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Abstract: The air transport system can be considered to be a complex network with airports as
vertices and direct flights as edges. Research in this area contributes to the optimisation of the
airline network and the sustainable development in transportation. This study chose Air China
as an example to discover the dynamics of the airline network topologically. Serving as a critical
agent of social and economic connections between cities, the airline network structure evolves
over time. However, Air China maintains its multicentric and hierarchical structure and forms a
mature point-to-point network with codeshare partners. This research also extracts key players at
the airport level and investigates the topological structure of highly connected cliques. The results
show that the combination of airports in the cliques may be affected by the airline capacity, traffic
rights and interline cooperation. Meanwhile, smaller airports appear more often in cliques than
hub airports, which can be interpreted and justified with slot limits at mega-airports. The weighted
clique percolation method provides new insights to detecting overlapping communities, which can
be characterized by geographical constraints. The shared vertices in the combined codeshare network
indicate the possible hub shifting in the constantly changing aviation sector.

Keywords: airline network; motif; clique; clique percolation community detection

1. Introduction

The high demand for air transportation creates an enormous pressure on the infrastruc-
ture and the environment. Therefore, understanding the dimensions of the airline network
becomes crucial for the long-term development towards sustainability [1]. With the tremen-
dous growth of the complex network theory and its application, the air transport system
has gradually formed as a complex network with airports as vertices and direct flights
as edges [2]. As one of the most investigated networks, the intricate nature of the airline
network has been widely analysed topologically at the macroscopic level. Although degree
distribution, centrality correlation and small-world network structures are commonly used
for the network property analysis, academics found that the abovementioned macroscopic
indicators can hardly reflect the character of the individual nodes or modules in the airline
network [3–5]. Subsequently, this research aims to propose a dynamic approach to discover
the airline network from the mesoscopic level with a special focus on motifs and cliques.

Motifs were first introduced by Milo et al. [6]. A network motif is a small connected
subgraph with a well-defined structure, which occurs significantly more frequently than it
does in an ensemble of appropriately chosen random graphs. By appearing at higher fre-
quencies, network motifs may have specific functions in information processing [7]. Hence,
they are commonly considered to be the basic building blocks of complex networks [8].
In contrast, a subgraph which occurs less often than it does in a randomised network is
defined as an anti-motif [1,9].

From the mesoscopic perspective, motifs focus on the microcosmic organisation struc-
ture and define network classes with topological interaction patterns [6]. They represent
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the basic structures that control and modulate the behaviours of the complex network [10].
Since different sets of motifs comprise distinct types of networks, the existing literature
replaced network motifs with representative glyphs and introduced them to the air trans-
port industry. For example, Dunne and Shneiderman proposed three types of motifs for
simplification, visualisation and interpretation, namely, fan, D-connector and D-clique
motifs [11]. Similarly, Clarke and Clarke considered cliques (a collection of vertices for
which all possible edges are included) and hub-and-spoke graphs (one vertex to which
many other vertices are joined) as two important motifs in the aviation industry [12].

Despite all the possible combinations of vertices, three- and four-node motifs are
extensively discussed in the air transport system. For instance, Du et al. defined the
network motif as the local relationship pattern between any three airports [13]. Serving as a
critical agent of social and economic connections between cities, the airline network is more
sophisticated than a group of subgraphs with only three nodes. Bounova [14], Agasse-
Duval and Lawford [9] further explored both three- and four-node undirected subgraphs
for Southwest Airlines and provided contradictory results regarding the significance of
motifs and hub-and-spoke graphs. Jin et al. identified the motifs and anti-motifs for
37 passenger airlines in China, illustrating the importance of adjusting the number of
proper network motifs from the topological perspective [1]. Nevertheless, those academics
did not capture and interpret the networks as the coexistence of structural subgraphs. How
smaller subgraphs compound larger structures needs attention. Although a systematic
analysis of subgraphs can be helpful in discovering and revealing the critical structures,
no key roles in the complex network have been captured from the motifs [15]. How they
influence the highly interconnected parts in the system is rarely discussed.

As one of the basic concepts in the mathematical area of graph theory, a clique rep-
resents a complete subgraph which requires every pair of distinct nodes to be connected
with a unique edge in a simple undirected graph or a pair of unique edges in each direc-
tion [9]. Particularly, the critical well-connected vertices can be identified by extracting the
cliques in the network. Moreover, the coexistence of structural cliques can be analysed and
interpreted using community detection methods.

In complex networks, the community is one form of mesoscale structures, which
are usually densely connected internally but sparsely connected to the outside [3,16].
Although community detection plays a key role in complex network analysis, design
and optimisation, the traditional algorithm reveals the underlying community structure
by removing edges based on their betweenness [17,18]. Further, methods like this sort
each vertex in one community and fail to detect the overlap in the communities. Rather
than being clique-driven, those methods tend to be node-driven, targeting the low-order
structures in the network [19]. Moreover, by focusing on the topological matter, the complex
network is usually constructed as unweighted and undirected. Additional information
is naturally neglected, such as flight schedule, aircraft type and the operator [13]. While
flights are not equivalent, the dynamics of weights along the routes should be taken into
account in proportion by either flight frequency or passenger number [2]. Last but not
least, the airline network can be refined as a multilayer network operated by different
carriers [20]. The existing studies of the airline industry mainly focus on the single layer
operated by one selected airline, which leaves the structure of the integrated multilayer
network unclear [21].

To explore the configuration of the airline network and resolve the limitations men-
tioned above, this research paid attention to the mesoscopic level and proposed a bottom-up
dynamic approach. First of all, this study introduced a motif detection technique and inves-
tigated how small and tight components build up to solidarity and connect large networks.
Then, the cliques and crucial vertices were extracted from the motifs in order to capture
the high-order connectivity patterns. Lastly, a weighted clique percolation method was
adopted to examine the dynamic spatial distribution of cliques [22]. To verify the effective-
ness of the proposed method, this research chose the scheduled network of Air China for
the case study to provide new insights and understanding of the air transportation system.
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This paper is structured as follows: Section 2 discusses the methodology and the
dataset adopted in this research; Section 3 identifies and examines the motifs, cliques and
influential nodes in the community; Section 4 discusses the findings and concludes this
paper by emphasising the new insights.

2. Methods and Dataset
2.1. Methods

This research proposes a dynamic network approach to discover the complex network
at the mesoscopic level. A series of detecting techniques was adopted to identify the motifs,
cliques, high-order communities, as well as influential nodes in the system.

2.1.1. Motif Detection

FANMOD serves as the primary analysis tool in motif detection using the Rand-
ESU algorithm [23]. Frequency, p-value and Z-score are three statistical indicators widely
used in motif evaluation. The frequency of a given subgraph S with n nodes is defined
as follows:

Frequency =
n(S)
N

(1)

where n(S) denotes the appearance time for the given subgraph and N denotes the total
time that all subgraphs with n nodes appear in the given network.

The p-value is a probability ranging from 0 to 1. A bigger p-value shows a higher
chance of observing more appearance time of a given motif in a random network than it
does in the given network. Therefore, when the p-value drops to a certain threshold, the
subgraph can be considered to be the “network motif”.

The Z-score is a statistical significance index, which compares the local network
structure with a randomised network. The Z-score for motif m is defined as follows:

Zm =
(Nm − Avgm)

stdm
(2)

where Nm is the time that motif m is observed in the network and Avgm and stdm are the
mean and standard deviation of the time that motif m is observed in a random network,
respectively. In this sense, the motif in a large network tends to obtain a higher Z-score.
Rather than the absolute significance, the normalised Z-score (SP) is crucial in emphasising
the relative significance of subgraphs when comparing networks of different sizes [8].

2.1.2. Cliques and the Weighted Clique Percolation Method

The clique percolation method was introduced by Palla et al. [24]. A clique community
is defined as a set of adjacent k-cliques, which means two cliques sharing k − 1 nodes.
In other words, a k-clique has k(k− 1)/2 connected edges, while two adjacent k-cliques
denote two k-cliques sharing k− 1 nodes. Indeed, two three-cliques are adjacent if they
share exactly two nodes, which is equivalent to an edge. Likewise, two adjacent four-cliques
share three nodes, which is equivalent to a three-node clique.

Farkas et al. applied an extension of the original algorithm to search for modules
in weighted networks [22]. The weight of a subgraph is calculated using the geometric
mean of its link weights and defined as the subgraph intensity. Therefore, the intensity of a
k-clique (C) is written as follows:

IN(C) =
(
∏ i<j;i,j∈Cwij

)2/k(k−1)
(3)

where k(k− 1)/2 and wij denote the number of edges and the weight between nodes i
and j, respectively.

A weighted clique community is defined as a maximal set of k-cliques with intensities
higher than an optimal in. In this sense, modules can be reached via a series of adjacent
k-clique connections. More importantly, it allows overlaps between communities. Thus,
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finding the optimal in for each k becomes the key for the clique percolation algorithm. If
the in is too big, the program excludes all the k-cliques. On the other hand, a small in
includes all the k-cliques, which makes it difficult to detect any community. Ideally, the size
distribution of the communities follows the power law. When the number of communities
is small, Farkas et al. proposed optimising in based on the variance of communities, which
is defined as follows:

χ = ∑ ncα 6=ncmax
nc2

α(
∑β ncβ

)2 (4)

where ncα denotes a group of communities excluding the largest one, while ncβ denotes
a group of communities excluding ncα and the largest one [22]. Therefore, the maximal
variance (χ) is associated with the optimal in for each respective k.

When the network is too small, only a few communities can be expected, which makes
it hard to establish a stable χ estimation. Further, a specific amount of communities may
be detected by chance. Under this circumstance, entropy becomes another option [25]. It
is based on the Shannon Information and the entropy of the community partition. More
precisely, the most surprising community partition is defined as the lowest probability
of knowing to which community a randomly selected node belongs. For instance, the
surprisingness equals zero if only one community is detected in a network. This can be
explained by the high probability that a randomly selected node belongs to this community
because there is only one. Moreover, high chances are that a randomly selected node
belongs to a larger community when the communities are not equal in size. Therefore, the
surprisingness is only higher if the communities tend to be more equalised in size.

The distribution of entropy values for each k can be obtained from the permutation
test. The test creates permutations for the network and extracts the highest entropy for each
k before calculating the confidence interval of the entropy. By comparing the entropy with
the upper bound of the confidence interval, the optimal in for respective k can be spotted
and interpreted. As a result, the entropy value which exceeds the confidence interval can
be considered more surprising than it would be expected by chance. The entropy can be
defined as

entropy = −∑ NC
i=1 pc ∗ log2 pc (5)

where NC denotes the number of communities and pc denotes the probability of being in
community c.

2.2. Dataset

Air China was chosen for the case study to enable knowledge discovery and pattern
detection of the airline network. A weekly scheduled nonstop flight dataset (from 1 August
2019 to 7 August 2019) was obtained from OAG, including the origin, destination, operating
and codeshare carriers of each flight.

Codeshare agreements dramatically influence airline network configuration and shape
the market dynamics worldwide [3]. Consequently, the codeshare network operated by
19 Star Alliance partners and 14 carriers outside the alliance was investigated in this
study. From the multilayer perspective, each airline should correspond to a different
layer. However, the topological properties of the airline network result from the multilayer
character rather than the single-layer one [26]. Hence, the codeshare network is tested as
an integrated graph to investigate the partners’ contributions and the way they affect Air
China’s network.

During the week, Air China connected 195 airports with 9970 scheduled flights, among
which 976 were unique edges. For the combined network, the number of flights was 25,379,
among which 2247 were unique. In total, 333 airports were connected with the help
of partnerships.

To analyse the topological structure of the airline network, the dataset was treated as an
unweighted and undirected network in motif detection and clique extraction. However, flights
were weighted by the weekly frequencies for the clique percolation community detection.
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With continuous growth in demand for air travel, the concept of multiple airport
regions (MARs) has emerged since the 1990s [27]. However, this study was primarily
focused at the airport level in order to identify the key players in multiple airport regions.
Therefore, each airport represented a vertex while each direct flight connecting an airport
pair denoted an edge.

3. The Network Structure of Air China

The aviation industry in China has been growing at an impressive rate, resulting in
complex dynamics in the network. The hub-and-spoke configuration is proposed as one of
the most efficient structures and is commonly used by most major airlines worldwide [2].
The Chinese authorities have been trying to establish a US-style hub-and-spoke network
to enhance the maturity in the passenger aviation sector [28]. However, the short loops
resembling “braids” in Figure 1 reveal the opposite. Figure 1 plots the networks of Air
China and its codeshare partners. The edges in the graph are directed and weighted by daily
frequencies. The darker colour and wider arrows demonstrate higher frequency and better
connectivity. As the flag carrier, Air China primarily serves the domestic market via Beijing
Super Hub and Chengdu Shuangliu International Hub. However, it is hard to identify
the hub-and-spoke configuration from the complicated cluster since most of the cities are
highly connected. Meanwhile, the spatial organisation of the codeshare network forms one
sparse cluster in Canada and three relatively dense clusters in Australia, Germany and
the United States. Although those countries are geographically far away from China, this
shows the potential of hub airports abroad in concentrating flows. More specifically, the
intercontinental flights comprise the trunk lines fed by domestic routes. In this sense, the
hub-and-spoke structure seems to be more precise with codeshare agreements.

Figure 1. Network structure of Air China and the combined codeshare network.

3.1. Motif

To maintain consistency with the previous study, this research captured the three-
/four-node motifs for Air China and its partners. Table 1 illustrates all the detected
subgraphs in the networks, including motifs and anti-motifs. They are listed by the order
of the absolute values of Z-sores.
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Table 1. Motif detection results for Air China and its partners.

Air China Only Combined with Codeshare Partners

Motif ID Motif Frequency
(Original)

Mean
Frequency
(Random)

Standard
Deviation
(Random)

Z-Score SP p-Value Motif ID Motif Frequency
(Original)

Mean
Frequency
(Random)

Standard
Deviation
(Random)

Z-Score SP p-Value

Three-
node

3a 96.89% 99.53% 0.0031 −8.4094 −0.7071 0.999 3a 92.94% 99.91% 0.0026 −26.5020 −0.7071 1.000

3b 3.11% 0.47% 0.0031 8.4094 0.7071 0.001 3b 7.06% 0.09% 0.0026 26.5020 0.7071 ≤0.001

Four-
node

4a 0.05% 0.00% 0.00% 10.468 0.4974 0.001 4a 0.27% 0.00% 0.00% 57.8600 0.7361 ≤0.001

4b 4.05% 8.69% 0.0051 −9.1556 −0.435 0.999 4d 2.11% 0.02% 0.0006 32.9330 0.4190 ≤0.001

4c 6.15% 1.11% 0.0057 8.8714 0.4215 0.002 4b 12.84% 24.38% 0.0041 −28.3870 −0.3611 1.000

4d 0.79% 0.07% 0.0009 8.2666 0.3928 0.001 4c 13.21% 0.25% 0.0056 23.1380 0.2944 ≤0.001

4e 88.76% 89.08% 0.0004 −7.5756 −0.36 0.997 4f 0.60% 2.49% 0.0013 −14.7010 −0.187 1.000

4f 0.20% 1.05% 0.0013 −6.7136 −0.319 0.997 4e 70.97% 72.87% 0.0014 −13.7490 −0.1749 0.999
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Two types of three-node motifs were identified in the network. The 3a motif represents
two point-to-point flights connected by a hub airport. However, the p-value and the
negative Z-score indicate that the 3a motif is not significant. Consequently, it is defined as
the anti-motif. The only significant three-node motif is the 3b motif, which demonstrates
a complete graph called a clique. Although the frequency of the 3b motif in Air China’s
network is relatively low (3.11%), the partnership more than doubles the result to 7.06%.
That means the partnership increases the proportion of the 3b motif’s appearance time in
the total time that all the three-node subgraphs appear in the network.

Six types of four-node motifs appear in Air China’s network, among which three are
anti-motifs (4b, 4e and 4f). Particularly, the 4e motif fits the hub-and-spoke motif definition
from Clarke and Clarke, where many other vertices are joined to one vertex [12]. However,
the hub-and-spoke glyph in this study was diagnosed as insignificant. Like the 3b motif,
the 4a motif was captured as the clique in four-node subgraphs. From 4a, 4d to 4c, the
number of edges decreases gradually. Social network analysis refers to the unbalances
in 4d and 4c as conflicts, which could spread throughout the network [29]. In aviation,
those conflicts indicate a lack of direct flights between two airports, where the demand for
air travel is not enough to justify the connection. The lower efficiency of the unbalanced
motifs suggests the clique to be a sign of network maturity [1]. Remarkably, the frequency,
Z-score and SP show that the partnership further enhances the network with significant
improvements in mature motifs (4a) and less mature ones (4d and 4c). It is also noticeable
that the cliques represent complete point-to-point subgraphs in the airline network, which
is the opposite of the hub-and-spoke ones.

The motif detection results are in good agreement with those of Jin et al. [1], indicating
that the significant basic glyphs of Air China’s network remained the same from 2015 to
2019. Shreds of evidence reflect that Air China maintained its multicentric and hierarchical
structure for the time being. Meanwhile, the relatively lower frequencies of motifs in this
research can be explained by airline network expansion. New destinations are usually
less connected compared with mature markets. Moreover, this research includes regional
and international destinations, which are located sparsely and remotely from Air China’s
home market. Although Agasse-Duval and Lawford claimed that the number of subgraphs
generally increases with the size of the network [9], the topological structures are not
the priority for airline operation and capacity allocation. Subsequently, the appearance
frequency of a given motif drops with the growth of the network.

3.2. Clique

As discussed in Section 3.1, a complete airline subgraph not only reveals the critical
players, but also sheds light on the connectivity and maturity of the overall airline network.
The clique detection process confirmed that several regions in the network are highly
connected (see Figure 2). Indeed, 567 three-node cliques were found among 104 destinations
in Air China’s network. In particular, 91 cliques were comprised of airports located outside
mainland China, more than half of which are located in Asia, including Japan (21), Taiwan
(15), Thailand (12) and Hong Kong (11). The partnerships add 1,814 three-node cliques,
among which 1,366 are exclusively comprised of airports located in mainland China. Since
foreign airlines are seldom authorised with the fifth freedom, those flights can only be
operated by Chinese partners, namely Juneyao Airlines (HO), Shandong Airlines (SC) and
Shenzhen Airlines (ZH).

The partnerships also introduced 448 three-node cliques with regional and interna-
tional destinations. It is noticeable that 73 of them were completely comprised of interna-
tional airports. The spatial distribution of the triangular subgraphs shows that Europe (33)
and the United States (31) are the most popular regions (see Figure 2a). With the help of
Air Macau (NX) and Shenzhen Airlines (ZH), 110 domestic city pairs are fully connected
to Macau and form cliques. Likewise, 29 cliques are identified, with Hong Kong as one
of its vertices, by aggregating the networks operated by Cathay Pacific (CX), Dragonair
(KA), Shandong Airlines (SC) and Shenzhen Airlines (ZH). Although Uni Airways (B7)
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and EVA Air (BR) operate 86 flights to/from Taiwan every week, they do not contribute
to the existing cliques. It implies that their destinations have already been covered by Air
China’s own network.

Figure 2. (a) Critical airports detected in 3-node cliques; and (b) Critical airports detected in 4-node
cliques. Notes: the blue points denote destinations connected by Air China; the red points denote
destinations connected by codeshare partners.

The network of Air China forms 361 four-node cliques, connecting 57 airports. More
specifically, 46 out of the 361 cliques include regional and international routes, such as
flights to Japan (16), Taiwan (10), Hong Kong (6), Thailand (5), Germany (4), South Korea
(4) and France (1). Additionally, those 46 four-node cliques are comprised of three domestic
airports and one regional/international airport. This is probably because of the limitation
of airline capacity and traffic rights. As the flag carrier, Air China primarily serves the
domestic market, which leaves a small amount of capacity to routes with the fifth freedom.
Further, since the cabotage (seventh, eighth and ninth freedoms) rarely applies in the real
world, Air China can hardly schedule flights between two points in one or two foreign
countries. Hence, four-node cliques can only be formed with three domestic airports and
one regional/international one.

The combined network expands the total number of four-node cliques to 3437, approx-
imately five times the original number. Cliques involving regional/international airports
increase dramatically to 684. Particularly, 589 of them are fully comprised of airports
located in Asia. Macau is included in almost half the number of those all-Asian-airport
cliques (262), outranking Japan (149), South Korea (61), Thailand (54), Hong Kong (52),
Taiwan (10) and Singapore (1). This can be explained by the slot limitation at busy airports.
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Specifically, hub airports running at or close to their capacity are less likely to connect to
regional airports in the developing area. Subsequently, airports like Hong Kong usually
prefer allocating more slots to metropolitan cities such as Beijing and Shanghai to maintain
their market shares with relatively high frequencies. On the contrary, less busy airports
like Macau tend to cover more destinations with lower frequencies.

Geographically, the 11 cliques entirely comprised of international airports are located
in North America and Europe, operated by Star Alliance members United Airlines (UA) and
Lufthansa (LH). On the other hand, most cliques in those regions are comprised of three or
two local airports and one or two airports in China. The forms of those cliques distinguish
themselves from the abovementioned all-international-airport ones by establishing the
interline cooperation between Air China and Star Alliance members.

3.3. Clique Percolation Community Detection

The clique percolation method proposes an algorithm to detect the interaction patterns
of cliques. For weighted networks, the algorithm only considers the detected k-cliques
further when their intensity exceeds a specified threshold in. A big threshold may rule
out all the communities while a small one may include all the cliques, leading to the same
community partition as for the unweighted model. In this sense, the threshold in becomes
vital in high-order community detection. Initially, the maximum edge weight is tested as
the upper limits for in as it was recommended by Farkas et al. [22]. The last parameter to be
set is the steps. Theoretically, smaller steps are preferred since small changes in steps could
lead to rather different results. However, when steps are too small, the computation time
increases considerably. Considering the upper limits for in, 0.1 was selected as the step,
which should be appropriate to find a broad community size distribution. Subsequently,
112 and 119 were set for the network of Air China and the combined codeshare network in
steps of 0.1.

Only one community was identified for the k-clique in Air China’s network. Hence,
the entropy was used to optimise in for the respective k. The largest entropy for k = 3 and
k = 4 was 0.999981 and 0.871684. The permutation test shows that only the confidence
interval for k = 4 exceeded the upper bound (see Table 2). In this sense, the entropy
values for k = 4 can be considered more surprising than would already be expected
by chance alone. The largest entropy denotes the most surprising community partition,
which captures a low probability of knowing the community of a randomly selected vertex.
Therefore, 4 is acceptable as the optimal k. In 4-node cliques, 57 airports are grouped as
one community, while other airports are isolated. Although the airline network may seem
to be complex and sophisticated, the topological structure of high-order cliques tends to be
a small network which cannot be further divided into more communities.

Table 2. The permutation test results for Air China’s network.

k 95% CI (Lower) 95% CI (Upper)

3 1.73391192 1.87706607
4 0.00102004 0.01341099

For the combined codeshare network, at least three communities were found for
three-node cliques. Subsequently, the optimal in (27.2) was identified at the point of the
maximal variance (χ = 5.62811791 ). Eventually, three communities were identified among
58 airports. The 275 isolated nodes in the network included 135 nodes identified in three-
cliques and 140 nodes outside the cliques. Initially, the clique percolation algorithm was
designed to measure the overlapped vertices in the network. However, no shared node
was found in three-clique communities, which implies no key airports interconnecting the
coexistence of structural subgraphs on three continents.

When k = 4 , only two communities were found. Similarly, entropy and the per-
mutation test were chosen as the primary indicators. Since the entropy value (1.0021173)
exceeded the upper bound (0.007377024), 4 was acceptable as the optimal k. Figure 3b
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shows the spatial distribution of the communities. Generally, three airports in Canada
are separated from the large community, while the Beijing Capital International Airport
(PEK) and the Shanghai Pudong International Airport (PVG) are shared between the two
four-clique communities as influential nodes. Topologically, a hub is to a node with a high
degree [30]. Although Air China’s physical hubs are in Beijing and Chengdu, the result
illustrates the worldwide market power of Beijing and Shanghai as international hubs,
which connect passengers to the entire network. In other words, the overlapped airports
act as the boundary spanners between communities while others obtain connections within
the group. Additionally, the community detection algorithm checked the adjacency of
subgraphs by demonstrating whether two four-cliques share three of their vertices. Since
all the vertices were adjacent to each other, the shared three nodes formed a complete
subgraph (a three-clique). Therefore, the detected community was defined as the maximal
group of four-cliques that can be reached through a series of adjacent four-cliques. Hence,
the blue dots in Figure 3b represent overall better connectivity between airports within the
community. Three Canadian airports were left behind due to the lack of shared nodes.

Figure 3. (a) 3-clique communities detected for the combined codeshare network; and (b) 4-clique
communities detected for the combined codeshare network. Notes: yellow, blue and red nodes in
(a) denote three communities; blue and yellow nodes in (b) denote two communities while red dots
denote the shared nodes (PEK and PVG).

Scholars used to detect low-order communities based on edge betweenness. They
agreed that communities in the airline business cannot be explained exclusively by ge-
ographical considerations [4,31]. Nonetheless, the spatially isolated three three-clique
communities are geographically separated from each other (see Figure 3a). Likewise, the
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four-clique community further points out that the isolation does not necessarily mean
separation by continents or countries (see Figure 3b). Basically, the geographical location
of the partners’ network results in the geographical separation of clique communities.
Therefore, this result captures not only the concentration of airline capacity, but also the
highly intensive subnetworks in the codeshare network, which may provide some new
insights in community detection in the air transport industry.

4. Findings and Discussion, Contribution, Limitations and Future Work of the Study
4.1. Findings and Discussion

With continuous growth in demand for air travel, the airline network has become
complex and widespread. This research investigates the airline network topologically and
contributes to the sustainable development of air transport.

Hub oligarchy seems to be the most efficient organisation for transportation system [4].
Thus, the hub-and-spoke subgraph used to be recognised as a mature modular structure
in the airline network. Previous literature found the dynamics of the airline network
toward a higher spatial concentration [2]. For instance, Button [32], Goetz and Sutton [33]
noticed that the topology of the airline network evolved from point-to-point to hub-and-
spoke in Europe and America, respectively. Gradual centralisation has also been found
in a prototypical low-cost carrier network [14]. Nevertheless, clear evidence from motif
detection illustrates that the hub-and-spoke structure is not topologically significant in
Air China’s network. In contrast, the point-to-point structure represented by complete
subgraphs sheds light on the connectivity and maturity of the overall network. The results
are consistent with the work of Jin et al. [1], confirming that Air China maintains its
multicentric and hierarchical structure for the time being. The difference in airline network
configurations is probably due to the centralisation of developed urban areas in China.
This also raises the question of whether a hub-and-spoke network fits the strategic plan of
all full-service carriers regardless of the geographical, economic or political issues.

The critical destinations in the airline network were extracted by clique detection,
revealing the majority of Air China’s operation at the domestic level. Pieces of evidence
demonstrated the partners’ contribution to Air China’s network either by offering higher
frequencies on existing routes or exploring new destinations which had not yet been
covered by Air China. Remarkably, the abovementioned contributions were also limited
by traffic rights, geographical location and socioeconomic situation of the airports. For
example, the domestic routes can only be operated by Air China’s Chinese partners. In
this sense, a marketing carrier could benefit from an expanded network using codeshare
agreements while complying with local regulations. Moreover, the slot limitation at busy
airports leads to the result that less busy airports cover more destinations with lower
frequencies and appear more often in cliques. At the continental level, Europe and the
United States are the most popular regions considering the spatial distribution of the
cliques. The cliques in those areas distinguish themselves by establishing the interline
cooperation between Air China and Star Alliance members.

Furthermore, the vertices are not in general equivalence in the networks as they may
seem to be in the mathematical formulation of graphs [12]. Community interactions are
consequential in capturing the opportunities and constraints and predicting the evolution
of the network as a whole. To understand how an individual vertex is embedded in
communities of a complex network, communities are identified using a weighted clique
percolation method. The method captured not only the concentration of airline capacity,
but also the highly intensive subnetworks in the codeshare network. Besides, the results
provide new insights by identifying spatially isolated communities in the air transport
industry, which has not been observed with traditional community detection techniques.
Topologically, the structure of cliques in Air China’s network demonstrates a small and
relatively simple graph. The combined codeshare network has improved the overall con-
nectivity between airports within the community. The patterns of intercommunity and
intracommunity connections were obtained by discovering the overlapped communities.
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Two shared influential nodes were found in the four-clique communities. Particularly, the
Shanghai Pudong International Airport outranks Air China’s international hub in Chengdu
Shuangliu and is one of the shared nodes interconnecting the coexistence of structural
subgraphs. Multiple hub connections always come with additional cost–benefit considera-
tions. The global market power of Shanghai proves that the network could grow out of a
possible geopolitically core region and connect to the rest of the world [34]. Although some
academics claim that the criticality is rather stable over time [35], change happens con-
stantly in the aviation sector. Air China may encounter more hub shifting like this after the
Beijing Daxing International Airport (PKX) and the Chengdu Tianfu International Airport
(TFU) opened to the public in September 2019 and June 2021, respectively. Consequently,
subsequent studies are necessary for the adaptation of Air China’s strategic management.

4.2. Contribution

Research on the airline network is of great importance in understanding and opti-
mising its structure and sustainable development. To fill the gap in the existing literature,
this research focused on the way that smaller subgraphs compound the larger structures,
capturing and interpreting the airline network as the coexistence of structural subgraphs.

This paper first expanded the research scope to regional and international destinations.
Then, it introduced mature techniques from complex network theories and presented a
dynamic bottom-up roadmap to uncover the hidden cluster configuration in the airline
industry. Indeed, this study confirms the results from the previous literature regarding Air
China’s multicentric and hierarchical point-to-point network structure. It also raises the
question of whether a hub-and-spoke network fits all full-service carriers. More importantly,
this research examines the key roles in the airline network at the airport level. The results
show that the combination of airports in the cliques may be affected by airline capacity,
traffic rights and interline cooperation. Meanwhile, smaller airports appear more often in
cliques than hub airports, which can be interpreted and justified with slot constraints at
mega-airports.

Rather than being node-driven, the community detection method in this study is
clique-driven, targeting the high-order structures and the overlap in the communities.
Weights along the routes and layers of the network were taken into account to reflect the
inequivalence in flights and the contributions of codeshare partners. Although the airline
network may seem to be complex and sophisticated, the topological structure of high-order
cliques tends to be a small network. The algorithm provides geographically separated
communities, which have not been obtained with traditional techniques. However, the
separation does not necessarily mean geographical isolation by countries or continents.
Basically, the geographical location of the partners’ network results in the geographical
separation of clique communities. In other words, the geographical separation reflects
the partners’ contribution and market power in a certain area. Although most techniques
prefer considering high-degree nodes as critical [35], this paper considered the shared
nodes in the overlapping area as influential. In this sense, two shared nodes in Air China’s
codeshare network prove their global market power in connecting the domestic market to
the rest of the world. It is also noticeable that one of the shared nodes is not the original
hub airport of Air China. While the hub shifting phenomenon reveals the contradiction
between physical and topological networks, it raises another question of whether this
phenomenon is widespread in the air transport industry.

4.3. Limitations and Future Work of the Study

This research explores the spatial distribution of the community structure and sim-
plifies the complex network in reality. However, only one airline and its 33 codeshare
partners were examined in this study with a relatively small sample size. Further research
is required with a regional or worldwide dataset to measure the robustness of this method
and promote sustainable development in the air transport industry.
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During the analysis, this paper also raised two questions, first of all, whether a
hub-and-spoke network fits all full-service carriers; second, whether the topological hub
shifting phenomenon is widespread in the air transport industry. Consequently, subsequent
studies are necessary for the adaptation of airlines’ strategic management, especially in
multiple-airport regions.
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