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Abstract: The main goal of this study is to explore the adoption of a design for manufacturing and
assembly (DfMA) and building information management (BIM) approach during the whole lifecycle
of assets. This approach aims to tackle issues inherent in the design of traditional construction
methods, such as low productivity and quality, poor predictability and building performance, and
energy use, through the implementation of a BIM library of off-site components. In recent years,
a renewed interest has been directed to the attempt to provide solutions to these urgent problems
through the adoption of new advancements in technologies. However, while there are studies
focussing on a BIM-DfMA approach, there is a lack of research regarding how this approach should
be adopted during the whole lifecycle of the assets. Furthermore, to the best of our knowledge,
defining an efficient way of developing a component-based BIM object library has not yet been
included in any of the available studies. A mixed methodology approach has been used in this
research. A conceptual framework was developed as the result of an extensive literature review to
investigate new advancements in the AEC sector. Following the literature review, the framework was
tested and validated through a case study based on the production and adoption of a BIM library of
off-site components at the design stage of an asset. The architecture, engineering, and construction
(AEC) industry has recognised the necessity of a new approach that helps to resolve the well-known
issues presented in traditional methods of construction. The conceptual framework and case study
proposed presents a valuable new method of construction that support the implementation of a
BIM and DfMA approach, highlighting their benefits. This framework has been created using many
valuable and reliable sources of information. The result of this research supports the idea of a novel
new construction method that focuses on a manufacturing-digital-driven industry, with the use of
DfMA in a BIM-integrated approach. This novel method will add significance and be beneficial for a
wide range of aspects in the construction sector, contributing to the theoretical and practical domain.

Keywords: building information management (BIM); design for manufacturing and assembly
(DfMA); off-site manufacturing (OSM); design for deconstruction (DfD); circular economy

1. Introduction

Architecture, engineering, and construction (AEC) is widely recognised for its impact
as a socio-political-economic driver [1]. Where, for example, construction progress can
be seen to be dependent upon the supply and availability of materials, resources, and
skills—the culmination of which have ultimately influenced its evolution and subsequent
success/failure [2]. Moreover, as a sector, AEC is seen as a barometer of Gross Domestic
Product (GDP), and a core influencer of prosperity and global competitiveness [3]. Thus,
decisions made in this field (local, national, and international) affect everything we do,
from the type of projects procured through to the materials and resources consumed and
the wider impact of these on carbon use, sustainability, waste, etc. It is therefore important
that AEC considers these implications and repercussions for the whole-life value of these
services [4].

Despite the importance and contribution of AEC, historically, a number of recurrent
challenges have stifled progression, especially when compared to other sectors such as
aerospace, pharmaceuticals, the automotive industry, etc. These challenges have been well
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documented in literature, especially concerning the high levels of fragmentation and poor
levels of performance and productivity. More recently, in the United Kingdom (UK), issues
such as low productivity, project delivery uncertainty, skills shortages, and a general lack
of data transparency have been of concern [5]. Similar challenges have also been observed
in most other countries around the world, including the need to deliver homes to meet the
expanding population and housing crisis [3]. To address these issues, AEC has pursued
several change strategies, including novel approaches for delivering higher quality homes
in less time [6].

Other sector challenges include issues surrounding “process”, where it has been
acknowledged that many of these have not been revisited for some time now [4]. The
corollary of this has led to: inefficient project planning and methodologies; low productivity;
poor project predictability and uncertain delivery times; low quality products; higher costs;
and lower value. Skills shortages have also contributed to these challenges, where evidence
suggests that this shortage is due (in part) to an ageing workforce and lower numbers
of new entrants wishing to join the sector due to poor working conditions [7]. These
issues have been captured in numerous reports. For example, Farmer [8] observed that
the fragmented sector and “traditional” service delivery models were predominantly cost-
focused rather than value-focused; but that these issues could be addressed through new
approaches, such as off-site manufacturing. Anecdotally, both off-site and modern methods
of construction (MMC) have been proffered as viable solutions for many years now [8–14].

In parallel with these issues, several new approaches have now emerged, including
new tools and technologies to support design and construction. These include advance-
ments in technology and data management, new manufacturing techniques, and advanced
digitalisation and automation (construction 4.0). From a housing perspective, a number of
promising initiatives offer significant potential [15]. Many other technological solutions
have also emerged, from building information modelling (BIM) through to virtual reality
(VR), digital twins, and advanced discreet event simulation. While some research has been
conducted in this area, little attention has been paid to the assessment of the potential
of a BIM-DfMA approach that could offer additional insight into a possible solution to
these issues. This assessment would also present a theoretical framework for discussion,
highlighting an approach for creating sub-assemblies and component-based systems within
a prefabrication construction process, specifically to integrate MMC with BIM and supply
chain management (SCM).

1.1. Digital Tools for the AEC Industry

Digitalisation is continuing to reshape many industrial sectors, including AEC, where
digital tools have been gradually implemented for designing, constructing, and operating
buildings and infrastructure assets [16]. These initiatives are also opening many exciting
opportunities for wider exploitation. One of these major developments has been with BIM.
In this respect, several new approaches are now transforming the ways through which
AEC leverages this digital platform, particularly through the integration of products and
services. Whilst there are several definitions of BIM in extant literature, the following
definition is adopted in this paper, where the Construction Project Information Committee
(CPIC) defined BIM as:

“ . . . digital representation of physical and functional characteristics of a fa-
cility creating a shared knowledge resource for information about it forming
a reliable basis for decisions during its lifecycle, from earliest conception to
demolition.” [17]

As a digital tool, BIM can be broadly categorised as a computer-generated model
for the planning, design, construction, and operational stages of a scheme/project [18].
Where BIM is used to efficiently manage data (creation, maintenance, and utilisation)
and information across the whole asset lifecycle by all stakeholders involved [19]. In this
respect, this whole-life approach naturally involves people, processes, technology, and
standardised processes, and is seen as a viable way of sharing information from one project
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phase to another [20]. Advocates of this approach have noted higher quality coordination
between stakeholders, greater productivity, and improved profit retention [21]. These
benefits have also been seen to include: communication and coordination, sustainability,
health and safety, and process efficiency savings [22–25]. However, the adoption and
uptake of BIM in AEC seems to have been influenced by country-specific demand. This has
changed over the last five years, with the majority of countries now accepting BIM as the
preferred approach, in part promoted by governmental pressure. From a UK perspective,
Borrmann et al. [16] noted that the British government provided a noteworthy example of
this type of approach, highlighting the importance of reducing costs, enhancing efficiency,
and lowering the carbon footprint of construction projects, placing the UK “ . . . at the
vanguard of a new digital construction era . . . ”.

Reflecting on literature in this field, several studies have examined BIM in numerous
project scenarios, including off-site. For instance, the synthesis of off-site manufacturing
(OSM) and BIM have been seen to serve as beneficial solutions in terms of improved AEC
performance [26]. Examples include: Ezcan et al. [12], who noted improvements in speed,
modelling time, and quality of construction delivery using BIM; and Babic et al. [27] who
highlighted that the use of BIM with industrialised processes could support standardised
BIM objects (in BIM object libraries) for greater design flexibility. Moreover, the DfMA
concept, has also been useful in the delivery of OSM, especially with BIM, where this rela-
tionship has been seen to optimise the design and manufacturing processes, components,
and assembly [28]. Moreover, BIM can link DfMA activities (e.g., procurement, fabrication,
transport, installation, etc.) to upstream activities such as briefing, appraisals, and concep-
tual design, thereby improving communication and collaboration with stakeholders [29].

Similar studies by Wang and Skibniewski [30] evaluated BIM in the production of 3D
printing models to support engineers and improve construction results. These types of
evaluation are particularly useful, as BIM inherently captures rich geometric information. It
has also been suggested that this could be blended with scheduling and assembly sequences
to support 3D printing robots [31]; and several authors have highlighted this link between
BIM and 3D printing [30,32,33]. In summary therefore, whilst a number of advanced
digitalisation tools have now started to permeate the market, it is proffered that only a few
of these have been purposefully aligned to BIM, OSM, and DfMA.

1.2. Off-Site Manufacturing within AEC

As mentioned earlier, the increased use and application of OSM and MMC in AEC
is continuing to grow, evolve, and mature. Increasingly, BIM is now also starting to be-
come part of organisational delivery platforms. OSM provides prefabricated components
(from a factory or manufacturing facility), which are then transported to site for assem-
bly [34]. In this respect, the type and level of assembly required on site is dependent
upon the type of OSM used (as several options are available, from components through
to hybrid options, pods, and fully finished “plug and play” solutions). Notwithstanding
this, Abanda et al. [26] explained the advantages of OSM compared to traditional meth-
ods. Benefits include: improved quality, improved health and safety, better working
conditions, higher tolerances, lower costs, improved productivity, lower labour re-works,
reduced waste, consolidated processes, higher levels of sustainability, and greater reliabil-
ity [9,34–36]).

OSM projects tend to follow slightly different delivery approaches compared with
traditional projects, particularly across the design, manufacturing, and construction phases.
For example, they often use DfMA [9]. This approach is especially suited to OSM, where it
is noted that design techniques should be suitably selected and planned to make imple-
mentation much simpler [37]. This approach should also be flexible in order to regulate
design changes and accommodate levels of automation and standardisation. Intrinsically,
whilst the level of OSM varies considerably depending upon the exact method used [38],
each approach is based on the principle of assembled parametric components and modules.
These require well-organised process control and management systems to be in place,
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especially to ensure that the design and manufacturing plans coalesce [39]. In this respect,
the engagement of BIM with OSM has been seen to improve the design, communication,
manufacturing, and assembly approaches [9].

OSM classification is still unfolding [40,41], including taxonomy and links with in-
dustry foundations classes (IFC) for example. The Housing Forum [15] guide indicated
that several proposals aimed to encourage manufacturers to offer their systems through
international and accessible standards such as publicly available specifications (PAS), etc.
This standardisation is expected to guide specifiers, designers, and constructors to common
and standardised components, thereby improving accessibility and uptake, whilst also
reducing incompatibility risks.

In summary, the combination of OSM and BIM presents AEC with a number of
valuable solutions to meet industry needs. This integration captures and blends the
unique facets of each. For example, BIM supports high levels of accuracy, which directly
supports the optimisation of design, manufacturing, assembly, and deconstruction [26].
This resonates with the principles of DfMA used with OSM. It is therefore proffered that this
alignment could also help solve many of the integration issues associated with technology,
particularly with design changes and logistics [12]. In this respect, BIM is particularly
suited to this, as it is able to store specific information on attributes and components
throughout the design, manufacturing, and assembly lifecycle processes.

1.3. Design for Manufacture and Assembly

DfMA is an accepted approach for OSM with AEC [42] where it can be used to engage
with organisational processes to deliver designs in manufacturing and assembly [43] and
thus reduce the level of onsite activity. This methodology emphasises the relevance of
design for manufacturing and assembly of components, which ultimately form part the
final asset [29]. Broadly speaking, there are two main types of DfMA, notably: design
for manufacture (DfM) and design for assembly (DfA). DfM is relates to the process of
making individual parts, whereas DfA involves the ways of assembling them [43]. The
underlying concepts of DfMA are based on optimisation—where designers maximise the
delivery process for clients. This naturally includes all activities, from concept through to
automation and logistics. Whilst AEC has only really started to embrace this approach
more recently [44], the benefits are particularly encouraging with mass customisation or
high repetition. This repeatability or mass customisation enables products to be delivered
in volume, thereby embedding value into the production and delivery supply chains and
delivery processes [45]. Given this, AEC has now started to meaningfully look at blending
this approach with traditional delivery methodologies and digital design practices (of
OSM), to radically improve productivity, costs, value, and time.

From a concept perspective, DfMA relies on premise of standardisation, with repeat-
able processes and designs. Therefore, a key part of any decision (to adopt DfMA) is to
establish if the level of standardisation is sufficient to add value to the process (and end
product). The challenge here, therefore, is to assess whether this level of standardisation
affects (or indeed compromises) the end product, or indeed hinders functionality, the value
proposition, etc. In this respect, Digital Built Britain and Bryden Wood [46] advocated that
solutions should be interrogated and refined through a process of rationalisation, stan-
dardisation, and optimisation. Thus, the decision to adopt DfMA requires some thought
regarding, for example, the needs and demands of design, planning, adapting/optimising
designs, level of automation, etc., particularly at the early stages, to enable the seam-
less production of components their subsequent assembly onsite [28]. The methods by
which these projects are delivered, the off-site manufactured components used, and the
planning/logistics processes involved should also be considered [47].

Whilst literature highlights that the use and application of DfMA can produce products
more quickly that are safer and more resource/cost effective [48,49], these benefits are
contingent upon having effective systems and procedures in place to support them. For
example, a series of “teams” are required dedicated to this methodology. These may be
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engaged on producing one aspect of a building component (focussing on repetition) under
the same conditions, or across a platform of activities (focussing on productivity) to improve
value, quality, etc. [4]. This was endorsed by Milestone [50], noting the additional impact
on skills, particularly those needed to support technical advancement and innovation; and
especially the “need to embrace more productive construction methods” [15].

In summary, whilst DfMA is partially founded on the assumption that lowest assembly
costs can be streamlined, designed, and economically assembled [43], this is contingent
upon not only the design of parts per se, but also on the ease with which these can be
assembled [51]. However, the real challenge here concerns the effective use of BIM in
this process. Where DfMA can be more effectively managed through BIM, this includes a
number of activities, from procurement, through to: manufacturing, logistics, assembly,
construction processes (briefings, appraisals, conceptual design etc); however, the wider
acceptance and understanding of contributing project stakeholders must be present [28].
Moreover, from a technology perspective, the engagement of BIM and DfMA requires a
certain mindset, particularly to support the adoption and uptake of digital technologies
into the manufacturing process [52]. In doing so, data-rich DfMA models are seen as an
essential part of this process, where “ . . . BIM has a role in making the project less risky by
allowing the project team to simulate the construction virtually to identify potential pitfalls
way before the actual construction begins” [29].

1.4. Design for Deconstruction/Disassembly

Further to the discussion on DfMA, a number of research initiatives have now started
to investigate the use of this approach at end life of an asset’s lifespan. In particular,
solutions for dealing with deconstruction, disassembly, and disposal. This forms part of
the wider AEC debate on sustainability. In this respect, DfMA can include decommis-
sioning processes, as components or even whole buildings (in the majority of cases) can
be reverse engineered to accommodate this—commonly known as design for deconstruc-
tion/disassembly (DfD) [49].

DfD is increasingly being used to prompt designers to think about procedures support-
ing reuse and recycling, including preventive measures to avoid waste being unnecessarily
produced [53]. This encouragement of thinking about DfD from the outset for end-of-life
reuse is becoming very important within AEC [54]. Traditionally, there are only really
two real options available at the end of an asset’s lifecycle: demolition or deconstruction.
Demolition is used as a fast approach to asset removal, whereas, deconstruction is in many
respects the polar opposite, requiring considerable thought on the recuperation of building
materials for reuse, recycling, and remanufacturing [55]. Thus, DfD can be seen as a de-
tailed process where assets are specifically designed to facilitate not only adaptation and
renovation, but also the reuse of building materials and components [56]. This approach
requires an effective strategy to be engineered into the design from the outset, with consid-
eration paid to building materials, connections, loads, etc., insofar as the intrinsic design
supports deconstruction/disassembly, with chosen materials being recyclable and harmless
after the recycling process [57]. This requires developing a sustainable deconstruction plan
which examines all these factors, including cost, energy use, and carbon emissions [58].

Other initiatives in this area include the disassembly and deconstruction analytics
system (D-DAS), a method of utilising information modelling and decision support tools
to achieve effective end-of-life sustainability performance [59]. This approach plays an
important role at the design stage where deconstruction strategies are developed and
assessed in order to consider changes in the design and the fabrication of the components
(and the impact these may have on results). This type of thinking and approach supports
the wider efforts of supporting the circular economy (CE), where DfD offers opportunities
for developing components for reuse, remanufacture, or recycling [60].

In conclusion, DfMA and DfD have been seen to be particularly useful in addressing
sustainability concerns. If appropriately designed from the outset, these approaches can
minimise disposal and reduce end-of-life waste [59]. Moreover, the impact of DfMA and
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DfA has the potential to deliver other benefits, including lower assembly and manufactur-
ing costs, improved sustainability, and lower environmental impacts.

2. Materials and Methods

The work presented in this paper follows a mixed-method approach which captures
both qualitative and quantitative data. Secondary data was gathered from extant literature
in order to identify and explore state-of-the-art advancements in AEC and the manu-
facturing sector. From this, an initial conceptual framework was developed from this
exercise. In order to test and validate this framework, an exploratory case study was devel-
oped, where, primary data was collected to evaluate performance, features, opportunities,
and limitations.

The literature review process included an examination of a wide range of topics and
information gathered from journal articles, books, reports, conference papers, and disserta-
tions. Two stages were implemented in the literature review to raise the legitimacy and
reliably of the data sources. The first stage used keywords search from databases, such as
Springer, Scopus, Elsevier, etc. The second stage refined this process with pattern matching
against core publications and reports in light of industry developments, legislation, and
emerging technological solutions entering the market. This encompassed the use of propri-
etary industry databases such as BIM Task Group, Build Offsite, Homes England, National
Buildings Specifications, and Construction Leadership Council (CLC). These two stages
used Nvivo software to organise and analyse the non-numerical data. The data were
classified by topic, including relationships. These findings helped to establish the initial
conceptual framework. The exploratory case study phase was then undertaken to critique
this framework. Primary data was captured from this case study and used to develop a
prototype. This prototype was developed using Autodesk Revit software in order to obtain
exhaustive information on the standardisation and automation details required for this
new proposed method.

2.1. Design for Manufacture and Assembly: Framework Development

This section presents a DfMA conceptual framework for discussion. This includes
aspects of the different approaches analysed in this study, such as OSM, DfMA, and DfD,
with BIM as the central connection point. This framework—highlighted in Figure 1—
presents all links and dependencies, divided into eight stages following the Royal Institute
of British Architects (RIBA) Plan of Work 2013. This was adopted in order to highlight the
importance of the approaches that defined this new method of construction. A final stage
“end-of-life” section was added to accentuate that this process is cyclical, and component-
based systems could be reutilised or reused, thereby encouraging DfMA. Every phase
of the framework will be individually explained underlining the key aspects of every
stage. Although, every task and activity enclose some level of dependency with each other
warranting that the aim of each stage is accomplished.

To facilitate discussion, the framework development process is divided into the fol-
lowing four core parts:

• Preparation phase
• Design and pre-construction phases
• Construction/assembly to close-out phase
• Use and reuse/demolition phases.

2.1.1. Preparation Phase

During the preparation phase (strategic definition; preparation and brief), a strategic
brief is developed using a BIM object library based on a set of components (that can be used
across different multiple projects). This also considers how CE issues can be implemented.
The strategic definition and preparation and brief stages help define the project objectives,
including the requirements for DfMA, where the use of smart contracts are contemplated. A
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BEP (BIM execution plan) is then designed to ensure that the asset is designed in accordance
with client’s requirements. Along with the BEP, constructability issues are established.
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2.1.2. Design and Preconstruction Phases

At the design phase (concept design; spatial coordination), the BIM object library (the
development of the BIM object library is discussed later) is used to create a conceptual
3D model. Here the design follows the DfMA and DfD approaches in order to obtain all
the benefits that these methods offer, such as: mass-construction, improved productivity,
and end-of-life sustainability performance. Buildability is also included, along with the
availability and capabilities of known products and suppliers, especially the use of stan-
dardisation to automate production. Subsequently, at the Spatial Coordination stage, a
federated model is designed. This includes cost estimation, scheduling, health and safety,
and risk assessments strategies. These strategies are based on OSM and additive manufac-
turing environments. This phase also establishes the manufacturing technique and defines
the deconstruction plan.

During the technical design stage (pre-construction phase), the federated BIM model
reaches the next level of development, where this includes radio-frequency identification
(RFID) in selected components. Components are also defined with a higher level of detail
(LoD) and level of information (LoI). This includes the process of automation and data shar-
ing to facilitate design coordination. Together, the model is then validated following the em-
ployers information requirements (EIR) prior to entering the construction/assembly phase.

2.1.3. Construction/Assembly and Close-Out Phases

During the construction/assembly stage, the final model and digital production strat-
egy is forwarded to the chosen factory. Once the components have been produced and the
quality control process completed, the components are then released to site in accordance
with logistics and the buildability method. The assembly process then commences on site.
During this process, digital tools such as the Internet of Things (IoT) enable stakeholders
to track each step of the manufacturing, packing, logistics, and delivery process. At the
handover and close-out stage, all relevant information for the maintenance of the asset
is linked to the 3D model for conformance. Of particular note, the information captured
through these two stages can be linked to peripherals such as IoT-driven products, laser
scanners, photogrammetry technology, or drones. Information from these services can then
be analysed to for predictive pattern matching (to help to future projects).

2.1.4. Use and Demolition/Reuse Phases

In the use and maintenance stage the asset is continually monitored and aligned with
the facilities management (FM) BIM model in order to keep this data up to date. Energy
consumption and production is tracked along with the performance of the components
(using RFID where available). This continuous tracking also enables components to be
analysed, thereby enabling repairs or replacements to occur much sooner than through
conventional approaches. This is also particularly advantageous for components with fixed
warranty periods. In this respect, this functionality can be embedded into smart contracts
at the preparation and brief stage, along with the ownership of components, etc. The use
of OSM is also seen as being suited to this stage, as the use of standardised components
with easy assembly/disassembly techniques more readily supports design changes, etc. In
the final stage of the conceptual framework, the end-of-life stage is presented. This covers
how the asset and its components will be disassembled, reused, or recycled. This follows
the principles of DfD and CE. In doing so, this helps minimise construction and demolition
waste and also supports cradle-to-cradle initiatives (rather than cradle-to-grave).

2.2. DfMA Feasibility Case Study

A case-study method was selected to evaluate the efficacy of the initial framework.
In order to get the primary data from the case study, a prototype was developed using
Autodesk Revit software to obtain a more exhaustive and comprehensive information on
the standardisation and automation of the new proposed method.
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2.2.1. Core Components Identification

The proposed framework introduces the utilisation of a BIM object library formed by
a set of core components. These components were specially selected for this case study and
were identified by a process of rationalisation, standardisation, and optimisation (Figure 2).
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During the rationalisation phase, analytical tools were applied to select similar ele-
ments in order to determine the degree of variation in order to satisfy a number of common
solutions with a high degree of occurrence. The second stage involved redefining elements
to achieve reliable layouts along with specified materials and other requirements. Whereas
the third stage (optimisation) entailed analysing components in order to obtain repeatable
elements, whilst also optimising the use of materials. The results from this three-stage
process generated a set of components suitable for mass production.

2.2.2. BIM Object Library Development

BIM library components should be defined and classified in a format that enables
and facilitates information transfer. This classification process should therefore be clear
and in a form readily understood by AEC professionals; and more importantly, each
component should be uniquely named and described. Given this, a library for international
use and common data standards was adopted for developing the coding convention.
Standards such as BS 8541-1, BS EN ISO 19650, BS EN ISO 13567, and UNICLASS 2015 were
implemented together with the American Institute of Architects (AIA) Framework to
indicate the level of detail (LoD) and level of information (LoI). Figure 3 presents the BIM
library coding convention created for this case study.

The general classification of components was primarily based on their functionality,
ergo structural elements, walls (non-structural), floors, and roofs. For the purpose of
this study, components were designed to LoD300 (detailed design), although given the
new method of construction, the BIM library should include LoD400 components (where
information for manufacturing and assembly are specified). All components were treated
as generic objects, insofar as their novelty or distinctiveness was not attributable to any
specific library or manufacturer. Focusing on their type, components were classified
through standards; mechanical, electrical, and plumbing (MEP); and aesthetics (where
components included an aesthetic feature such as a door or window). Whilst developing
this case study, a fourth type was added—where the same component presented MEP
and aesthetic characteristics. Of note, the subtype indicates the location of the component:
external, internal, or assembled to foundations in the case of floors. In addition, as part
of this case study, another coding system (alphabetically based) was added to similar
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components where needed in order to highlight different attributes such as the length
of walls, etc. From this, a set of standardised components was concluded. These were
considered more optimal and favourable elements for use in the BIM library (given the
proposed new method of construction). These components can be seen as follows:

• EF_20_10-300-AEST-EXT
• EF_20_10-300-AEST-INT
• EF_20_10-300-MEP&A-EXT
• EF_20_10-300-MEP-EXT
• EF_20_10-300-STND-EXT
• EF_20_10-300-STND-INT
• EF_20_10-300-MEP-INT
• EF_25_10-300-MEP&A-INT
• EF_25_10-300-STND-INT
• EF_25_10-300-MEP-INT
• EF_25_10-300-AEST-INT
• EF_30_10-300-STND
• EF_30_20-300-MEP
• EF_30_20-300-MEP-FDATION
• EF_30_20-300-STND
• EF_30_20-300-STND-FDATION
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Table 1 presents the BIM library component descriptions used in this case study.

Table 1. BIM library components descriptions.

1 EF_20_10-300-AEST-EXT

Element/Function Structural element
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Table 1. Cont.

3 EF_20_10-300-MEP&A-EXT

Element/Function Structural element
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Subtype Interior

11 EF_25_10-300-AEST-INT

Element/Function Wall (non-structural)

LoD Detailed design

Source Generic object

Type Aesthetic

Subtype Interior

12 EF_30_10-300-STND

Element/Function Roof
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2.2.3. Technical Specifications for Standard Type Components

Four main types of components were developed for this case study. Standard compo-
nents were used as a basis for the creating the other main types. Whilst structures were
not expressly included in this case study, the walls, roofs, and floors were designed to
comply with such issues as stability, logistics management, etc. In addition, materials
and standardised components were carefully chosen to satisfy standards and building
regulations ergo insulation and sound proofing properties. The technical specifications of
these are presented as follows:

• EF_20_10-300-STND-EXT: External standard structural walls components were de-
signed to be 7.5 m long, within three structural columns, and a selection of layers
(including insulation and waterproof membrane). For visualisation purposes, some
layers were set up with a grade of transparency.

• EF_25_10-300-STND-EXT: Internal standard non-structural walls components were
designed to be a maximum of 4 m long with layers that guaranteed the correct
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level of insulation. For visualisation purposes some layers were set up with a grade
of transparency.

• EF_30_10-300-STND: Standard roof was designed considering logistics and the most
efficient way to transport and assemble this component. Components not exceeding
9–10 m were considered suitable for this purpose. For visualisation purposes some
layers were set up with a grade of transparency.

• EF_30_20-300-STND: Standard floors were designed following the same criteria for
roofs regarding logistics. For visualisation purposes some layers were set up with a
grade of transparency.

2.2.4. Prototype Design Based on DfMA

Revit 2020 software was used to create a working prototype in order to corroborate the
effectiveness of the components in the design stage. A set of components proposed in the
BIM library were used to design a two-bedroom house. This building was semi-detached
and divided into two floors in order to utilise a variety of components. Figure 4a presents
the layout of the ground floor and Figure 4b presents the layout of the first floor. This
arrangement consisted of a living room, open-plan kitchen to dining room, and a toilet.
Prefabricated stairs were located in the living room leading to the first floor. This consisted
of two double bedrooms and a bathroom.
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Through Revit components were renamed to add extra information; specifically, smalls
changes made to original components such as location or sizes. This extra information was
added using letters A–D. The following set of components were used in this case study:

• 4 × EF_20_10-300-AEST-EXT
• 1 × EF_20_10-300-AEST-INT
• 1 × EF_20_10-300-MEP&A-EXT_A
• 1 × EF_20_10-300-MEP&A-EXT_B
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• 1 × EF_20_10-300-MEP&A-EXT_C
• 1 × EF_20_10-300-MEP&A-EXT_D
• 2 × EF_20_10-300-MEP-EXT
• 1 × EF_20_10-300-STAND-INT
• 2 × EF_20_10-300-STND-EXT
• 1 × EF_25_10-300-MEP&A-INT_A
• 1 × EF_25_10-300-MEP&A-INT_B
• 1 × EF_25_10-300-MEP-INT_A
• 1 × EF_25_10-300-MEP-INT_B
• 2 × EF_25_10-300-STND-INT
• 1 × EF_30_10-300-STND_A
• 1 × EF_30_10-300-STND_B
• 1 × EF_30_20-300-MEP
• 1 × EF_30_20-300-MEP-FNDTN
• 1 × EF_30_20-300-STND-FNDTN_A
• 1 × EF_30_20-300-STND-FNDTN_B
• 1 × EF_30_20-300-STND_A
• 1 × EF_30_20-300-STND_B

The final prototype of this two-bedroom house can be seen in Figure 5.
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3. Results & Discussion
3.1. General Case Study Findings

During the development of this case study, a BIM object component-based library was
developed following a process of rationalisation, standardisation, and optimisation. This
followed standards and protocols concerning coding convention. The use of this library
mirrored the strategic definition stage and adopted the principles of DfMA. These findings
aligned with standard agreements. From this, a conceptual design was developed utilising
the BIM object component-based library. Prior to the design of this, key model components
were identified and used to create this library. Findings from this case study helped achieve
a deeper understanding as to how the conceptual design phase aligns to DfMA principles.
Specific findings are discussed further in the following sections.

3.2. BIM and DfMA Strategy Findings

The decision to adopt BIM methodology was made on the basis that this seemed to be
the fundamental principle adopted in AEC. This was not only reinforced in the literature but
has also been acknowledged through several different studies and numerous worldwide
governmental reports. Given this, the doctrine of BIM was uniquely embedded in all stages
of the conceptual framework, particularly to ensure effective delivery. This also helped in
managing information and decision-making through transparent coordination processes
and a common data environment. From a findings perspective, this also supported the
early involvement of manufacturer(s), enabling cross references to be made with the EIR
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as part of the design process. From this case study, a component-based BIM object library
was developed in accordance with standard coding conventions, supported by a 3D model,
where for example, through the BIM library, relevant data can be edited and updated during
the asset’s lifecycle. In this respect, the findings highlighted that BIM was particularly
suitable for enabling this new method of construction.

That being said, it is equally important to acknowledge that (after analysing all data),
the successful implementation of a new method such as this (based on manufacturing)
requires people with appropriate levels of skills and knowledge to make this happen. In
particular, there is a specific need to engage stakeholders from the outset. Early engagement
and collaboration are key in every part of the process. In this respect, BIM can help, as
this technology-driven solution is uniquely placed to support digital design and digital
manufacturing methods.

From a technical perspective, the proposed component-based BIM library was per-
fectly suited to OSM, where the set of components proposed in this paper were expressly
designed to be standardised (to enable mass production). In doing so, this library supports
automation, whilst also being flexible enough to incorporate some degree of customisation.

In this research it has been proven that a component-based library offers the majority
benefits of standardisation and also a degree of adaptability that the new method of
constructions needs to succeed. This approach provides to the client the choice to select
from a standardised set of components, guaranteeing in this way a degree of adaptability
and bespoke products as requested by the industry, along with solutions for traditional
construction approach problems such as unforeseen environment conductions, lack of
predictability, and poor productivity.

In summary, the findings from this research demonstrated that incorporating DfMA
and DfD principles into the early stages of a project is possible. The component-based BIM
library can be created to follow DfMA principles. In doing so, designs can be optimised to
support assembly (and disassembly).

3.3. Discussion

This research reflected on the wider challenges facing AEC and the need to reflect
on issues such as OSM, BIM, DfMA, etc. In doing so, it was evident from that the outset
that whilst a number of significant developments have been made in these areas, that there
were still several areas that require further work, particularly to harvest the benefits of
OSM and DfMA with technology driven tools such as BIM, the IoT, Blockchain, etc. The
case study presented in this paper highlighted a number of challenges and opportunities.
It is also important to note that not all of these issues could be resolved due to project scope
and complexity, aesthetic requirements, logistics, component spans, design typologies, etc.
Notwithstanding these issues, the use of parametric and generative design was considered
a good starting point of departure for this study.

The development of this conceptual framework provided an opportunity to develop,
test, and validate some of the theoretical underpinning this work. For example, the time
spent designing the parametric BIM library was particularly beneficial, as it presented an
opportunity to evaluate what could and could not be achieved. This was especially impor-
tant, as AEC needs to have tools that are “fit for purpose”, especially when transitioning
from traditional working practices to those more manufacturing-oriented. It was therefore
important to not only capture and “absorb” these into the finished product, but to try and
exploit these opportunities in line with AEC needs—cognisant of a number of high-level
challenges, including: process inefficiencies, waste, health and safety, communication,
automation, predictability, quality, etc.

Reflecting upon these core challenges, the conceptual framework was designed to
support collaboration and coordination, especially in the early design stage. In particular,
the ability to simulate processes through 3D, 4D, 5D, and 6D BIM models was seen as
particularly beneficial. That being said, it was acknowledged through this case study
that in order to fully maximise these benefits, a certain degree of workforce upskilling
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would be required. This includes the involvement of digital specialists and design teams
conversant in DfMA. It is also recommended that these skillsets also embrace Blockchain,
Smart contracts (including integrated procurement methods), advanced digital platforms,
and strategists capable of levering innovation from these new systems and technologies.

4. Conclusions

This paper highlighted a number of recurrent challenges facing AEC. In doing so,
OSM was suggested as one possible solution. This was expanded to include DfMA,
including the need to embrace technologies such and BIM and GD. From this, a conceptual
framework was presented for discussion, covering four main phases (preparation; design
and pre-construction; construction/assembly to close-out; and use and reuse/demolition).
These phases were discussed along with the technical requirements needed. This included
the creation of a BIM object component-based library, along with a worked example
prototype based on a two-bedroom house. The findings highlighted a number of significant
advantages in using this approach. It also highlighted a few technical challenges; but
(arguably) more important perhaps, the need for AEC upskilling. Whilst this work is
still embryonic, it is therefore recommended that any generalisation, inference, or future
replication is countered by the inclusion of additional test data and case study work in
order to improve the veracity of these findings.

Finally, it is proffered that AEC is now entering a new technological era, where
almost anything is possible. This statement is made from a somewhat halcyon perspective,
insofar as technological solutions are possible whenever or wherever a need exists. This
requires considerable effort from all. The old adage of “limited job security, harsh working
conditions, and poor health and safety” may still exist in some parts of the industry.
However, the obverse is equally true, evidenced through many innovative companies
pioneering OSM—most of which are showcasing highly flexible and value-laden solutions.
These companies have already resolved many of the challenges raised earlier in this paper.
Moreover, they are championing new products and divested services through OSM. This is
very encouraging given the transition to Industry 4.0. The findings from this case study
provide an important step in this direction, particularly through the use of bespoke BIM
libraries, DfMA methodologies, and GD-driven solutions.
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