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Abstract: Supervisory Control and Data Acquisition (SCADA) systems play a significant role in pro-
viding remote access, monitoring and control of critical infrastructures (CIs) which includes electrical
power systems, water distribution systems, nuclear power plants, etc. The growing interconnectivity,
standardization of communication protocols and remote accessibility of modern SCADA systems
have contributed massively to the exposure of SCADA systems and CIs to various forms of security
challenges. Any form of intrusive action on the SCADA modules and communication networks
can create devastating consequences on nations due to their strategic importance to CIs’ operations.
Therefore, the prompt and efficient detection and classification of SCADA systems intrusions hold
great importance for national CIs operational stability. Due to their well-recognized and documented
efficiencies, several literature works have proposed numerous supervised learning techniques for
SCADA intrusion detection and classification (IDC). This paper presents a critical review of recent
studies whereby supervised learning techniques were modelled for SCADA intrusion solutions. The
paper aims to contribute to the state-of-the-art, recognize critical open issues and offer ideas for
future studies. The intention is to provide a research-based resource for researchers working on
industrial control systems security. The analysis and comparison of different supervised learning
techniques for SCADA IDC systems were critically reviewed, in terms of the methodologies, datasets
and testbeds used, feature engineering and optimization mechanisms and classification procedures.
Finally, we briefly summarized some suggestions and recommendations for future research works.

Keywords: artificial neural network; classification; critical infrastructures; industrial control systems;
intrusion detection; supervised learning; SCADA; support vector machine

1. Introduction

Supervisory Control and Data Acquisition (SCADA) systems play a significant role
in providing remote access, monitoring and control of critical infrastructures (CIs), which
includes power systems, water distribution systems, gas plants, wastewater collection sys-
tems, etc. [1–4]. The stringent real-time requirements, growing interconnectivity, standard-
ization of communication protocols and remote accessibility of modern SCADA systems
have contributed massively to the exposure of the infrastructures to various vulnerabilities
and security challenges such as sabotage, terrorism and intrusions [5–8]. Historically, when
SCADA systems were initially deployed, the goal was to improve CIs’ efficiency and effec-
tiveness with little consideration of the potential future security challenges [9,10]. In fact,
back in the days, SCADA security issues were majorly due to environmental challenges
and equipment failures due to wear and tear. However, advancement in technology in
recent years have shifted the focus to varieties of security challenges, which includes cyber
intrusions and attacks [11–14]. Proprietary SCADA systems’ components which includes
the human machine interface (HMI), sensors, master terminal units (MTU), remote terminal
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units (RTU), etc. are vulnerable to different forms of intrusions [5,15,16]. Also, the various
protocols being used for communication, which include Modbus, DNP3, Profibus, etc.,
can be remotely targeted, via cyberattacks [4]. Apart from severe operational instabilities,
failures, financial losses, etc., SCADA systems vulnerabilities and security challenges can
have serious devastating consequences on nations due to their strategic importance to the
various CIs [9,17,18]. As explained by the authors in [19,20], documented SCADA systems
cyberattacks such as the Stuxnet, Aurora, etc. have shown the grave harms that adversaries
can accomplish. The ugly reality is that the attacks and intrusions that target SCADA
networks and industrial control systems (ICS) are geometrically increasing in recent times.
According to [21], 56% of organizations using SCADA/ICS reported cases of intrusions
between the second quarter of 2018 up to the second quarter of 2019. Based on the Trend
Micro Zero Day Initiative (ZDI) report [22], Figure 1 depicts a record of the number of
discovered SCADA vulnerabilities from the year 2015 to 2019.
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The prompt detection and classification of these SCADA security menaces has con-
sistently been very challenging. With the huge cyber-presence from the various SCADA
infrastructures across numerous modern ICS facilities, coupled with the voluminous data
generated from the various SCADA sensors and other infrastructure, it is hugely vital to
devise modern measures and models that can learn and discover irregular patterns in the
SCADA system data and reach meaningful conclusions in the prediction, detection and
classification of SCADA intrusions [23].

Historically, most of the proposed security models for traditional SCADA networks
were based on statistical formulation theories. However, these models struggle in han-
dling modern SCADA systems due to their complex nature. This limitation calls for
better methodologies, such as data driven approaches like machine learning and deep
learning methods. The data driven methods have better computing capacity to handle
voluminous SCADA datasets, with huge number of features and variables. In fact, SCADA
intrusion detection and classification (IDC) is currently one of the most significant areas
of machine learning applications. This reflects the increasing number of publications
involving machine learning models for SCADA security in recent years. Using a decade
gap, and starting from the year 1991, Figure 2 presents an estimate of the number of ma-
chine learning-based SCADA security publications, whereby various machine learning
models were proposed/deployed for solving and mitigating SCADA security problems
including IDC. The publications’ statistics in Figure 2 are acknowledged in terms of rele-
vance using [24]. Logically, machine learning algorithms are not the definitive solutions
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to all SCADA security menaces. However, they present powerful set of tools that justify
thoughtful consideration in dealing with intrusion menaces.

Figure 2. Popularity in machine learning based SCADA security models.

Traditionally, based on the structure and characteristics of datasets, machine learn-
ing algorithms are grouped as supervised, semi-supervised and unsupervised learning.
Supervised learning algorithms are designed to learn the correlations between features
in the training dataset, in order to create a predictive model that has the capacity to infer
annotations for another dataset with unknown annotations [23]. On the contrary, unsuper-
vised learning algorithms do not need labelled output. Instead, the goal is to infer some
underlying structure that is present within the set of input data points. Semi-supervised
learning techniques fall between supervised learning and unsupervised learning [25].
Semi-supervised learning is a type of learning whereby the algorithm is trained upon a
combination of labelled and unlabeled datasets.

Supervised learning is arguably the most prominent learning approach for SCADA se-
curity tasks. As illustrated in various SCADA security studies in the literature, researchers
use the features in the SCADA dataset as training set to infer a model for predicting the
annotations of the features in the testing dataset. This paper presents a critical review
of recent research works whereby supervised learning algorithms ranging from artificial
neural networks (ANN), k-nearest neighbors (k-NN), etc. were modelled for SCADA IDC.

Several articles in the literature has surveyed SCADA security from different view-
points. Ferrag et al. [26] surveyed SCADA cyber-security challenges and discussed several
solutions including data mining solutions. Similarly, Upadhyay [3] reviewed SCADA
vulnerabilities and recommendations to strengthen SCADA security. the authors in [27]
reviewed SCADA cyber-security risk assessment methodologies. Tariq et al. [1] reviewed
cyber threats and defense mechanisms for securing SCADA-based CIs. Rakas et al. [16]
focused on network-based solutions for SCADA intrusions. Yaacoub et al. [20] reviewed
several security features including vulnerabilities, threats and intrusions. Rezai et al. [10]
reviewed key management challenges in SCADA systems. Furthermore, the authors dis-
cussed several applications, technologies, standards and communication protocols while
identifying and analyzing their limitations. Ahmim et al. [28] also presented a review on
intrusion detection systems for SCADA systems. In contrast to other review works in the
literature, we critically review, analyze and compare different supervised learning tech-
niques for SCADA IDC, focusing on the methodologies, datasets and testbeds used, feature
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engineering and optimization mechanisms and classification procedures. The paper aims
to contribute to the state-of-the-art research and recognize critical open issues. We intend
to provide a comprehensive summary of research and trends for researchers working in
the area of ICS/SCADA security. Finally, we briefly summarized some suggestions and
recommendations for future research works.

The rest of the paper is structured as follows. Section 2 briefly describes the method-
ology adopted for the review. Section 3 presents a brief overview of modern SCADA
architecture. In Section 4, we analyze and discuss some prominent supervised learning
for SCADA security. In the Section, we analyze the processes of using supervised learning
algorithms for SCADA IDC, especially in terms of datasets and testbeds used, feature
engineering and optimization mechanisms and classification procedures. In Section 5, we
summarized some suggestions and recommendations for future research works. Finally,
the last section presents the conclusions.

2. Materials and Methods

In this paper, the authors conduct a comprehensive state-of-the-art review of recent
research studies whereby supervised learning techniques were modelled for SCADA
IDC. The state-of-the-art research was conducted using popular databases, which include
MDPI database, IEEE Explore database, springer database, google scholar database, Wiley
online library, ACM digital library, Elsevier database, etc., in order to search for relevant
publications. The methodology and criteria used to include a published paper in this work
include, but are not limited to, a focus on solving SCADA intrusion detection problem
using supervised learning model. For the publication time span, the focus was mainly on
recent research works, from the 2018 to 2021. Multiple searches were performed between
January 2021 and July 2021. By focusing on recent trends on supervised learning algorithms
for SCADA security, the paper intends to provide help to researchers working in the field
of ICS security.

3. Brief Overview of Modern SCADA Architecture

Typical modern SCADA system combines hardware components and software pro-
grams that operate in a pervasive manner. The components are interconnected using
varieties of wired and wireless communication standards. Major architectural components
of a modern SCADA system include: field devices, RTUs, MTUs, programmable logic
controllers (PLCs), intelligent electronic devices (IEDs), HMI, Historian, etc. [5,16]. Figure 3
presents the simplified architectural structure of a SCADA system. A typical SCADA
network collects data from the field devices (sensors, actuators, etc.), which directly engage
with the CIs physical equipment such as pumps and valves [29]. The RTUs, PLCs, IEDs as-
sist in retrieving real-time data from the field devices, which control and monitor the actions
of the CIs’ process [30]. Modern day RTUs, IEDs, etc. are technologically advanced. They
send the received data to the MTUs for analysis and processing [3]. Basically, MTUs are the
central monitoring station and they assist in the distribution of control commands and data
from field devices to control centers. The overall control of the operation is conducted in
the control centers, which consist of computers, databases, servers, HMIs, etc. The statuses
of the monitored and controlled physical processes are presented on the HMI consoles [2].
Moreover, HMIs present a graphical display of various emergency notifications, such as
alerts and warnings, which allow operators to interact with the systems [7,31]. Historians
are databases that store the various data gathered by the SCADA systems. The stored data
in the historians are used for purposes such as auditing and analysis. As SCADA networks
are increasingly adopting certain technologies, vulnerabilities, intrusions and cyberattacks
are increasingly becoming major challenges [32,33]. Yadav and Paul [19] explained that, in
order to support effective remote access, some of the SCADA nodes are connected to the
internet, which exposes them to varieties of network based attacks.
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Figure 3. A simplified architecture of a typical SCADA system [5,16,17,34,35].

In recent years, it has become increasingly challenging to protect SCADA systems
using traditional methods. As viable alternatives, data mining and analytics methodologies
which include machine learning and deep learning models are continuously being proposed
as they present exciting advantages, such as high performance, high speed of execution
and effectiveness. Generally, data mining and analytics involve the process of learning and
identifying patterns or trends in datasets [36].

4. Supervised Learning for SCADA Security

Supervised learning algorithms are aimed at training labelled input data for a par-
ticular output [25,37]. The algorithms are trained to detect some underlying patterns
between the input dataset and the output labels, which allows them to successfully la-
bel unlabeled dataset [31]. Based on the mode of the learning task, supervised learning
algorithms are basically categorized into regression and classification. While the out-
put for the regression category takes continuous values and contains an interval on the
real line, the output for classification type takes categorical values and they are tagged
class labels. Popular supervised learning algorithms include k-NN, ANN, random forest
(RF), Bayesian networks (BN), decision tree (DT), etc. Supervised learning algorithms
have been consistently and successfully proposed in solving various non-linear problems
and fields, such as bioinformatics, handwriting recognition, spam detection, and SCADA
IDC. In the literature, various SCADA security researchers have proposed and modelled
numerous supervised learning algorithms such as ANN, NB, etc. for SCADA IDC. As
explained in [5], data mining and analytics approach for SCADA IDC involves three major
processes: Testbed design/dataset generation, feature engineering/preprocessing and
prediction/classification/detection.

4.1. Datasets Generation Mechanism Overview

The most important element for the utilization of supervised learning algorithms in
SCADA security studies is the deployed dataset/testbed. For the effective application
of the various supervised learning algorithms, it is important to have sufficient dataset
for the algorithm’s training process. Researchers use the features in the SCADA data
as training dataset to induce a model for predicting the feature instances in the testing
dataset. In the literature, different types of datasets have been deployed in the supervised
learning based SCADA security studies. While several authors used various open source
datasets such as the popular Knowledge Discovery and Data Mining (KDD99) dataset [38],
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UNSW-NB15 dataset [39], iTrust SWAT dataset [40,41], etc., others have modelled differ-
ent SCADA imitation testbeds using hardware devices and/or software simulators for
generating datasets. A detailed review of cyberattack simulation tools was conducted
by Nazir et al. [42]. During testbed simulations and dataset generation, diverse attack
scenarios are modelled to create well-structured and balanced datasets that mimic real life
SCADA intrusion event situations. Some of the popular cyberattacks are denial of service
(DoS), false data injections, man-in-the-middle (MITM), etc. [30,43]. To generate a dataset,
the authors in [44] and [45] used the popular open source network simulator, Network
simulator 2 to model a SCADA system. The authors in [6] used Omnet++ simulator to
model a SCADA system. In a related work, Queiroz et al. [46] used SCADASim for building
SCADA system. A detailed review of SCADA simulators were done by Mathioudakis
et al. [47]. Using a different approach for generating SCADA dataset, the authors in [48]
used virtual host Nova and PLC by HoneyD. Similarly, Yang et al. [49] set up several
SUN servers and workstations in their security work. The authors in [50] simulated a
testbed involving both hardware and software tools which include Allen Bradley PLC
controller, Ethernet network, Nmap, Nessus, MetaSploit, etc. to generate SCADA dataset.
Branisavljevic et al. [51] used the Belgrade sewage system as testbed to generate SCADA
dataset. Yadav [7] presented a detailed review and comparison of several SCADA testbeds
developed by various researchers.

Due to the scarce availability of resources among other factors, numerous authors
in the literature make use of open source data in their SCADA security studies. The
first open source intrusion detection dataset was generated in February 1998 by Defense
Advanced Research Project Agency (DARPA), in the MIT Lincoln Laboratory and they
initially created the KDD98 dataset [52]. The dataset containing simulated intrusions is
made up of network traffic and audit log files. The KDD98 dataset was used for creating
the KDD99 dataset. Of all the public datasets used in supervised learning algorithms based
SCADA security studies, KDD99 is the most deployed dataset. The dataset was generated
from five weeks of experimentation to generate training and testing datasets. Furthermore,
the KDD99 attack vectors are categorized as DoS, Probe, Root 2 Local (R2L) and User 2 Root
(U2R) [38]. The authors in [48,49,53–55] and several others deployed KDD99 dataset in
their SCADA security studies. However, the dataset has been heavily criticized for having
a lot of duplicate and redundant records. To improve on some of the KDD99 dataset’s
limitation, the NSL-KDD dataset was developed by Tavallaee et al. in 2009 [56]. The
NSL-KDD dataset does not contain a huge amount of duplicate and redundant packets.
Another public dataset, popular among supervised learning algorithm-based SCADA
security studies, is the SWAT dataset developed by the iTrust Centre for Research in Cyber
Security, Singapore University of Technology and Design (SUTD) [41]. The SWAT testbed
framework for the dataset generation is a water distribution system, which is made up of a
six-stage process that imitates an actual water treatment facility. For the dataset generation,
operation was run for 11 consecutive days, seven days out of the 11 days were run as
normal operation while the remaining four days were run under attack scenarios. The
authors in [13,57–61] and several others used the SWAT dataset in their research works.
Another dataset that is popular within supervised learning algorithms based SCADA
security studies is the Mississippi State University (MSU) gas pipeline system SCADA
dataset [33]. Table 1 presents a comparison of some popular open source datasets that are
commonly deployed in studies involving supervised learning techniques for SCADA IDC.
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Table 1. Comparison of commonly deployed open sourced datasets in SCADA security studies [25,39,56,62–72].

Dataset Published
Year Developer Brief Description and Comparison: Features and

Scenarios Attacks Type

DARPA
(KDD98) 1998 MIT Lincoln

Laboratory

Recognized as the earliest open source dataset for
intrusion detection studies. It is made up of

network traffic and audit log files, which were
collected from several internet-linked computers.

The training and testing dataset contains seven and
two weeks, respectively of network-based attacks

in the midst of normal background data.

U2R, R2L, Probing, and
DoS attacks

KDD99 1999 University of
California

It is an upgraded version of KDD98 dataset. It is
made up of approximately 4,900,000 vectors with

41 features, which are categorized into basic, traffic
and content features. The dataset generation

involves three weeks and two weeks of training
and testing respectively. The secondnd week of

training data contains several attacks. The testing
dataset involves network-based attacks in the midst
of normal background data. It has 201 instances of

about 56 types of attacks distributed across the
testing weeks. The dataset is heavily criticized for

having too many duplicate feature instances.

U2R, R2L, Probing, and
DoS attacks

NSL-KDD 2009 University of
California

The dataset is developed to solve the issues of huge
duplicate and redundant packets that is attributed

to the KDD99 dataset. As a result of removing
duplicate and redundant packets, the dataset
contains approximately 150,000 records. The
dataset has similar properties and classes as
KDD99 dataset i.e it also has 41 features. The

training and testing dataset includes 24 and 38
attack types, respectively.

U2R, R2L, Probing, and
DoS attacks

UNSW-NB15 2015

Cyber Range
Lab of UNSW

Canberra,
Australia

Unlike previously developed open source datasets,
the UNSW-NB15 dataset present a depiction of

modern-day network traffic and attack scenarios.
The dataset packets were created using tools such
as IXIA Perfect-Storm, etc. The dataset contains a

variety of normal and attacked activities with class
labels of 2,540,044 records with 49 features. The
dataset is heavily criticized for having too many

duplicates in the training set.

Fuzzers, Analysis,
Backdoors, DoS, worm,

Exploits, Generic,
Reconnaissance,

Shellcode.

KYOTO 2006–2009 Kyoto
University

The dataset is created using tools, such as
honeypots, darknet sensors, e-mail server and web

crawler. The dataset has 24 statistical features,
whereby 14 features were extracted based on the
KDD99 dataset and 10 additional features. The

additional 10 features allows effective investigation
on the network status.

CSE-CIC-IDS
2017 2017

Communications
Security

Establishments
(CSE) & the
Canadian

Institute for
Cybersecurity

(CIC).

The dataset is an improvement on the earlier
developed ISCX2012 dataset. The dataset has the
attributes of practical real-world dataset and it is

labelled based on the timestamp, source and
destination IPs, source and destination ports,

protocols and attacks. The dataset has 80 network
flow features with 2,830,743 instances, with attack
traffic making up approximately 20% of the total
number. CICFlowMeter tool is used to extract the

80 features.

Benign behavior, Brute
Force FTP, Brute Force
SSH, DoS, Heartbleed,

Web Attack, Infiltration,
Botnet
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Table 1. Cont.

Dataset Published
Year Developer Brief Description and Comparison: Features and

Scenarios Attacks Type

CSE-CIC-IDS
2018 2018 CSE & CIC

The dataset has the same features as the 2017
dataset variant. However, the dataset was

modelled using larger network of simulated client
targets and attack devices. The attack devices

include 50 machines while the victim devices have
420 machines with 30 servers. The dataset involves

logs from individual machines, along with 80
features extractions from captured traffic done by

CICFlowMeter-V3. The dataset contains 16,233,002
instances with about 17% of the instances being

attack traffic.

Brute-force, Heartbleed,
Botnet, DoS, DDoS,
Web attacks, and
infiltration of the

network from inside.

SWAT 2016

iTrust Centre for
Research in

Cyber Security,
SUTD

The testbed for the dataset generation is a water
distribution system that imitates an actual water

treatment facility. For the dataset generation,
operation was run for 11 consecutive days, 7 days
out of the 11 days were run as normal operation

while the remaining 4 days were run under attack
scenarios involving 41 attacks.

41 different attacks
were simulated during
4 days of attack events.

Morris

Power
System-

2014,
Gas

Pipeline-
2013,

Gas Pipeline
&

Water-2014
New Gas
Pipeline-

2015
EMS-2017

Oak Ridge
National

Laboratories,
MSU.

Five datasets were developed: Power system
datasets, Gas pipeline datasets, Energy

Management System (EMS) dataset, New gas
pipeline datasets and Gas pipeline and Water
storage tank datasets. The three Power system

datasets comprises electric transmission system
normal, disturbance, control, cyber-attack

behaviors data. The EMS dataset consist of a
voluminous anonymized log file that are recorded

over 30 days interval. The Gas pipeline, Gas
pipeline and water storage tank and New gas

pipeline datasets is made up of packets captured
from control devices and the HMI in a gas pipeline
testbed. The Gas Pipeline and Water Storage Tank
datasets has additional packet data captured from a

water storage tank.

Some of the attacks
include data injection,
relay setting change
and remote tripping
command injection.

4.2. Feature Engineering and Optimization Mechanism

In SCADA security studies involving the use of data mining and analytics method-
ologies for the prediction, detection and classification of intrusions, the use of feature
engineering mechanism for the voluminous dataset(s) is highly important as they have
significant impact on the results [4]. The authors in [32] explained that feature engineering
tools, such as feature extraction, weighting, selection, reduction, etc. assist in improving
the performances of classifiers. Further, considering the problem of imbalanced datasets
which is very common with SCADA datasets, feature engineering tools assist in mak-
ing the classification tasks computationally easier. In the literature, different models and
algorithms have been proposed as feature engineering tools in SCADA security studies
involving supervised learning algorithms. Waghmare et al. [73] deployed principal compo-
nent analysis (PCA) for feature reduction for a SCADA dataset. The authors in [74] used
PCA, generalized hebbian algorithm, independent component analysis (ICA), singular
value decomposition and self-organizing map as feature reduction tool in their SCADA
security study. The authors in [75] also used PCA, ICA and canonical correlation analysis
for a similar task. In [76], the authors used models based on function code, time factor,
etc. as feature extraction tools. In another study, information gain and singular value
decomposition was used as feature engineering tools by the authors in [77]. Similarly,
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InfoGainAtributeEval, information gain and filter based approach were used as feature
engineering tools in [78]. For improved detection and classification, several authors de-
ployed meta-heuristic algorithms such as genetic algorithm (GA), particle swarm optimizer
(PSO), etc. as feature engineering and optimization tools. The authors in [32] used GA as
feature weighting tool. Similarly, the authors in [59] used GA as feature engineering tool
for ANN in classifying SWAT dataset. The authors in [57] used PSO for optimizing the
parameters for back-propagation neural network. In related works, the authors in [79,80]
used PSO as feature engineering tools in separate security studies involving supervised
learning algorithms.

4.3. Classification Mechanism

Various prominent supervised learning algorithms such as SVM, NB, RF, etc. have
been proposed in several intrusion prediction, detection and classification of SCADA
datasets and other problems that needed to be addressed. In some of the reviewed arti-
cles, while some authors proposed singular supervised learning models [32,57], several
authors [81–84] ensemble two or more models, with the aim of achieving improved per-
formances. Moreover, some authors compared several supervised learning models on
specific dataset(s), in order to establish the best possible model for the analyzed SCADA
system and testbed. Additionally, some authors do the comparative study to prove that the
individually developed supervised learning model has the capacity to achieve exceptional
results within specific context. In this section, some of the widely deployed supervised
learning algorithms are discussed.

4.3.1. Support Vector Machine (SVM)

Proposed by Vapnik in the early 90s, SVM is a popular supervised learning method
that has consistently been deployed in varieties of classification and regression studies [85].
Most SCADA IDC tasks are binary classification tasks, which makes SVM models suitable
for the task. SVMs create an hyperplane, or sets of hyperplanes, in a high-dimensional
feature space, which optimally separates the training patterns based on the classes [4,84].
SVMs are robust to high dimensional data and they are well known to have good gener-
alization ability. Even with data that are non-linearly separable in feature space, SVMs
has the capacity to perform exceptionally well. Commonly used kernel methods for SVMs
are linear, polynomial and sigmoid [32]. The two popular variation of SVMs: one class
support vector machines (OCSVM) [86] and support vector data description (SVDD) [87]
have been widely proposed by various authors in numerous SCADA security studies.
Schuster et al. [88] and Yasakethu et al. [89] deployed OCSVMs in constructing models for
the detection of intrusions in a network data. The authors in [90,91] modelled K-Means
clustered OCSVM for the classification of SCADA intrusions. Similarly, OCSVM model
was also modelled in [92,93] and [51]. Lee et al. [94] developed an OCSVM based detection
model with the capacity to learn header-based whitelist and payload and experimented it
on a testbed dataset. Maglaras et al. [35] modeled a OCSVM model for detecting cyber-
intrusions in a designed small SCADA testbed. Prisco and Duitama [95] also proposed
OCSVM for detecting intrusions on SCADA network. In a related work, Fang et al. [96]
modelled a support vector regression for predicting a SCADA monitoring data. Terai
et al. [97] and Waghmare et al. [73] developed SVM models for detecting intrusions and
achieved remarkable results. Wang et al. [85] developed a SVM model for classifying faults
in SCADA power system dataset. In a comparative study, the authors in [98] modelled
several supervised learning, which include OCSVM, DT, k-NN, etc. for classifying SCADA
dataset. From the study, OCSVM presented the best result. In a related work, the authors
in [99] did a comparative task using SVM and RF models for classifying two different
datasets. Inoue et al. [58] also compared the effectiveness of OCSVM model with deep
neural network model in classifying the SWAT dataset. Similarly, the authors in [100]
did a comparison work using OCSVM and SVDD models in classifying SCADA system
intrusion. For improved classification performance, the author in [101,102] did a hybrid
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task involving the ensemble of SVDD and kernel principal component analysis (KPCA) for
the classification of SCADA intrusions using the MSU gas pipeline dataset.

4.3.2. Artificial Neural Network (ANN)

ANN is a supervised learning algorithm that is based on the structural framework of
the neurons and they have the learning and processing capacity that is similar to a small
scale human brain [103]. Similar to SVM, ANNs are quite robust to high dimensional data
and they have good generalization ability. The simplest form of ANNs are the perceptrons
and they are very useful for the classification of patterns that are linearly separable [84].
In recent years, ANN has been consistently deployed in various SCADA security studies.
Shalyga et al. [59] combined GA and ANN for classifying the SWAT SCADA dataset.
Neha et al. [104] similarly developed a classification model based on a hybrid salp swarm
optimization with ANN. The authors evaluated the developed model using the KDD99
dataset. Also, Demertzis et al. [105] presented an ANN based detection model using
3 SCADA datasets for the evaluation. The authors in [44] used weighted particle based
cuckoo search optimization based artificial neural network model for classifying SCADA
intrusions. Reuter et al. [31] proposed an artificial neural network based anomaly detection
for the CSE-CIC-IDS 2017 dataset. Li et al. [106] modelled a back propagation neural
network for analyzing the health assessment for fault and intrusion using wind turbines
SCADA dataset. Likewise, Zhang [107] proposed an ANN prediction model with the
capacity to generate warning and alarm for wind turbine using a stored SCADA data.
With regards to ensemble models, Kosek et al. [108] achieved remarkable results from the
ensemble of multiple ANNs for a photovoltaic SCADA dataset. Similarly, Yan et al. [109]
developed a multilayer neural network and RF algorithms for detecting intrusions in a
wind turbine SCADA dataset.

4.3.3. Decision Tree (DT)

DTs are tree based models. DT is a popular supervised learning method that has
consistently been used in varieties of classification and regression studies [110]. Among
the popular machine learning models, DT is one of the simplest to understand, visualize
and evaluate. As they are non-parametric, outliers do not have much effect on DT models
and they also perform reasonably well with linearly inseparable data. Depending on
the splitting criteria, popular variation of the DT algorithms include: ID3, C4.5, C5.0
and CART [12]. In recent years, DT has been consistently deployed in various SCADA
security studies. McNabb et al. [111] developed a classification model based on DT for
predicting intrusions in a SCADA and wide area measurement system dataset. Upadhyay
et al. [112] developed a DT classification model for classifying intrusions into power system
SCADA network. Mrabet et al. [113] developed a DT based model for detecting intrusive
signatures in phase measurement unit dataset. In relation to the ensemble model, Al-Asiri
et al. [114] used WEKA to model a couple of DTs in classifying the MSU gas pipeline
dataset. Similarly, Siddavatam et al. [115] developed a DT and RF models for detecting
intrusions in SCADA traffic. In a comparative study, Swetha and Meena [116] developed a
DT, k-NN and SVM models for classifying the KDD99 dataset. From the study, the best
results were achieved using DT and SVM. However, it is well-known that DTs struggle in
handling high dimensional data as it takes quite a considerable time to build the tree model.
Moreover, without proper pruning DTs can easily overfit, a reason several researchers
usually opt for the ensemble models of DT, well known as Random Forests.

4.3.4. Random Forest (RF)

Developed by Breiman, RF is an efficient supervised learning algorithm that is widely
used in various classification studies [81]. RF is an ensemble method that are constituted by
a set of tree structured classifiers. RFs operate by training a couple of DTs and they return
the class with the majority over all the trees in the ensemble [109]. Tamy et al. [81] explained
that DTs are combinations of sets of tree predictors whereby individual tree depends on
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the values of a random vector that is sampled independently with the same distribution
for the trees that makes up the forest. Rakhra et al. [110] explained that RFs are collections
of multiple DTs whereby the challenge of overfitting which is popular with singular DTs is
solved by a voting method, in which the most voted class is the final result for the target
observation. Generally, RFs are well-known to be fast, scalable and robust. RFs have been
proposed numerously by various authors for SCADA IDC. Alhaidari and AL-Dahasi [83]
modelled three supervised learning algorithms: RF, J48 and Naive Bayes for detecting DoS
intrusion patterns in SCADA system. Using the KDD99 dataset for the evaluation of the
three modelled algorithms, RF presented the best result. Similarly, Choubineh et al. [117]
modelled five learners; DT, RF, Naive Bayes, BayesNet and OneR for the classification of
gas pipeline SCADA dataset. In the study, the authors deployed cost-sensitive learning
with fisher’s discriminant analysis to overcome the class imbalance problem. In another
related work, the authors in [118] modelled several learners which include RF, SVM, Naive
Bayes, OneR, J48, NNge for the detection of intrusions in SCADA network. From the study,
RF and NNge presented the best results. Tamy et al. [81] also did a comparative study
involving RF, Naïve Bayes, SVM, and J48 Tree using MSU gas pipeline dataset. The authors
in [99] also did a comparison work involving two supervised learning algorithms; RF and
SVM for the classification of two SCADA datasets. Similarly, Hink et al. [14] successfully
explored different learners including RF, SVM, etc. on a SCADA power system dataset.

4.3.5. Bayesian Networks (BN)

BN, otherwise known as belief or bayes network is a probabilistic graphical model
that represents variable sets whose conditional probability relationship are represented
as a directed acyclic graph with nodes and edges [119,120]. BNs have been explored in
varieties of SCADA security studies. Huang et al. [121] proposed a BN model for the
security assessment of SCADA network. In a similar study, Shin et al. [122] also modelled
BNs for the security evaluation of nuclear SCADA systems. Zhang et al. [123] developed
a BN model for evaluating the probability of successful intrusions into SCADA system.
In the study, the authors considered six intrusion scenarios which have disturbing effects
of tripping circuit breakers. In a related work, the authors in [124] developed two BN
models for intrusion procedure illustration and for evaluating the probability of successful
intrusions into SCADA network. In the study, the authors considered four intrusion
scenarios for the SCADA system cyber-components. Likewise, the scenarios have the
effect of tripping circuit breakers. Despite the numerous successes achieved using BN
for SCADA security, Borujeni et al. [119] argued that their implementations involve huge
computational requirements, especially in fields, such as modern SCADA/ICS systems
as there are vast number of nodes involved. BN are known to perform poorly with high
dimensional datasets.

4.3.6. K-Nearest Neighbors (k-NN)

k-NN is a distance based supervised learning algorithm which is well known for
its simplicity. k-NN’s simplicity comes from the fact that it is easy to interpret and its
low computation time [125]. Also, they are generally referred to as lazy learners. They
use data to classify unforeseen data points by evaluating the distances from the neighbor
points [126,127]. They can be deployed for both classification and regression tasks. They
are well-suited for multi-modal classes and multi-label applications. In classification and
regression tasks, k-NN’s performance depend on the choice of the ‘k’ value. Usually, in
different studies, computationally expensive methods such as cross validation are normally
used for choosing effective ‘k’ value. k-NNs have been proposed numerously by various
authors for SCADA IDC. Gumaei et al. [128] developed a SCADA intrusion detection
model that is based on a k-NN model. In the study, the authors used correlation-based
feature selection method as feature reduction technique for the numerous power system
SCADA datasets deployed. The authors in [125] modelled five algorithms: k-NN, DT, RF,
AdaBoost and Naive Bayes for classifying intrusion into power systems SCADA network.
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Similarly, Robles-Durazno et al. [82] modelled k-NN, SVM, DT, ANN and Naive Bayes
for detecting intrusions in a simulated water system testbed. The authors realized the
testbed using Festo MPA Control Process Rig. From the experimentation, KNN and SVM
presented the best results. Also, Phillips et al. [4] modelled a couple of classifiers including
k-NN, SVM, DT for detecting anomalous traffic in SCADA systems. Similarly, Arora
et al. [127] modelled k-NN, RF, SVM, ANN, DT and Naïve Bayes for detecting intrusions
on a SCADA/ICS benchmark dataset. From the study, the best accuracy results were
achieved using k-NN and RF.

Table 2 presents the comparison of recently proposed supervised learning based ap-
proaches for SCADA systems IDC. Apart from providing key details on the dataset/testbed
used, the CI domain and the feature engineering techniques used, Table 2 presents a brief
key analysis on the strength and drawbacks from the methodologies. Some of the models
proposed in the articles reviewed in Table 2 are developed based on several criteria such as
the resources available to the researchers, the specific goal(s) the researchers aims to achieve,
etc. Some of these points determine the specific testbed or dataset, choice of methodology
procedures, optimization technique(s) deployed, etc. in the research works. Furthermore,
the factors that determine the classification and computational performances of the super-
vised learning algorithms depend on varieties of factors such as the characteristics of the
deployed dataset, the pre-processing procedures, the computer and processor specifica-
tions, the choice of the learning model(s) parameters, etc. Hence, in different comparative
studies involving different supervised learning models (as depicted in Table 2), there are
contrasting results’ performances from some of the prominent supervised learning models.

Table 2. Comparison of supervised learning based methodologies for SCADA security.

Refs. Dataset/
Testbed Protocol CI

Domain

Feature Engineer-
ing/Optimization

Technique

Algorithm(S)
Used

Method Strength
/Drawback

[31] (1) CICIDS2017
(2) IEC dataset

(1) Modbus
(2) IEC

60870-5-104

Electric power
grid

Synthetic Minority
Oversampling

Technique

Feed forward
neural network

Good result but
high false positives

from the
CICIDS2017
evaluation

[44]

SCADA
network

simulation
using Ns-2
simulator

Modbus

Weighted Particle
based Cuckoo

Search
Optimization

ANN

Accuracy of 95%.
Low precision rate

when tested on
ADFA-LD dataset.

[35] SCADA testbed
simulation TCP/FIN

Electric power
delivery

infrastructure

Mapping
symbolic-valued

attributes to
numeric valued
attributes and

scaling.

OCSVM,

Accuracy of 96.3%.
high false alarm

and model was not
tested on big

testbed.

[100]
SDN-based

SCADA system
simulation

Modbus
/TCP Power systems OCSVM and

SVDD
Approximate

accuracy of 98%.

[75] MSU gas
pipeline dataset Modbus Gas pipeline

Various techniques
Including Bloom
filter, PCA, CCA,

ICA, and AllKNN.

KNN Accuracy of 97%.
Low detection rate

[99] MSU gas
pipeline dataset Modbus Gas pipeline

Gaussian Mixture
Model, K-means

cluster, Zero
imputation and

indicators

SVM, RF and
Bidirectional
Long Short

Term Memory

Best results
achieved from RF

and BLSTM
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Table 2. Cont.

Refs. Dataset/
Testbed Protocol CI

Domain

Feature Engineer-
ing/Optimization

Technique

Algorithm(S)
Used

Method Strength
/Drawback

[95] MSU gas
pipeline dataset Modbus Gas pipeline SVDD

and KPCA.
Good result

achieved.

[57] SWAT dataset Water treatment
facility

PSO for optimizing
the parameters for

ANN

Back-
propagation

neural network

Precision and F1
score of 98.7% &

90.4% respectively.

[13] SWAT dataset Water treatment
facility

Normalization of
all the attributes in

the interval
between 0 and 1

SVM, ANN, RF,
J48, DT, BN, etc.

DT presented the
best accuracy with
99.72%, followed

closely by RF, SVM,
ANN with 99.65%,
98.71% and 98.24%
respectively. SVM

presented the
longest

computational time
among the models.

[59] SWAT dataset Water treatment
facility

GA
for optimization ANN

Precision % F1
score of 96.7% and

81.2%.

[83] KDD99 dataset. J48, Naive
Bayes, RF

DT presented the
best result with

99.99% accuracy.

[118] MSU gas
pipeline dataset Modbus Gas pipeline

RF, SVM, Naive
Bayes, OneR,

J48, NNge

RF and NNge
presented the best

results.

[114] MSU gas
pipeline dataset Modbus Gas pipeline DT Specific-type

accuracy of 98.6%.

[81] MSU gas
pipeline dataset Modbus Gas pipeline

Naïve Bayes,
SVM,

J48 adn RF

RF presented the
best accuracy of

99.3% and it took
the longest time to
build compared to
the toher models. It
is followed closely

by SVM.

[115] Modelled
testbed

Modbus
/TCP Power system DT and RF RF presented the

better results.

[121]
Modelled
chemical

reaction process
UDP Chemical

reactor - BN Good performance.

5. Suggestions and Recommendations for Future Works

Despite the numerous successes achieved from the application of several supervised
learning algorithms in different SCADA IDC studies, there have been several challenges
and open issues that can be considered in future research to improve detections and
classifications of intrusions. Considering that SCADA IDC significantly depend on the
deployed dataset(s), the current use of publicly available datasets, most of which are
obsolete and irrelevant with regards to current and future attack and intrusion trends have
continued to show irrelevancy in modern-day SCADA IDC. With the geometric increase in
technologically advanced SCADA cyber-intrusions globally, modelling mitigations and
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solutions to an outdated problem is inapt. Further, for the current SCADA systems threat
environments, the various simulation testbed set ups do not inclusively reflect modern-
day network traffic including some of the modelled footprint attacks. Therefore, future
research works should focus on realistic modern day SCADA system testbeds with modern-
day attack scenarios for experimentation and evaluations. Furthermore, as ensemble
methods have shown significant trends in producing effective SCADA IDC results, future
researches should dedicate more attention on hybrid intrusion detections and classifications
models. Last, a high intrusion detection and classification performances are obviously
important. However, if the modelled single or ensemble supervised learning algorithms
are computationally complex and they take too much time to detect intrusions, severe
damage could have been done on the deployed CIs before the security measures produce
results. Therefore, future works should always consider the computational complexities of
developed models.

6. Conclusions

Security is a major issue in modern-day SCADA system operations as the networks are
constantly under high threats of sophisticated intrusions and attacks. Modern-day SCADA
systems security measures are expected to cope with intrusions with adequate and efficient
mitigations methods that meet the present and future SCADA security demands. This
paper reviewed recent state-of-the-art security research works whereby supervised learning
algorithms were implemented for SCADA IDC. Through extensive research and analysis,
the paper addressed and compared the methodologies applied in using supervised learning
for SCADA systems security in terms of the datasets and testbeds used, feature engineering
and optimization mechanisms and classification procedures deployed. Furthermore, open
issues and challenges for using supervised-learning techniques for SCADA security are
discussed. Some future recommendations for future research works were presented as well.
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