage cost.

The main contributions of this study are summarized as follows: (1) A robust optimiza-
tion model for the relief distribution is proposed with uncertain demand at the demand
points and the uncertain capacity of initial RDCs. (2) The proposed model can manage
relief distribution activities and select the candidate locations for additional RDCs, given
road unavailability. (3) The influence of decisions in humanitarian logistics is analyzed and
discussed. (4) The proposed model can assist decision-makers in accurately identifying
necessary data.

The rest of the paper is organized as follows. The relevant literature is reviewed in
Section 2. The problem description and the deterministic model of this study are presented
in Section 3. Section 4 proposes the robust optimization model. A case study is given and
the computational results are analyzed through the proposed model in Section 5. Finally,
the concluding remarks and future study directions are drawn in Section 6.

2. Literature Review

In disaster management, uncertainties often arise because of the nature of the emer-
gencies. To consider those uncertainties, stochastic programming has been widely used.
Stochastic models for emergency relief distribution, emergency medical services, and
facility location are widely studied. Mete and Zabinsky [10] proposed a stochastic opti-
mization approach for storing and distributing medical supplies. This model is used for
multiple types of medical supply distributions in the context of the uncertainties of disaster
events. Another model and solution approach for facility location of medical supplies
was proposed [11]. They addressed the uncertain demand and proposed three heuristics
to solve the problem: a genetic algorithm, a locate/allocate heuristic, and a Lagrangian
relaxation heuristic. Mohamadi and Saeed Yaghoubi [12] proposed a bi-objective stochastic
optimization model to determine the transfer points of evacuees and medical supplies
distribution centers.

Relief distribution involves multiple stages of relief operations and multiple kinds of
relief goods, so many have proposed multi-stage stochastic programming. Barbarosoǧlu
and Arda [13] presented one of the pioneering works in relief distribution by using the
two-stage stochastic programming approach for planning the transportation of first-aid
commodities to disaster-affected areas. They formulated a multi-commodity, multi-modal
network flow formulation to describe the flow of material over an urban transportation
network. Döyen, Aras, and Barbarosoǧlu [14] proposed a two-echelon facility location
problem for humanitarian logistics network design where they only focused on relief
distribution and facility location decisions. Li, Jin, and Zhang [15] proposed a two-stage
stochastic programming approach for disaster preparedness and responses. Their model
can help decide the locations, capacities, and resources of shelters in the preparedness
phase and the distribution of evacuees and resources to shelters in the response phase.
Cavdur, Kose-Kucuk, and Sebatli [16] proposed a two-stage stochastic programming model
for facility allocation and relief distribution where facility allocation and service decisions
are performed in the first and second stages, respectively.

Nilay Noyan [17] developed a two-stage stochastic programming model for last-
mile distribution in disaster response while considering demand and network-related
uncertainties. [18] proposed a dynamic truck and trail routing problem where they did not
consider any uncertainty. Another last-mile distribution problem was proposed where the
study used a drone as a fleet, and the objective was to minimize the travel distance of the
drone [19]. Their model incorporated a hybrid allocation policy and achieved high levels
of accessibility and equity simultaneously. Rawls and Turnquist [20] and Chang, Tseng,
and Chen [21] independently proposed a two-stage stochastic model to decide facility
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location and resource distribution. The model of Rawls and Turnquist [20] provided a
pre-positioning strategy for hurricanes and considered uncertain demands.

An integrated stock pre-positioning and relief distribution model was proposed with
a two-stage stochastic scenario-based probabilistic-stochastic programming approach by
Tofighi, Torabi, and Mansouri [22]. The uncertainties of both supply and demand were
considered with the availability level of the transportation route after the earthquake.
Chen [23] compared two models, namely the stochastic and Ψ-expander models, for relief
pre-positioning. Geng, Hanping Hou, and Shaoguang Zhang [24] proposed a model con-
sidering both the relief pre-positioning and location of emergency shelters. Few studies
have considered the redistribution strategy in disaster response. A two-stage stochastic
programming approach for redistribution strategies was proposed to minimize the dis-
satisfaction cost in the first stage and minimized total transportation time in the second
stage [25]. Noham and Michal Tzur [26] defined the humanitarian supply chain network
by addressing the facility location and inventory allocation decisions, combined with an
incentive system that aims to enhance population cooperation.

Due to the devastation of a large-scale disaster, many existing RDC or warehouses can
be destroyed, making the relief distribution activities challenging. Few studies consider
this disruption scenario when modeling a relief distribution network. Yahyaei and Bozorgi-
Amiri [27] proposed a robust and reliable humanitarian relief network that considers the
risk of facility disruption and designed their relief distribution network by integrating the
shelter and supply facility locations. Fereiduni and Shahanaghi [28] proposed a robust
optimization model for relief distribution and evacuation in the disaster response phase
by considering uncertainties and the disruption of bridges. Apart from the disruption
scenario, Akbarpour, S. Ali Torabi and Ali Ghavamifar [29] proposed a bi-level model for
the pharmaceutical relief chain, where they developed a min-max robust model to tackle
the demand uncertainty. For earthquake preparedness, location-allocation network design
and perishable product supply chain designs are modeled [30]. Sarma, Das, and Bera [31]
proposed a multi-objective model for emergency relief operations. They used Facebook
postings to estimate the uncertain demand. Another study by Sarma [32] considered the
redistribution plan after the disaster considering disruption scenarios to minimize the total
cost of relief operation.

Secondary disasters are often neglected in prior studies. For instance, Zhang [33]
proposed an emergency resource allocation problem for secondary disasters. They tried to
minimize the total time of dispatching emergency resources. Alem, Clark, and Moreno [34]
proposed a two-stage stochastic network flow model to help decide how to rapidly supply
humanitarian aids to victims of disasters under demand, supply, network, and budget
uncertainties. They considered the uncertain budget and conducted a case study for floods
and landslides in Rio de Janeiro State, Brazil, by a two-phase heuristic. Jianfang Shao [35]
proposed a model for calculating the demand for relief in multiple disasters, and their
proposed model is divided into two parts: supply classification and demand calculation.

However, most models overlook the road disruption, the minimum demand satisfac-
tion rate of multiple commodities at demand points, the required number of distributions,
and sensitivity against shortage cost, which are considered in this paper. Tzeng, Cheng, and
Huang [36] proposed a mathematical model with a few similarities but did not consider
uncertainty. Among non-deterministic models, Liu [37] proposed a robust optimization
model to deal with uncertainty for evacuating people and transferring relief personnel to
affected areas. This study denotes the uncertainties in demand and capacity of the initial
RDCs using interval data to remove the requirement for the probability distribution of
uncertain parameters found in models based on stochastic programming.

3. Problem Description

The relief distribution network considered in this study is depicted in Figure 1, which
involves a two-echelon disaster relief chain: (1) relief warehouses (RWs), (2) initial set of
RDCs, (3) additional RDCs at candidate locations, and (4) demand points (DPs). Com-
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modities are sent from RWs and to RDCs in the first echelon. RDCs include an initial
set of RDCs selected in the deployment phase of humanitarian logistics operations and
additional RDCs at candidate locations.
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It is assumed that commodities from public or private organizations are already stored
in RWs before the disasters. The following hypothesis is postulated for relief operations
based on the relief distribution network shown in Figure 1. Given the occurrence of
a disaster (e.g., an earthquake), secondary disasters (e.g., debris flows, landslides, and
flooding) may result in the roads’ unavailability and demand fluctuations. The functionality
of the proposed model is triggered immediately after the disaster’s strike. Uncertain
roads’ availability and demand may require reformation of relief distribution network by
establishing additional RDCs at candidate locations of specific capacity and re-routing the
transportation.

This study assumes that the initial set of RDCs selected in the deployment phase may
not have enough capacity to cover the demand of affected areas after the primary disaster.
Some affected areas may not be accessible from the RDCs due to road disruptions caused by
secondary disasters. Secondary disasters like landslides and debris flow block the existing
roads. This kind of secondary disaster makes the initial set of RDCs unable to meet the
demand at DPs. Candidate locations for additional RDCs are identified around a disaster
region, and additional RDCs are established at such locations that the relief distribution
can be facilitated at a low cost. Commodities initially transported between RWs to RDCs in
the first echelon are delivered from RDCs to DPs in the second echelon.

A robust optimization model is proposed to take the demand and RDCs’ capacity
uncertainties into account. The uncertain parameters are represented as the intervals for
those parameter values. Moreover, the roads’ unavailability between RDCs and DPs is
considered using the indefinite travel distance between the departure and the destination.
In addition to the road unavailability, the minimum demand satisfaction rate for each
commodity at each DP is considered to ensure fairness and criticality among DPs. The
minimum demand satisfaction rate for each commodity at each DP must be satisfied.

The assumptions in this study are summarized as follows.

1. Multiple relief goods need to be distributed to the DPs of which demand is uncertain.
2. The locations of the RWs and the initial set of RDCs are known.
3. The candidate locations for additional RDCs and their potential capacities are known.
4. The available quantities of relief goods at RWs are known.
5. Heterogenous vehicles of different capacities are allowed to deliver mixed commodities.
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The following sets, parameters, and decision variables are given in this model as
follows:

I Set of RWs, where i ∈ I. For simplicity, i = 1, 2, 3, . . . , I.
J Initial set of RDCs j ∈ J. For simplicity, j = 1, 2, 3, . . . , J.

A
Set of candidate locations for RDCs a ∈ A. For simplicity,
a = 1, 2, 3, . . . , A.

R Set of DPs r ∈ R. For simplicity, r = 1, 2, 3, . . . , R.
G Set of commodities g ∈ G. For simplicity, g = 1, 2, 3, . . . , G.
L Set of vehicle type l ∈ L. For simplicity, l = 1, 2, 3, . . . , L.
Parameters
kg

i Total quantity of available commodity g in RW i
Na Potential capacity of RDCs at candidate location a
H Maximum number of additional RDCs at candidate locations
Ca Establishment cost of an RDC at candidate location a
Cl Operating cost for vehicle type l per unit distance
Wg, Vg Weight and volume of commodity g, respectively
W l , Vl Weight and volume capacity of vehicle type l, respectively
Sij Distance between RW i and RDC j
Eia Distance between RW i and candidate location a
Mjr Distance between RDC j and DP r
Far Distance between candidate location a and DP r
Tmax Maximum allowable travel time of vehicles
Tij Round-trip time between RW i and RDC j
Tjr Round-trip time between RDC j and DP r
Tar Round-trip time between candidate location a and DP r
D̃g

r Demand for commodity g at DP r
P̃j Capacity of RDC j
τrg Shortage cost for unsatisfied demand of commodity g at DP r

αrg
Minimum demand satisfaction rate that must be satisfied for
commodity g at DP r

ηl
i Number of vehicle type l at RW i

µl
j Number of vehicle type l at RDC j

ωl
a

Number of vehicle type l at a potential RDC at candidate
location a

Decision variables

xgl
ij

Quantity of commodity g transported from RW i to RDC j by
vehicle type l

wgl
ia

Quantity of commodity g transported from RW i to potential
RDC at candidate location a by vehicle type l

zgl
jr

Quantity of commodity g transported from RDC j to DP r by
vehicle type l

vgl
ar

Quantity of commodity g transported from potential RDC at
candidate location a to DP r by vehicle type l

TRl
ij Number of trips made by vehicle type l from RW i to RDC j

TRl
ia

Number of trips made by vehicle type l from RW i to
potential RDC at candidate location a

TRl
jr Number of trips made by vehicle type l from RDC j to DP r

TRl
ar

Number of trips made by vehicle type from potential RDC a
to DP r

ya
1, if potential RDC is established at candidate location a. 0,
otherwise.

SHrg Shortage or unsatisfied demand of commodity g at DP r
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The multi-commodity relief distribution model is formulated as follows:

Minimize ∑
a∈A

Caya + ∑
l∈L

Cl

(
∑
i∈I

∑
j∈J

SijTRl
ij + ∑

i∈I
∑

a∈A
EiaTRl

ia + ∑
j∈J

∑
r∈R

MjrTRl
jr

+ ∑
a∈A

∑
r∈R

FarTRl
ar

)
+ ∑

r∈R
∑

g∈G
τrgSHrg

Subject to,

∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar + SHrg = D̃g
r ∀g ∈ G, r ∈ R (1)

∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar ≥ αrgD̃g
r ∀g ∈ G, r ∈ R (2)

∑
l∈L

∑
j∈J

xgl
ij + ∑

l∈L
∑

a∈A
wgl

ia ≤ kg
i ∀g ∈ G, i ∈ I (3)

∑
l∈L

∑
i∈I

xgl
ij ≤ P̃j ∀g ∈ G, j ∈ J (4)

∑
l∈L

∑
i∈I

wgl
ia ≤ Naya ∀g ∈ G, a ∈ A (5)

∑
l∈L

∑
i∈I

xgl
ij ≥ ∑

l∈L
∑
r∈R

zgl
jr ∀g ∈ G, j ∈ J (6)

∑
l∈L

∑
i∈I

wgl
ia ≥ ∑

l∈L
∑
r∈R

vgl
ar ∀g ∈ G, a ∈ A (7)

∑
a∈A

ya ≤ H (8)

∑
g∈G

xgl
ij Wg ≤ TRl

ijW
l ∀j ∈ J, i ∈ I, l ∈ L (9)

∑
g∈G

xgl
ij Vg ≤ TRl

ijV
l ∀j ∈ J, i ∈ I, l ∈ L (10)

∑
g∈G

wgl
ia Wg ≤ TRl

iaW l ∀a ∈ A, i ∈ I, l ∈ L (11)

∑
g∈G

wgl
ia Vg ≤ TRl

iaV l ∀a ∈ A, i ∈ I, l ∈ L (12)

∑
g∈G

zgl
jr Wg ≤ TRl

jrW
l ∀j ∈ J, r ∈ R, l ∈ L (13)

∑
g∈G

zgl
jr Vg ≤ TRl

jrV l ∀j ∈ J, r ∈ R, l ∈ L (14)

∑
g∈G

vgl
arWg ≤ TRl

arW
l ∀a ∈ A, r ∈ R, l ∈ L (15)

∑
g∈G

vgl
arVg ≤ TRl

arV l ∀a ∈ A, r ∈ R, l ∈ L (16)

∑
j∈J

TRl
ijTij + ∑

a∈A
TRl

iaTia ≤ ηl
i Ti

max ∀l ∈ L, i ∈ I (17)

∑
r∈R

TRl
jrTjr ≤ µl

jT
j
max ∀l ∈ L, j ∈ J (18)
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∑
r∈R

TRl
arTar ≤ ωl

aTa
max ∀l ∈ L, a ∈ A (19)

xgl
ij , wgl

ia , zgl
jr , vgl

ar, SHrg, TRl
ij, TRl

ia, TRl
jr, TRl

ar are positive numbers (20)

The objective function minimizes the total cost, including the establishment cost of
additional RDCs, the transportation cost, and the shortage cost for unsatisfied demand.
Constraint (1) shows the relationship between demand and shortage. Constraint (2) implies
that minimum demand satisfaction rates for commodities should be satisfied at DPs.
Constraint (3) ensures that the total outgoing quantity of commodities from RWs to RDCs
is less than or equal to the total available quantity of a commodity at RWs. Constraint (4)
indicates that the quantities of incoming commodities to RDCs from RWs are not greater
than the capacities of RDCs.

In addition, Constraint (5) guarantees that once any additional RDC is established,
the commodity must be sent there, and the total incoming commodities to it are less than
or equal to its capacity. Constraints (6) and (7) ensure that the total amount of commodi-
ties transported from RWs to RDCs are more than or equal to those from RDCs to DPs.
Constraint (8) limits the maximum number of RDCs that can be established. Constraints (9)–
(16) are related to vehicle capacities in weight and volume for the transportations among
RWs, RDCs, and DPs. These constraints guarantee that the total weight or volume of the
commodities loaded in a vehicle exceeds neither the weight nor the volume capacities of
the corresponding vehicle. Constraints (17)–(19) limit the number of trips for each vehicle,
considering the maximum allowable travel time and the number of vehicles available at
RWs and RDCs. Constraint (20) defines all the variables.

4. Robust Model Formulation

The deterministic model in Section 3 assumes that the input parameters are precisely
known nominal values and does not consider data uncertainties. Data uncertainties
affect the quality and feasibility of the solutions. If any input parameter is different from
its nominal value, some constraints may be violated, and the solution obtained by the
deterministic model may not be optimal or feasible. Therefore, the approach to compromise
the quality of solution against the data uncertainty is called “robust.” Therefore, to protect
the decision-makers against the worst realization of outcomes, it is necessary to deal with
the conservatism of the robust model.

For the first time, Soyster in 1973 [38] proposed a linear mathematical programming
model to produce a feasible solution for all constraints that belong to a convex set. However,
the solution obtained by his model was too conservative, compromising the quality of the
solution with the robustness excessively [39].

The notable works were done independently by Ben-tal and Nemirovski in 1999 [39],
H U Y En in 1997 [40], El Ghaoui in 1998 [41], and Ben-Tal, Aharon, Laurent El Ghaoui,
and Arkadi Nemirovski in 2009 [42]. They proposed less conservative models by con-
sidering ellipsoidal uncertainties, which involve solving the robust counterparts of the
nominal problem in the form of conic quadratic problems [39]. However, their models
were nonlinear and added computational complexity.

A vital step to deviate from this undesirable complexity was made by [9]. Their
model was linear and offered control on the degree of conservatism for every constraint.
They defined a prespecified number Γp of uncertain coefficients in the p-th constraint of
the deterministic model. If less than Γp uncertain coefficients take different values than
nominal values, their model guarantees the feasibility of the solution. Since their model is
linear and computationally tractable, we have adopted their model to propose our robust
model in this paper.

Mulvey in 1995 [43] proposed a robust stochastic programming approach using a
soft constraint concept by considering a penalty for constraint violation. In humanitarian
logistics, where our lives are at stake, there are some hard constraints to be satisfied in
addition to soft constraints, which are flexible due to the uncertainty. Sometimes, uncertain
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parameters can be described only by an interval without probability distribution estimation.
The robust optimization approach proposes and handles hard constraints and interval
uncertainty [9].

To obtain the robust counterpart of our proposed model, we first briefly describe the
robust optimization approach introduced by Bertsimas and Sim in 2004 [9] and the extended
research by Hatefi and Jolai [44], in which they considered the following deterministic
linear model.

Consider the following nominal mixed-integer programming problem, where c is
a n-dimensional vector, A is a m × n matrix, b is an m-dimensional vector, and x is a
polyhedron.

Max cx

s.t. Ax ≤ b (21)

x ∈ X

The uncertainty can exist on A, b, and c. The objective coefficient vector c can be
assumed to be certain without loss of generality. If c has any uncertainty, we can set z = cx
and maximize z by adding constraint z− cx ≤ 0 to Ax ≤ b. That is, we can move the
uncertainty from c to A.

Bertsimas and Sim [9] considered the uncertainty of the coefficient matrix A and Hatefi
and Jolai [44] further considered the uncertainty of the right-hand-side (RHS) constants b.

Assume that some parameters of the coefficient matrix A are uncertain. For constraint
p, let Ωp denote the set of uncertain coefficients in constraint p. The uncertain coefficient,
apq
(
q ∈ Ωp

)
, can be modeled as a random variable ãpq (see Ben-tal and Nemirovski [39])

that takes values according to a symmetric distribution with a mean equal to nominal
value apq in interval [apq − âpq, apq − âpq], where âpq denotes the maximum deviation from
the nominal value. For random variable ãpq, another random variable ηpq, called a scaled
deviation, is defined as follows.

ηpq =
ãpq − apq

âpq
,

It is also symmetric and takes values in [−1, 1], i.e., |ηpq| ≤ 1. ãpq is a random
variable for uncertain coefficients and is a constant for a certain coefficient.

For every possible realization of random variable ãpq, Equation (21) can be formulated
as:

Max cx

s.t. ∑
j=1

ãpqxq ≤ bp ∀ãpq ∈ Ωp (22)

x ∈ X

The left-hand side can be transformed as follows.

∑
q=1

ãpqxq = ∑
q
(apq + âpqηpq)xq = ∑

q
apqxq + ∑

q∈Ωp
âpqηpqxq ≤∑

q
apqxq + ∑

q∈Ωp
âpq|xq| ≤ bp ∀p (23)

Here, a new formulation can be formulated.

Max cx

s.t. ∑
q

apqxq + max
ηpq∈zp

 ∑
q∈Ωp

âpqηpqxq

 ≤ bp, ∀p (24)

x ∈ X

where Zp =
{

ηpq

∣∣∣∑n
q=1 ηpq ≤ Γp

}
, ∀p. For every p-th constraint, the term,

max
ηpq∈zp

(
∑q∈Ωp âpqηpqxq

)
gives the necessary “protection” of the constraint by maintain-
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ing a gap between ∑q apqxq and bp to avoid violation. Bertsimas and Sim [9] introduced a
parameter, Γp, not necessarily integer, that takes values in the interval

[
0,
∣∣Ωp

∣∣]. It is called
the budget of uncertainty or conservatism degree. This parameter adjusts the robustness or pro-
tection against uncertainty. Γp = 0 indicates the nominal (deterministic) case for constraint
p. Γp =

∣∣Ωp
∣∣ represents the worst uncertainty for constraint p [38]. For Γp ∈

[
0,
∣∣Ωp

∣∣],
the decision-maker can make a tradeoff between the protection level of constraint p and
the degree of conservatism of the solution. Decision-makers can choose the value of Γp
According to their tolerance against uncertainty. Note ∑q∈Jp ηpq ≤ Γp, ∀p.

The model by [9] protects itself against all cases that up to
⌊
Γp
⌋

of coefficients apq are
allowed to change, and one coefficient apt changes by (Γp −

⌊
Γp
⌋
) âpt.

Now, Equations (22) and (23) produce a new formulation as follows.

Max cx

s.t. ∑
j

apqxq + βp
(
x, Γp

)
≤ bp, ∀p (25)

x ∈ X

where βp
(

x, Γp
)
= max
{Sp∪{tp}|Sp⊆Ωp ,|Sp |=Γp ,tp∈Ωp\Sp}

{
∑q∈Sp âpq

∣∣xq
∣∣+ (Γp −

⌊
Γp
⌋)

âptp

∣∣∣xtp

∣∣∣}
is called the protection function of constraint p.

Considering both Formulations (24) and (25), βp
(
x, Γp

)
equals the objective function

of the following linear optimization problem (See proposition (1) of [9]),

βp
(
x, Γp

)
= max

ηpq∈zp

∑
q∈Jp

âpqηpq
∣∣xq
∣∣ (26)

s.t.
n

∑
q=1

ηpq ≤ Γp ∀p

0 ≤ ηpq ≤ 1 ∀Ωp

Now the dual problem of Formulation (26) is written as follows by introducing dual
variables zp and vpq.

Max Γpzp + ∑
q∈Ωp

vpq

s.t. zp + vpq ≥ âpq
∣∣xq
∣∣, ∀p, q ∈ Ωp (27)

vpq ≥ 0, ∀p, q ∈ Ωp

zp ≥ 0, ∀p

By setting yq =
∣∣xq
∣∣, Formulation (27) can be reformulated.

Maximize cx

Subject to

∑
q∈Ωp

apqxq + zpΓp + ∑
q∈Ωp

vpq ≤ bp ∀p (28)

zp + vpq ≥ âpqyq ∀p, q ∈ Ωp,

− yq ≤ xq ≤ yq ∀q,

vpq ≥ 0 ∀p, q ∈ Ωp,

yq ≥ 0 ∀q

zp ≥ 0 ∀p
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x ∈ X

By duality, because Equation (26) is feasible and bounded, then the dual problem
(Equation (28)) is also feasible and bounded. Their objective values coincide. It proves that
Equations (26) and (28) are equivalent (see Theorem 1 of Bertsimas and Sim [9]).

In case of uncertainty on the RHS constant bp for constraint p, we define the conser-
vatism degree Γ taking values between [0, m] to denote the number of uncertain constants
bp(1 ≤ p ≤ m). Similarly, b̃p ∈

[
bp − b̂p, bp + b̂p

]
, where bp and b̂p are the nominal value

and maximum deviation from the nominal value, respectively. An adjusted upper bound
of this interval by the common budget of uncertainty is bp +

Γ
m b̂p. This upper bound is

used to convert our constraints involving uncertain constants bp(1 ≤ p ≤ m).
The model proposed in Section 3 has uncertain parameters in Constraints (1), (2), and

(4). There is no uncertainty in the coefficient matrix. The uncertainty exists only in the
right-hand side constant.

∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar + SHrg = D̃g
r ∀g ∈ G, r ∈ R

∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar + SHrg = D̃g
r ∀g ∈ G, r ∈ R

∑
l∈L

∑
i∈I

xgl
ij ≤ P̃j ∀g ∈ G, j ∈ J

The robust optimization approach works only with stochastic models, where the
constraints have “less than or equal to” inequality [37]. However, constraint (1) in this
paper is equality constraint, and this constraint is rewritten as an equality constraint.

If considering the relationship between the shortage and the demand, the shortage
occurs only when the demand for a commodity exceeds the quantity of commodity trans-
ported from RDC. Therefore, constraint (1) can be rewritten as follows:

SHrg ≥ D̃g
r −

(
∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar

)
, ∀g ∈ G, r ∈ R, (29)

where D̃g
r is an uncertain parameter. Assume that D̃g

r distributes symmetrically in the
ranges of

[
Dg

r − D̂g
r , Dg

r + D̂g
r

]
where Dg

r and D̂g
r denote the nominal demand (mean of the

interval) and the constant maximum deviation from the nominal demand, respectively.
Taking the adjusted upper bound of the interval for the worst-case realization, which
should be minimized, constraint (29) can is rewritten in the following robust form.

SHrg ≥ Dg
r +

Γ
||G| ∗ |R|| D̂

g
r −

(
∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar

)
, ∀g ∈ G, r ∈ R, (30)

where Γ ∈ [0, |G| ∗ |R|].
Constraint (2) ensures that the minimum demand satisfaction rate at each DP, at which

the quantity of the commodities from RDCs must be greater than the demand of the DP.
Similarly, constraint (2) is rewritten in the following robust form.

∑
l∈L

∑
j∈J

zgl
jr + ∑

l∈L
∑

a∈A
vgl

ar ≥ αrg

(
Dg

r +
Γ

||G| ∗ |R|| D̂
g
r

)
, ∀g ∈ G, r ∈ R, (31)

where Γ ∈ [0, |G| ∗ |R|].
For constraints (4), the uncertainty exists on the capacity of initial RDCs, P̃j is also

distributes symmetrically in the ranges of
[
Pj − P̂j, Pj + P̂j

]
where Pj and P̂j denote the nom-
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inal capacity and the constant maximum deviation from the nominal capacity. Similarly,
the robust form of constraint (4) is as follows.

∑
l∈L

∑
i∈I

xgl
ij ≤ Pj −

Γ
‖ J ‖ P̂j ∀g ∈ G, j ∈ J (32)

where Γ ∈ [0, |J|].
The robust model is obtained by replacing the constraints (1), (2), (4) with the new

constraints (30), (31), and (32), which are represented as follows.

Minimize ∑
a∈A

Caya + ∑
l∈L

Cl

(
∑
i∈I

∑
j∈J

SijTRl
ij + ∑

i∈I
∑

a∈A
EiaTRl

ia + ∑
j∈J

∑
r∈R

MjrTRl
jr + ∑

a∈A
∑
r∈R

FarTRl
ar

)
+ ∑

r∈R
∑

g∈G
τrgSHrg

s.t. (3), (5)–(20), (30)–(32).
This robust optimization model can produce the solutions by setting the conservatism

degree according to the decision-maker’s preference. In the next section, we solve the
proposed robust model with a test problem for various conservatism degrees and data
variabilities. The computational results are also provided.

5. Numerical Analysis
5.1. Test Problem

For numerical experiments and analysis, a test problem is generated. In the prepara-
tion stage of the disaster management cycle, it is assumed that there are two RWs (i1 and
i2), three initial RDCs (j1, j2, and j3), and three candidate locations for additional RDCs
(a1, a2, and a3). The nine most severely stricken disaster areas in a province or state are
considered DPs (r1, r2, r3, r4, r5, r6, r7, r8, and r9). Their pairwise distances in km are given
in Tables 1 and 2.

Table 1. Distance between RWs to initial RDCs (in km).

j1 j2 j3 a1 a2 a3

i1 13.8 7.3 22.1 18.3 10.6 18.4
i2 28.8 28.8 11 27 23.6 18.3

Table 2. Distance between RDCs and DPs (in km).

r1 r2 r3 r4 r5 r6 r7 r8 r9

j1 UA * 1.19 1.54 3.4 1.83 4.71 UA * 4.52 3.76
j2 5.1 4.57 UA * 2.1 5.4 1.42 UA * 1.5 3.94
j3 3.8 2.26 3.95 4.96 3.06 3.11 5.79 2.04 2.63
a1 3.5 3.1 2.9 2.83 1.93 0.82 1.76 2.26 1.35
a2 2.85 1.28 0.97 2.08 3.24 2.12 0.6 1.71 0.64
a3 3.45 1.84 1.56 0.86 3.83 2.72 1.4 1.94 2.23

* UA means unavailable road (debris on the road or shutdown).

According to [6], China’s Sichuan province experienced severe landslides because
of the main earthquake and aftershocks. Most of the landslides occurred within the
earthquake-stricken region. Therefore, this study also considers the landslide as a secondary
disaster. As a consequence of the landslide, the unavailability of roads is also considered as
given by “UA” in Table 2.

Water bottles and emergency medical kits are considered relief goods. We assumed
that twelve 1-L water bottles are in a box, and various medicines and medical equipment
are contained in a kit. The volumes are measured in cubic centimeters. The two types of
relief goods are represented as RG g1 and RG g2. The parameters of relief goods are shown
in Table 3. Table 3 shows the available supply in stock at RWs i1 and i2.
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Table 3. Parameters for relief commodities.

Relief
Goods

Supply in Stock (Box)
Unit

Unit Weight,
Wg (kg)

Unit Volume,
Vg (cm3)RW i1 RW i2

RG g1 16,000 17,000 Water Box
(1000 mL, 12 bottles) 12 36 × 26 × 30

RG g2 12,000 10,000 Emergency Medical
Kit 2 43 × 24 × 15

As explained earlier, the initial set of RDCs have uncertain capacities with nominal
means. It may be related to the uncertainties caused due to the degradation of the facilities
or supplies at existing RDCs. It is assumed that the nominal capacities of all initial RDCs are
assumed to be 5000 water boxes and 5000 emergency medical kits. The additional RDCs can
be established at candidate locations to satisfy the demand caused by unexpected second
disasters. It is assumed that these additional RDCs have specific capacities in this study
because they are new facilities. The capacities of those RDCs at candidate locations and
their establishment costs are given in Table 4. Each candidate location has its establishment
cost. Establishment costs may include rents, land purchases, and building costs.

Table 4. Capacities of additional RDCs at candidate locations.

Candidate
Location

Capacity (in Box)
Establishment Cost, Ca ($)

RG g1 RG g2

a1 4500 4500 14,000

a2 4500 4500 24,000

a3 4000 4500 16,000

Big and small trucks with heterogenous capacities are used to transport relief goods.
The weight and volume capacities of the trucks are summarized in Table 5. The transporta-
tion costs per unit distance are 5 USD and 3 USD for big and small vehicles, respectively.

Table 5. Parameters of the vehicles.

Type of Vehicle Weight Capacity, Wl (kg) Volume Capacity, Vl (cm3)

Big truck 3500 465 × 175 × 180
Small truck 1500 231 × 150 × 160

Finally, the nominal demand of each DP is given for each RG in Table 6. As explained
earlier, these demands are uncertain because it is almost impossible to assess the size of
needs or impacts on DPs quickly.

Table 6. Demands of RGs at DPs.

Demand Points
Demand,

~
D

q
r

RG g1 RG g2

r1 2500 2000
r2 2000 1820
r3 3000 2000
r4 2500 2200
r5 4000 2500
r6 3080 1900
r7 2900 2040
r8 3900 2800
r9 5000 3000
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5.2. Computational Results

Numerical experiments were conducted on a computer with an Intel (R) Core (TM)
i-5-2500 @ 3.30 GHz CPU with 4 GB of RAM. The deterministic and robust models proposed
in this paper were coded using LINGO 10.0.

Without loss of generosity, the minimum demand satisfaction rate for commodities
and DPs was set to 0.4 in both models. Then, a sensitivity analysis of the minimum demand
satisfaction rate is also carried out. The data variability of uncertain parameters was varied
by 10%, 15%, 25%, and 35% relative to their nominal values.

Since there are nine DPs and two RGs, the corresponding degree of conservatism Γ
associated with the coefficients of uncertain demand has values within the interval [0, 18].
For the uncertain capacity of the initial set of RDCs, the conservatism degree is within the
interval [0, 3] since there are three initial RDCs in the relief distribution network. Figure 2
shows the changes in the objective function value for different conservatism degrees (Γ)
and the different data variabilities for uncertain demands and capacities of initial RDCs.
This figure shows that the objective function value is sensitive to the small changes of Γ at
the low range of conservatism degrees. The objective function value for the deterministic
model is 52,288. The deterministic model is solved without considering the uncertainty of
demand and capacity.

According to the sensitivity analysis, low conservatism degree ranges for demand
and capacity parameters cause a higher deterioration in the robust objective function
value. In the experiments of this study, the most significant degradation of the robust
objective function value or worst-case objective function value is achieved when setting
the conservatism degree to 9 and data variability to 35% for demand uncertainty. For the
capacity uncertainty, the worst-case objective function value is achieved by setting the
conservatism degree to 3 and perturbating uncertain capacities to 35%. It is trivial that
higher conservatism degree and higher data variability lead to higher uncertainty, and they
make the robust model have more conservative solutions.
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The relative extra cost (REC) measures the quality deterioration in robust solutions
obtained from the proposed robust model [45]. The REC is defined as follows,

REC =
Z(Γ > 0)− Z(Γ = 0)

Z(Γ = 0)
,

where Z (Γ) is the optimal objective function value of the robust model when conservatism
degree Γ is given.

The REC represents the extra cost that should be counted for the different levels of
protection according to the conservatism degrees (Γ > 0) in comparison with the determin-
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istic status (Γ = 0). Tables 7 and 8 summarize the results of robust models, including robust
optimal solutions (ROS) and RECs, for different data variabilities of demand and capacity
at various levels of protection, i.e., conservatism degrees (Γ). Both tables show that the
more significant data variabilities from the nominal demand and capacity result in larger
RECs. When the conservatism degree is 0, the optimal objective function value of 52,288
was obtained for the deterministic and robust models with nominal value and no data
variability. Columns 1 and 2 in Tables 7 and 8 show the robust model settings.

Table 7. Experimental results of the robust optimal solutions for various conservatism degrees of
demand parameters and data variabilities compared to the deterministic optimal solution.

Conservatism
Degree Data Variability (%) ROS REC (%)

0 - 52,288 0

3

10 59,075 12.98
15 62,095 18.75
25 65,124 24.54
35 67,223 28.56

5

10 60,566 15.83
15 64,304 22.98
25 67,093 28.31
35 69,700 33.30

7

10 63,346 21.14
15 66,403 26.99
25 69,351 32.63
35 71,978 37.65

9

10 68,103 30.24
15 70,804 35.41
25 73,650 40.85
35 75,835 45.03

Table 8. Experimental results of the robust optimal solutions for various conservatism degrees of
capacity parameters and data variabilities compared to the deterministic optimal solution.

Conservatism
Degree Data Variability (%) ROS REC (%)

0 - 52,288 0

1

10 54,450 4.13
15 56,179 7.44
25 57,854 10.64
35 59,769 14.30

2

10 55,909 6.92
15 57,990 10.90
25 60,854 16.38
35 63,590 21.61

3

10 58,980 12.79
15 61,930 18.44
25 65,478 25.22
35 68,478 30.96

Tables 7 and 8 show that the objective function values of the robust model are higher
(more deteriorate) than that of the deterministic model. To understand the significance
of the robust model and the protection by the conservatism degrees, we have conducted
different experiments on the data variabilities to the coefficients and RHS constants of the
deterministic models. Even with slight variations on the coefficients and RHS constants,
the optimal solutions of the deterministic model without data variabilities violate some
constraints, becoming infeasible. It is conjectured that the optimality is still maintained for
a data variation on some loose constraints, but on most tight constraints, the optimality
is easily broken by a slight variation on the data. It is essential to note that the robust
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model provides feasible solutions even under higher data variabilities. The ROS under
various data variability guarantees the optimality of the robust model even if it offers
more conservative (or higher) objective function values than the deterministic model.
Tables 7 and 8 show the apparent trend of increasing ROS as the conservatism degree or
the data variability increases. Therefore, it is concluded that our proposed robust model
can produce robust solutions immune to data variabilities on uncertain parameters.

We discuss optimal solutions of the robust models with conservatism degrees of 3,
5, 7, and 9 and data variabilities of 10%, 15%, 25%, and 35% compared to that of the
deterministic model. Table 9 shows how many RGs are transported from RWs to RDCs
at the first echelon relief distribution activities. The deterministic model has an optimal
solution that does not require additional RDCs at candidate locations. In the first row
with the conservatism degree of 0, RG g1 of 4460 water boxes and RG g2 of 3570 boxes of
emergency medical kits are transported from RW i1 to RDC j1. Similarly, RG g1 of 4570 and
RG g2 of 3920 to RDC j2. RDC j3 is not used for the relief distribution, and no additional
RDC is necessary for the optimal solution of the deterministic model. In the deterministic
model, constraint (4) concerns the initial RDC’s capacity that the initial RDCs have enough
capacity to receive all incoming commodities from RWs.

However, in the robust model, with the increase of the conservatism degree and
data variability for the initial RDC’s capacities, the robust optimal solution may require
additional RDCs at candidate locations. According to constraint (32), the capacities of
initial RDCs may decrease with the increase of the conservatism degree and data variability.
In the second row of Table 9, with the conservatism degree of 1 for uncertain capacity of
the initial RDCs and the data variability of 10%, we still do not need additional RDCs.
However, in the third row of Table 9, with the conservatism degree of 1 and data variability
of 15%, the optimal solution of the robust model determines to establish an additional
RDC at candidate location a1. The experimental results show that the test problem only
requires an additional RDC at candidate location a1 in our robust model with various
robust settings.

Table 9 shows that only RW i1 sends commodities to RDCs j1 and j2, and the RDC
at the candidate location a1 and RW i2 sends commodities only to RDC j3. It is observed
that this transportation is reasonable considering the distance matrix among all locations.
Another important observation from Table 9 is the quantity of RGs transported to RDCs.
With the increase of conservatism degree and data variability, the transported RGs did not
increase linearly. Decision-makers could select a suitable degree of conservatism to make a
wise tradeoff between the quantity of transported RGs and the total cost because a higher
degree of conservatism leads to a higher cost.

Figures 3–5 show the optimal amounts of RGs transported from RDCs to all DPs at
the second echelon relief distribution activities. Figure 4 shows the optimal solution for
the deterministic case, in which the nominal demand and the nominal capacity of the
initial set of RDCs are used without considering any uncertainties. Figures 5 and 6 present
the amounts of RGs transported from RDCs to all DPs, under the given robust settings
of conservatism degrees of 3, 5, 7, and 9 and a data variability of 25%. As explained in
Table 9, note that the deterministic model produces an optimal solution that does not build
an additional RDC, and the robust model generates the optimal solutions to establish an
additional RDC.
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Table 9. The first echelon relief distribution activities in optimal solutions of deterministic and robust
models for uncertain capacity of the initial RDCs.

RWs
Conservatism

Degree
Data

Variability
(%)

RDC j1 RDC j2 RDC j3 RDC at a1

g1 g2 g1 g2 g1 g2 g1 g2

RW i1

0 - 4460 3570 4570 3920

1 10 4351 3707 4302 3870

15 3100 3130 4280 3813 4511 3530

25 3324 2737 4133 3670 4430 3640

35 3400 2590 3980 3530 4504 3501

2 10 3170 3010 4200 3751 4500 3500

15 3320 2720 4050 3600 4500 3512

25 3750 1940 3310 3170 4510 3500

35 3450 2490 3130 3070 4500 3302

3 10 3320 2720 4050 3604 4500 3500

15 3830 2640 3170 3011 4500 3405

25 2180 1880 2250 1750 4503 3500

35 2930 2600 2630 2607 4500 3500

RW i2

0 10–35 4030 3405

1 10 4351 3780

15 1130 1870

25 1135 1870

35 1130 1875

2 10 1135 1870

15 1130 1857

25 1130 1870

35 2350 1575

3 10 1130 1870

15 1233 1878

25 2420 1440

35 2650 1030Sustainability 2021, 13, x FOR PEER REVIEW 18 of 24 
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Figure 4. The amount of RG g1 transported to DPs with various conservatism degrees for uncertain
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Figure 5. The amount of RG g2 transported to DPs with various conservatism degrees for uncertain
demand when data variability is 25%.
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In Figure 3, most DPs receive the commodities from the closer RDCs. It is possible
because the first echelon distribution supports the optimal decision at the second echelon
transportation. However, DP 8 receives the split delivery of RG g1 from RDCs j1 and j2.
We have assumed that some roads are unavailable or blocked due to landslides or other
secondary disasters. Considering the distance and accessibility, the deterministic model
decides the number of commodities transported from each RDCs to DPs.

Recall that the uncertainty increases as the conservatism degree or data variability
increases. It indicates that the demands of DPs increase so that the optimal solution
stays feasible and robust in the robust models. Figures 4 and 5 show the experimental
results of the robust models, where the amounts of RGs transported to each DP with
various conservatism degrees and a data variability of 25% show the increasing trend as
the conservatism degree increases. For these experiments, we use the conservatism degree
of 1 and the data variability of 10% as the default robust setting for the uncertain capacity
of initial RDCs.

The influence of unit shortage cost on the shortage amounts in our robust model is
studied through the sensitivity analysis. Since we have multiple commodity types, the
multi-dimensional sensitivity analysis may be appropriate, but a sensitivity analysis for
the shortage cost of an RG was conducted by setting the shortage cost of the other RG to be
a fixed value in this study. In addition, it was conjectured that the relative importance of
the shortage costs of multiple commodity types might exhibit interesting behaviors. In this
experiment, the sensitivity analysis was conducted with conservatism degrees of 5 for the
demand and of 1 for the capacity of initial RDCs while considering 10% data variability
from the nominal values.

The results of sensitivity analysis are given in Figure 6. In Figure 6a, the shortage
amount of RG g1 decreases as unit shortage cost of RG g1 increases when unit shortage
cost of RG g2 is set to 5 USD. Figure 6b shows a similar trend for the shortage amount of
RG g2 when the unit shortage cost of RG g1 is set to 5 USD. In other words, the greater unit
shortage penalties of RGs result in lower shortage amounts.

Another experiment to understand the effects of the minimum demand satisfaction
rate (αrq) was conducted. According to dynamic situations at DPs, the minimum demand
satisfaction rate can be chosen differently per the DPs and RG types. However, for sim-
plicity, in our experiments, the minimum demand satisfaction rate is identical throughout
all DPs and all RG types. Its effects on the optimal objective function values of the robust
model and the number of newly established RDCs are analyzed. The robust model was
studied with the conservatism degrees of 5 for the demand uncertainty and 2 for capacity
uncertainty, and 10%, 15%, 25%, and 35% data variabilities from nominal values of both
uncertain parameters.

Figure 7 indicates that optimal objective function values increase with the minimum
demand satisfaction rate, regardless of the data variability. Figure 8 shows that the number
of additional RDCs at candidate locations under different robust settings. When the
minimum demand satisfaction rate is 0.4 and the data variability is 10%, no additional
RDC is required to satisfy all demands at DPs. However, if we increase the data variability
to 15% in the same experimental setting, an additional RDC must be established to satisfy
the uncertain demand. Even with higher data variabilities of 25% and 35%, an additional
RDC can satisfy all demands. As the minimum demand satisfaction rate increases, more
RDCs are required to be established.
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Beyond our experiments, we set the minimum demand satisfaction rate to 0.75, and
then the proposed robust model cannot find feasible solutions with three candidate loca-
tions for RDCs. It indicates additional candidate location must be considered at a higher
minimum demand satisfaction rate than 0.7. Otherwise, it is concluded that the supply
or capacity of initial RDCs should be increased with the increase of data variability and
demand satisfaction rates. The minimum demand satisfaction rate analysis could help
decision-makers decide about the required number of additional RDCs.

6. Conclusions

A multi-commodity relief distribution model under uncertainty is discussed in this
paper. The emergency disaster situations cause unpredictable and unexpected uncertainty
in the relief distribution model. Our relief distribution model considers the uncertainty
on the demand and the capacities of initial RDCs. Motivated by secondary disasters, the
disruption of roads and the establishment of additional RDCs were considered to satisfy
the dispersed demands while highlighting a real-life disaster scenario and makING the
model more realistic.

In a disaster management system, decision-makers want to satisfy the demand of
victims or affected areas and dispatch relief goods and teams as soon as possible despite
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having complexation (e.g., road unavailability, facility disruption, uncertainties, etc.). The
objective of this robust model is to minimize the logistics cost while minimizing the
penalized cost of shortage amount to determine the required number of additional RDCs at
candidate locations to be established, the allocation of RGs to RDCs, the shipments to DPs,
and the numbers of vehicle trips. Since it is difficult to estimate the probability distribution
of those uncertain parameters, the robust optimization approach was adopted over the
stochastic programming approach.

A deterministic mixed-integer programming model was formulated to design the
relief distribution network, and a robust counterpart was obtained through the robust
modeling by Bertsimas and Sim [9]. To illustrate the effectiveness of this proposed model,
a numerical analysis is carried out. The required number of additional RDCs among
candidate locations of candidate RDCs was determined to cover the DPs that are isolated
from the initial set of RDCs due to road unavailability.

The results revealed critical managerial insights as follows. (1) Among two uncertain
parameters, the demand uncertainty leads to a more significant increase in the total cost
than capacity uncertainty. (2) The demand uncertainty influences the total cost and the
unmet demand more significantly than the capacity uncertainty. (3) The relationship
between the shortage amount of commodities and shortage cost is reciprocal, meaning an
increase in the shortage cost leads to a decrease in the shortage amount of commodities. In
other words, an increase in shortage cost increases demand satisfaction. (4) The minimum
demand satisfaction rate could assist decision-makers in predicting whether the capacity
of existing RDCs is enough, and how many new centers are needed. (5) Finally, the effects
of conservatism degree and the data variability on the objective function and decision
variables were revealed by a sensitivity analysis, and decision-makers should be cautious
when assessing uncertainties. In uncertain environments, the optimal solution of the
deterministic model leads to infeasibility or violates the optimality easily. Therefore, the
conservative solution can be obtained to offer protection against those uncertainties using
the robust optimization approach.

The sensitivity of the results also reflects the effectiveness of the proposed model.
Authorities need to have a concrete model that can help them make a decision quickly.
Although a case study was analyzed, some limitations will be considered in future study
directions. (1) a multi-period setting will be considered to show the effects of secondary
disasters; (2) vehicle routing decisions are aggregated with the current model; and (3) the
model is extended by considering a multi-modal transportation system, traffic congestion
during relief delivery, and minimum response time. The limitation of this study can be
addressed as well. Our model only considers the total disruption of the roads, which
makes the road blocked. Since this study focused on connectivity and distance in our relief
distribution network model, road capacity reduction or traffic congestion can be considered
uncertain in future research.
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