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Abstract: As the solar photovoltaic market booms, so will the volume of photovoltaic (PV) systems
entering the waste stream. The same is forecast for lithium-ion batteries from electric vehicles,
which at the end of their automotive life can be given a second life by serving as stationary energy
storage units for renewable energy sources, including solar PV. The main objective of this paper is to
systematically review the “state-of-the-art” research on the solar PV value chain (i.e., from product
design to product end-of-life), including its main stages, processes, and stakeholder relationships, in
order to identify areas along the value chain where circular strategies could be implemented, thereby
advancing the transition of the PV industry towards circularity. To achieve this goal, we conducted a
systematic literature review of 148 peer-reviewed articles, published in English between 2000 and
2020. Results show the PV value chain has been studied from a forward flow supply chain perspective
and mostly from a technological point of view, with little regard for circular design, circular business
models, and PV reuse. This article thus takes an integrated value chain perspective, introduces some
of the barriers to circularity that industry players face, and argues that these barriers represent future
opportunities for incumbent and new entrants to innovate within a circular PV industry.

Keywords: solar PV; EV batteries; circular economy; circular photovoltaic industry; PV reuse;
PV recycling

1. Introduction

Solar photovoltaic (PV) energy, or the capture of solar radiation through photovoltaic
panels to produce electricity, is considered one of the most promising markets in the
portfolio of renewable energies, due to its potential to mitigate global warming and meet
the CO2 reduction targets imposed by national governments and international agreements.
The PV industry has grown nearly exponentially in recent years, as showcased by the
increasing production volumes and the growing networks of solar installers and financing
schemes worldwide. In 2018, global cumulative installed PV capacity reached almost
480 GW, representing about 2% of the world’s electricity output [1]. By 2030, it is estimated
that global capacity could reach 2840 GW, while by 2050, it may reach 8500 GW [2]. Other
things being equal, and assuming the average lifetime of a PV panel is 25 years, one can
expect the accelerated growth in PV deployment to be translated into an exponential
increase in end-of-life (EOL) PV waste in the years to come. PV panel waste projections,
in fact, show that between 1.7–8 and 60–78 million tons of waste will be lying in landfills
by 2030 and 2050, respectively [3]. Up until now, PV systems have operated under a
linear “take-make-use-dispose” model, whereby natural resources are extracted, panels
are manufactured, commercialized, used, and then mostly disposed of in landfills, where
soil and groundwater contamination can occur [4]. For the PV industry to reduce and
eliminate waste altogether, a circular, lifecycle perspective needs to be incorporated. Such
a perspective will demand changes throughout the PV value chain, from product design
to product end-of-life and the collaboration of a wide range of stakeholders, namely
businesses, governments, customers, and academia.
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Aimed at supporting an informed transition of the PV industry towards a circular
economy (CE), this article proposes a systematic literature review (SLR) to understand
the current configuration and functioning of the PV value chain, including the issue of
reusing electric vehicle (EV) batteries for small-scale solar energy storage, in order to
identify potential areas where circular strategies could be implemented. We deem the
study of the PV value chain necessary for various reasons. First, current literature has
seldom looked at the PV value chain as one holistic entity and at the stakeholders that play
a role in its functioning [5,6]. Research focusing on photovoltaic systems has been studied
mostly from a forward flow supply chain perspective (i.e., polysilicon production, cell and
module manufacturing, PV system installation and recycling), while paying little, although
increasingly more, attention to other equally important value chain stages such as R&D for
circular product design and circular business models, as well as PV refurbishing, reuse, and
recycle. Second, if one is to understand the dynamics guiding the evolution of PV systems,
and to expect large-scale PV deployment in the future, a value chain view of the industry
is necessary. Failing to account for the different networks that are part of the PV ecosystem
can prevent policymakers and new market entrants from recognizing, for instance, that
changes in public policy, technology, market conditions or consumer behavior will affect
the relative attractiveness and diffusion trajectories of the different PV technologies [7] and
the extent to which different circular paths for PV can be realized.

Third, to deal with PV waste effectively, innovation from product design to product
recovery is essential. It has been argued that innovation in the renewable energy sector is
increasingly distributed and interdependent, as it requires cooperation from incumbent
and start-up firms, governments, research institutions, service providers, and so on [8].
Because these actors often display their own value chain structures and interactions,
knowledge about these structures can provide opportunities for joint value discovery
and creation [9,10]. Fourth, the projected scarcity of critical materials, such as tellurium,
gallium, indium, and selenium in thin-film solar cell technologies, or lithium, cobalt, nickel,
and natural graphite in EV batteries, also calls for a value chain view. By identifying risks
and volatilities along the PV and EV battery value chains, stakeholders can prepare for
imminent supply disruptions and ensure the sustainability and resilience of their supply
chains [11,12].

Finally, if the goal is to aim for high-value PV reuse and recycling, circular product
design and business model strategies must be incorporated in industry practices. For
instance, current PV panel designs do not facilitate the effective separation of materials
upon disposal, which provides incentives for low-value recycling and landfilling. Sim-
ilarly, current product-focused business models rarely allow for product maintenance,
refurbishing, take-back, or recycling. The development of a circular mindset among the
actors of the PV value chain, not only among the actors within the boundaries of the firm,
is therefore critical to secure the availability of secondary raw materials and to prevent,
delay, or mitigate environmental damage.

Considering the ever-increasing attention given to PV energy and PV waste, this
study’s main goals are: (i) to understand how the PV value chain operates, including its
main stages and processes, stakeholders, and the interactions among them; and (ii) to
investigate which factors inhibit the incorporation of circular economy principles in the
existing PV value chain. The remainder of this article is organized as follows: Section 2
briefly introduces the value chain framework, Section 3 provides a detailed view of the
methodological framework used to plan and execute this systematic literature review,
Section 4 presents a descriptive analysis of the reviewed article database, while Section 5
describes the main stages of the value chain for PV systems. Finally, Section 6 presents the
conclusions of this study, and Section 7 poses some questions for future analysis.

2. Analytical Framework and Related Literature

Understanding how PV systems are developed, manufactured, sold, and managed
throughout their lifetimes demands a value chain view. The concept of a value chain
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was coined by Michael Porter as a means of breaking down the activities of the firm into
strategically relevant stages, processes, and relationships related to a product or service
during the process of delivering “value” for a customer. Such activities involve product
manufacturing, product delivery to consumers, and product disposal and/or reprocessing
after use [13]. Although initially developed to help understand the value creation process
at the firm level, the value chain concept is now also used as a tool for understanding value
creation in industries and countries [14,15]. At the industry level, a value chain analysis
provides a comprehensive view of an industry, thereby supporting strategic and technology
planning for incumbents and new entrants, as well as policy making at a higher level [16].

The accelerated transition to a CE requires research on all relevant aspects of the
value chain. In the literature, terms such as “circular value chain,” “circular supply chain,”
“supply chain management in a circular economy,” or “closed-loop supply chain” are
sometimes used interchangeably. Different from the traditional linear value chain explained
above, we define the value chain concept in this article as the myriad of activities involved
both in the supply and the take-back chain of the PV industry. Our base definition therefore
covers “all stages of the life cycle from idea/concept, raw material sourcing, production,
distribution, and end customer use to the point where the product returns to a biological
or technical cycle, thus closing the loop” [17]. A value chain perspective has therefore
been chosen as means to identify hotspots for value creation at different stages of the
PV lifecycle.

Despite the holistic view proposed in this article, most of the published system-
atic literature reviews linked to solar PV have showed a technical focus, covering topics
such as: advances in solar cell research and testing [18–21], energy losses and degrada-
tion of PV modules [22–24], forecasting of solar photovoltaic radiation and electricity
generation [25,26], digital technologies for PV monitoring [27], and leaching of metals from
EOL PV waste [28,29]. Other review articles have been more market-oriented, highlighting
the need for government interventions in supporting PV diffusion [30]; the factors influ-
encing residential households’ adoption of PV systems [31,32]; and descriptions of the
current PV market, its associated costs, and available technologies [33]. Finally, a growing
stream of literature focusing on the management of EOL PV modules has also emerged. For
instance, [34] suggests that monitoring and reporting systems at the national and regional
level can support the identification and management of current and future streams of
PV waste. The authors also stress the need for reverse logistics between geographically
close nodes and recycling centers. Furthermore, while analyzing the drivers, barriers, and
enablers for the EOL management of PV and battery energy storage systems, [35] suggests
that besides technology-related research, socio-economic research is also necessary to boost
successful EOL implementation. Different from other review publications, the contribution
of this article lies not only in showcasing the current barriers that impede PV and LIB reuse
and recycling, and the overall achievement of industry circularity, but also in unveiling
untapped opportunities for different stakeholders along the PV value chain.

3. Methodology

To investigate the research questions introduced in Section 1, we conducted a sys-
tematic literature review (SLR) by following the methodological framework proposed by
Denyer and Tranfield [36] and Tranfield, Denyer and Smart [37]. A systematic literature
review is a self-contained research project that uses existing studies to provide answers
to research questions, which are usually derived from policy or practice. A systematic
review differs from a traditional, more general, literature review in that it proposes a
replicable, scientific, and transparent process, thereby creating a foundation for advancing
knowledge in a particular field and facilitating theory development [38,39]. A summary of
the employed methodology is displayed in Table 1.
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Table 1. Summary of the methodology.

SLR Phase Steps Description Article Section

Phase 1
Formulate the
research question

N/A

• How does the current PV
value chain operate?

• Which factors inhibit the
incorporation of CE principles
in the current value chain?

Section 1

Preliminary literature scan

Phase 2
Locate studies

• Determine search methods
and engines • Web of Science and Scopus

Section 3.2
• Select types of data sources • Journal articles and conference

papers published in English

• Determine timeframe • 2000–2020

Phase 3
Select and evaluate studies

• Define search strings • See Table 2

Section 3.2

• Define criteria for exclusion

• Articles that mixed PV with
other renewable energy
sources; were too technical;
discussed other types of solar
energy different from PV; and
discussed small-scale PV
applications

Phase 4
Analyze and synthesize

• Define review protocol • Excel
Supplementary file
Supplementary file

• Code and extract data • Atlas.ti

Phase 5
Report the findings

N/A • Descriptive analysis of the
article database

Section 4
Section 5

• Value chain description for
PV systems

3.1. Phase 1: Planning the Review

As a first step, and to ensure the validity, reliability, and replicability of the results, we
developed a draft protocol for carrying out the literature review process. After agreeing on
a structured process flow for the review, we decided to embark on an informal preliminary
literature scan to better outline the scope of our research. The preliminary scan was
instrumental in: (i) confirming that there was indeed a gap in the literature, (ii) delineating
the thematic focus for the review as well as the exclusion criteria for the selection of
articles, and (iii) defining the time frame and the set of keywords to be employed in the
systematic search.

3.2. Phases 2 and 3: Location, Selection, and Evaluation of Studies
3.2.1. Location

The literature search was undertaken using two of the largest abstract and citation
databases of peer-reviewed literature, namely Web of Science and Scopus. A search in both
databases ensured that the review results considered all the available evidence and were
based on quality contributions [36]. To identify the most reliable types of publications, we
adhered to the “fit-for-purpose” rationale, which suggests that rather than a hierarchy of
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evidence (i.e., ranking of the publication outlet), the criteria for the selection of articles must
rely on the purpose and context of the research. Hence, we delimited our search to peer-
reviewed articles in English, published in academic journals; proceedings of international
conferences; and book chapters. The inclusion of conference papers ensured that the
results covered the most recently available knowledge, especially concerning the use of EV
batteries for the stationary storage of PV energy. Industry reports and other grey literature
were intentionally excluded due to the challenges of collecting them systematically.

We set the keyword search’s timeframe from 2000 to 2020 because solar energy markets
only regained momentum from the early 2000s [40]. Similarly, sales of EVs also started to
take off since the beginning of the 21st century. Finally, we extended our search to the year
2020 after realizing that a significant number of scholarly articles had been published just
recently. The choice of time frame was confirmed during the preliminary literature scan,
when the search results returned almost no publications before the year 2000 and a rising
number of published articles within the past three years.

3.2.2. Selection and Evaluation

After conducting the actual search using the set of keywords displayed in Table 2, all
information from the resulting articles (e.g., title, abstract, keywords, publication year, and
publication outlet) was exported to two Excel spreadsheets (i.e., one for Web of Science
results and another for Scopus results). The two databases were then merged into one
(n = 371) and the combined results analyzed to identify duplicate entries (n = 27). Once
identified, duplicates were tagged and removed from the merged database.

Table 2. Database search summary.

Keywords Database Type of Document Language Quantity

TITLE-ABS-KEY ((“supply chain*” OR “value
chain*”) AND (“photovoltaic*” OR “solar” OR “pv”)
AND NOT (“wind*” OR “biomass” OR “biofuel” OR
“biogas” OR “hydro”)) AND PUBYEAR > 1999 AND

LANGUAGE (“English”)

Scopus Journal articles and
conference papers English 179

(TS = ((“supply chain*” OR “value chain*”) AND
(photovoltaic* OR solar OR pv) NOT (wind* OR

biomass OR biofuel OR biogas OR hydro*))) AND
LANGUAGE: (English) AND DOCUMENT TYPES:

(Article) Timespan: 2000–2018. Indexes:
SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH,

BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC.

Web of Science Journal articles and
conference papers English 192

To determine whether an article met the inclusion criteria, we read the article’s title and
abstract, and, when necessary, scanned the article’s complete content. This filtering process
resulted in the exclusion of 215 articles, with a final number of 129 articles being considered
for further analysis. Articles were removed from the merged database for various reasons,
including: (i) their content did not match the topic of this study; (ii) access was restricted;
(iii) they were deemed to be too technical or not fitting the scope of this review (i.e., a great
number of publications addressed PV panel manufacturing and deployment exclusively
from an engineering, materials science, chemical or electrical perspective or discussed only
one stage of the PV value chain); (iv) they referred to alternative types of solar energy, such
as solar thermal or concentrating solar power, or discussed solar PV only marginally (i.e.,
photovoltaic energy was mentioned along with other renewable energy sources such as
hydropower, wind power, biomass, biogas, and biofuel); and (v) they referred to off-grid,
small-scale PV applications, such as water heating, lightening or mobile charging, primarily
in remote areas in Africa, or to related, yet different, value chains, such as refrigeration
chains for food fueled by PV energy. Finally, the articles’ list of cited references served as a
secondary and additional source of analysis. Cross-referencing resulted in 19 articles being
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added to the primary database, resulting in a total of 148 articles being analyzed for the
present review (see Figure 1).
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3.3. Phase 4: Data Analysis and Coding Scheme

In this final stage, we imported all the articles that met the inclusion criteria (n = 148)
to the coding software Atlas.ti and read them all in detail to perform an open coding
content analysis [41]. Using this technique, we coded the article’s content inductively (i.e.,
open coding) and then structured the incoming data according to its relationship to the PV
and EV battery value chains (i.e., axial coding). The established coding system included
such labels as: UPSTREAM PV cell raw material, UPSTREAM PV cell manufacturing,
DOWNSTREAM PV module recycling, and STAKEHOLDER equipment manufacturers.
Throughout the coding process, we also kept a diary to track our thought process and to
structure our analysis and findings. At the end of the coding stage, we reviewed each code
and merged or deleted some of them for clarity. This process resulted in 214 codes that
served as the basis for the content in this article.

4. Analysis and Results: Descriptive Analysis
4.1. Number and Sources of Publications

The trend indicates a growing interest within the academic community in solar
photovoltaic-related research, especially since 2013. Around 88% of the articles (n = 135)
written between 2000 and 2020 have been published since 2013 (see Figure 2). The greatest
number of publications occurred in 2018 (n = 34), exhibiting approximately a 140% increase
since 2017. Overall, between 2013 and 2017, publications increased by an average of 14%



Sustainability 2021, 13, 9615 7 of 35

per year. Before 2013, it seems academic research was undergoing an incubation period,
especially in relation to the analysis of value chain actors and dynamics.
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Figure 3 indicates that journal publications constituted the major avenue for dissemi-
nating research results. The academic journals with the highest number of publications
were the Journal of Cleaner Production (n = 15), Energy Policy (n = 9), Renewable and
Sustainable Energy Reviews (n = 8), Renewable Energy (n = 8), Sustainability (n = 6), and
Applied Energy with 5 publications (see Tables 3 and 4). The six most prolific journals
accounted for 35% of the analyzed records. Finally, results show that the topic of the PV
value chain is suitable for publishing in a range of specialized journals (n = 68) that focus
mainly on sustainability, the environment, and energy issues.
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Table 3. Number of publications per journal.

Journal Articles

Journal of Cleaner Production 15
Energy Policy 9

Renewable and Sustainable Energy Reviews 8
Renewable Energy 8

Sustainability 6
Applied Energy 5

Clean Technologies and Environmental Policy 3
Solar Energy Materials and Solar Cells 3

Journal of Energy Storage 3
Progress in Photovoltaics 3

Energy Research and Social Science 3
Energies 3

Renewable Energy Focus 2
International Journal of Photoenergy 2

Ecological Indicators 2
Energy for Sustainable Development 1

Energy and Buildings 2
Energy Conversion and Management 2

Industrial and Corporate Change 2
Environmental Innovation and Societal Transitions 2

IEEE Journal of Photovoltaics 2
Research Policy 2

Journal of Energy in Southern Africa 1
Waste Management 1

Energy Sources Part B-Economics Planning and Policy 1
International Journal of Production Economics 1

Journal of Industrial Engineering and Management 1
International Journal of Sustainable Energy 1

International Journal of Low-Carbon Technologies 1
International Journal of Technology Management and Sustainable Development 1

International Journal of Construction Management 1
International Studies Quarterly 1

SAE International Journal of Manufacturing 1
Energy Sources, Part A: Recovery, Utilization and Environmental Effects 1

Journal of Power Sources 1
Journal of East Asian Studies 1

Solar Energy 1
Computers & Chemical Engineering 1

International Journal of Environmental Research and Public Health 1
Energy 1

Electricity Journal 1
Energy Strategy Reviews 1

Technovation 1
Joule 1

Engineering 1
IISE Transactions 1

Batteries 1
Energy Reports 1

Sustainable Materials and Technologies 1
Annals of The American Association of Geographers 1

Energy Sources 1
Environmental Research Letters 1

European Planning Studies 1
Energy and Environmental Science 1

Flexible Services and Manufacturing Journal 1
IEEE Transactions on Engineering Management 1

Resources Conservation and Recycling 1
Resources Policy 1
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Table 3. Cont.

Journal Articles

Journal of Industrial Ecology 1
Business and Politics 1

Metallurgical Research & Technology 1
International Journal of Sustainable Engineering 1

Ore Geology Reviews 1
Journal of Renewable and Sustainable Energy 1

Perspectives on Global Development and Technology 1
Physica Status Solidi A-Applications and Materials Science 1

African Journal of Business Management 1
Production and Operations Management 1

Table 4. Number of publications per conference.

Conference Articles

ASES National Solar Conference 3
PICMET Portland International Center for Management of Engineering

and Technology 2

IEEE India Conference 1
Global Conference on Sustainable Manufacturing 1

ICDRET International Conference on The Developments in Renewable
Energy Technology 1

International Conference on Service Systems and Service Management 1
IFIP Advances in Information and Communication Technology 1

Energy Procedia 1
IEEE International Energy Conference 1

4.2. Methodological Trends

Upon examination of the article database, we observed four approaches to research,
namely: (i) literature review (i.e., a study that collects, reviews, and analyzes previously
published research); (ii) modelling and simulation (i.e., a study that uses mathematical
functions for decision-making); (iii) case study (i.e., a study that uses qualitative data to
build a case exploring a problem); and (iv) theoretical and conceptual (i.e., a study that
proposes a theory or a conceptual framework) [42] (see Figure 4).
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Modelling and simulation was by far the preferred methodology among researchers in
the database (48%). Some of the most popular modelling techniques included optimization,
life cycle assessment, financial modelling, and techno-economic modelling. These methods
were used to study a broad range of problems, such as environmental sustainability,
competing supply chains, R&D cooperation among actors in the value chain, and growth
evolution of the PV industry in a specific location or for specific firms. Theoretical and
conceptual papers ranked second in the list of the most preferred methods (32%), followed
by case studies (16%) and literature reviews (4%). As expected, the share of case study and
literature review articles has been increasing only lately, following the recent boom in PV
installations and scholarly publications on the topic.

4.3. Geographical Trends

European countries have been at the forefront of academic publishing in relation to
solar PV systems (see Figure 5). Out of all the reviewed articles, 39% had first authors who
work at a European institution, with Germany, the United Kingdom, and Italy being the
most active players. Asia and North America are also strong centers of publication, with
35% and 18% of the publications originating in these regions, respectively. China, which
captures 55% of the articles in Asia, has had a much-publicized increase in its share of
scientific output after becoming the largest producer of solar cells in 2007 and the largest
producer of solar panels in 2008 [43]. Furthermore, developing countries present a marked
contrast to the European and Chinese cases. While governmental sponsorship has been
pivotal in fostering the establishment of a solar PV industry in Europe and China, policies
for PV deployment in developing countries have been much less robust or even nonexistent,
with data and academic research output being scant. For a summary of research subjects,
methodologies employed, and author geography see Table 5.
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Table 5. Cont.

Category No. of Articles %

Research methodology
Modelling and simulation 71 48%
Theoretical and conceptual 48 32%
Case study 23 16%
Literature review 6 4%

Geographical context
Europe 58 39%

Germany 14
UK 10
Italy 9
Norway 5
Spain 4
Switzerland 4
Netherlands 4
Denmark 1
Sweden 2
Czech Republic 1
Greece 1
Poland 1
Hungary 1
France 1

Asia 51 35%
China 28

Iran 6
Taiwan 5
Korea 4
Japan 3
India 2
Singapore 2
Bangladesh 1

North America 27 18%
USA 25
Canada 1
Mexico 1

Australia 10 7%
Other developing countries 2 1%

5. Analysis and Results: Discussion

The solar PV value chain can be regarded as complex, not only technologically, but
also because of the various supply chains, stakeholders, installation sizes, business models,
and customer segments that it encompasses. Despite its inherent complexity, there is no
comprehensive study that describes the interdependencies between the different value
networks that play a role in the PV value chain [6]. Before presenting a detailed description
of each stage of the PV value chain, however, Table 6 presents a classification of each
reviewed publication according to the main themes that were identified in this SLR.
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Table 6. Publications per thematic group.

Stage of the PV
Value Chain Category Description % Reference

Upstream

Raw material
Issues related to the raw materials used

in the manufacturing of silicon and
thin-film PV cells

6% [11,12,44–50]

Technologies Engineering processes in wafer, cell, and
module manufacturing 5% [51–57]

Supply chain
collaboration

Collaboration among supply chain
partners for innovation in PV

manufacturing or service provision
7% [7–9] *, [58–64]

Human resources Job markets and job creation in the
PV industry 1% [65,66]

PV system installation Issues related to BOS components and
the installation of PV systems 1% [67,68]

Midstream

Business models Business models used in the
PV industry 2% [69–71] *

PV energy diffusion
and industry evolution

Enablers and barriers for the diffusion
of PV energy at the country, regional, or

industrial and firm level
26% [6,16,43,72–106]

Electricity networks Interactions between distributed PV
providers and utilities 4% [107–112]

Government and
other institutions

Role of governments and other
institutions in supporting

PV deployment
5% [113–118]

Downstream

Closed-loop
supply chain

Descriptive and modeling
representations of PV panels at

end-of-life (for reuse or recycling)
7% [5], [119,120] *,

[121–127]

Performance issues and
environmental

performance of the
value chain

Degradation of PV modules, life cycle
analysis of PV installations throughout
lifetime or at EOL, contribution of PV

towards decarbonization

3% [128–130]

EV batteries PV systems and
EV batteries

Studies combining the use of LIBs for
stationary PV energy storage and issues

at battery EOL
14% [131–147] *,

[148–151]

Others Economic modelling

Various types of economic analyses,
including: cost-benefit analysis, foreign

trade, competing PV supply chains,
manufacturing plant locations, and
energy payback time calculations

19% [152–180]

* Cross-reference.

5.1. Upstream PV Value Chain
5.1.1. Research and Development (R&D)

Review results show R&D efforts in the PV industry are mostly concentrated on new
material development and cell efficiency improvements (i.e., chemical process industries),
as well as on specialized machinery and robotics for manufacturing [95], rather than on
new recycling technologies or design for EOL. Currently, one can distinguish between three
categories of PV technologies: (i) 1st generation technologies of mono- and multicrystalline
silicon solar cells (c-Si); (ii) 2nd generation technologies of thin-film technologies; and (iii)
newer, 3rd generation technologies of multi-junction, organic PV cells, and concentrating
photovoltaics (CPV) [58,72]. Each PV technology features its own cell type, based on
different semiconductor materials, module efficiency and area requirements for installation.
For all technologies, large jumps in conversion efficiencies are expected in the long term.
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As an example, it is reported that the layer thickness in a CdTe (cadmium telluride) module
could be reduced to around 1.0 µm, resulting in an efficiency gain of around 18% [50].
The same can be forecast for polycrystalline single-junction modules that could see their
material intensity and weight lowered and their efficiency increased through basic research.
Nowadays, almost all the leading countries in PV production (i.e., China, Japan, Germany,
and the United States) devote government funds to enhancing and strengthening their
basic PV research capabilities and infrastructure.

Besides the emphasis on efficiency improvements, research and implementation efforts
also need to target eco-design strategies for PV to ensure, for instance, that modules are
built with delamination in mind, allowing the recovery of high-quality silicon wafers at
EOL. Digital technologies also play a role, not only by supporting the storage of product
information, i.e., material composition and technical parameters), but also the monitoring
and maintenance of PV modules for further reuse and recycling.

5.1.2. Solar Grade Silicon Production

Pure silicon is the dominant semiconductor material used in the production of solar
cells because of its abundance, non-toxicity, high and stable cell efficiency, and the maturity
of its production infrastructure [83]. Silicon is also reported as the only element that can
help the PV industry achieve the number of terawatts needed for renewables to make a
substantial contribution to global energy use [44]. Although this element is the second
most abundant in the crust of the earth, it is not pure in its natural state and must be refined
before it is used in the production of solar cells, which require high-purity silicon of at least
99.999999% (6N).

The first reported step in the overall silicon PV production process thus involves the
conversion of high-purity silica sand into silicon. The resulting metallurgical grade silicon
(MG-Si), of about 98.5% purity, is obtained by the carbothermic reduction of silicates in
electrode arc furnaces at temperatures above 1900 ◦C. Most of the MG silicon at this point
is used for aluminum casting or in the chemical industry. The remainder MG-Si is further
refined and converted into semiconductor or solar grade silicon (SOG-Si), by using, among
others, the modified Siemens process or the fluid bed reactor process [52,92].

5.1.3. Crystallization, Ingot Molding, and Wafering

Before solar cells are manufactured, a silicon ingot is grown by different crystallization
methods. Crystallization is one of the first steps in the silicon solar-cell value chain and
can be differentiated by monocrystalline and poli- or multicrystalline processes [6,51,52].
Although multicrystalline silicon cells exhibit lower conversion efficiencies than monocrys-
talline ones (13–16% vs. 15–20%), around 56% of the world’s solar cells today are produced
by multicrystalline processes. This is because they are cheaper to manufacture and, thus,
more preferred in the market. Once either type of silicon ingot has been manufactured,
it is sliced into thin disks or wafers, and then chemically treated, doped, coated, and
provided with electrical contacts in order to produce solar cells [181]. Most of the published
research at this early stage of the value chain deals with examining the effects of defects
and impurities on material property and ultimately on solar cell performance [44,51].

5.1.4. Solar Cell Manufacturing

Prior research suggests that solar cell and module manufacturing have been studied
from a technological point of view only [52,169]. In this spirit, the following lines provide
a quick review of the technical characteristics of silicon and thin-film solar cells.

Silicon-Based

Crystalline silicon is the most prevalent in the global market, accounting for around
90% of PV production [119]. To turn wafers into c-Si solar cells that can convert solar
power into electric power, wafers are first cleaned and placed in a phosphorous diffusion
furnace, resulting in a P-N junction for the photovoltaic effect. Next, the top surface of the
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wafer is covered with an anti-reflective coating to reduce the reflectivity of light and raise
efficiency. Afterwards, electrical contacts are imprinted on the entire front surface of the
wafer, while aluminum-based conductive material is deposited on the back surface. To
finish, each cell is electrically connected to other cells to form cell circuits for assembly in
PV modules [6,52,62]. Sets of cells or “strings” usually connect 10–12 cells in a silicon-based
module and 60–100 cells in a thin-film module.

Thin-Film

Originally introduced in the 1970s, thin-film cells are an alternative PV technology
aimed at reducing the cost and price of solar cells by using little or no silicon in the
manufacturing process. Although they exhibit an easier manufacturing process and lower
costs than c-Si cells, they also present lower light-to-voltage conversion rates (10–11%), and
therefore require more physical space to generate the same amount of power. Among the
several types of thin-film cells that exist nowadays (e.g., cadmium telluride (CdTe), copper
indium gallium selenide (CIGS), gallium arsenide (GaAs), and amorphous silicon (a-Si)),
CdTe cells are the most prevalent [33]. Otherwise identical in structure and function, the
difference between c-Si and thin-film solar cells resides in their thin and flexible layers and
in the semiconductor material they use: CdTe, CIGS or GaAs instead of silicon.

The reviewed literature in connection to thin-film cells reported concerns regarding
the scarcity of the base metals that make up CdTe thin-film cells (i.e., tellurium, indium,
and gallium) and, therefore, on the suitability of this technology for large-scale PV de-
ployment [11,50]. Some authors even suggest that the current base of critical elements
in thin-film cells is not large enough to support large-scale PV deployment, even if the
industry were to somehow monopolize the reserves of each element. Technological im-
provements involving material reduction and cheaper byproduct recovery processes, as
well as circular strategies to recover critical elements from decommissioned PV panels,
could offset the potential supply limitations and imminent price increases associated with
the critical materials in thin-film cells.

Emerging PV Cell Technologies

Both crystalline silicon and thin-film technologies are single-junction. Multi-junction
solar cells, or cells with multiple P-N junctions, promise to drastically increase solar cell
efficiency because of their ability to absorb different multiple light wavelengths. Grau,
Huo and Neuhoff [75] report, for instance, that for two- (tandem), three- and four-junction
devices, maximum efficiencies of 55.9%, 63.8%, and 68.8% are predicted, respectively.
Besides multi-junction cells, organic materials also offer the potential for low cost and high
energy absorption. These cells can be of various natures, namely: petrochemical cells, dye
sensitized solar cells, organic and polymer solar cells, and other emerging technologies
such as quantum dot solar cells. These technologies are still under investigation and have
not yet been widely commercialized.

5.1.5. Module Manufacturing and Balance of Systems (BOS)

After silicon has been casted into ingots and wafers have been sliced from the ingot
blocks and turned into solar cells through etching and polishing, cells are put together into
modules [72]. Solar modules are the core components of PV systems and account for about
40% of the PV system price [116]. Modules are assemblies of typically 6 × 10 or 6 × 12
series-connected solar cells, which are packaged into a protective multilayered structure of
five main components: (i) the front cover (tempered glass), (ii, iii and iv) the interconnected
solar cells matrix in an envelope of two encapsulant layers (front/back), and (v) a back
cover (back sheet or tempered glass). Such a structure provides electrical insulation and
long-term protection against external environmental stresses.

Solar modules together with BOS components (e.g., inverters, batteries, controllers,
and trackers) are assembled into solar PV systems by installers [62,72,116]. Of all the BOS
elements, the inverter is the most important as well as the most expensive and the most
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technically complicated. An inverter transforms direct current (DC) from the PV array into
a form of alternating current (AC) electricity that can be connected to the electric utility
grid. Most reviewed articles concerning module manufacturing focus on the PV module
manufacturing process (see Figure 6) as well as on the key technological improvements
resulting in the ever-decreasing costs of silicon PV modules.
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5.1.6. PV Installations

This stage is concerned with the installation of the PV system and the delivery of
electricity at the customer’s premises. Small rooftop installations are typically planned by
the installer, whereas larger rooftop and open space installations are handled by a planner
who takes care of various aspects such as system design and installation, permit and license
acquisition, construction, operation, maintenance services, insurance, and so on [72]. The
few publications focusing on this particular topic highlight that the installation of a PV
system is a labor-intensive process, because qualified personnel are needed to connect
the solar panels and to provide after-sale services to customers [85,90]. The personnel
needed for a PV installation will depend on the project size, namely whether the PV project
is residential (i.e., 1–10 kW), commercial (i.e., 11–500 kW), or industrial (i.e., >500 kW).
Figure 7 presents an overview of all stages in the upstream PV value chain and their
relevant stakeholders.

5.1.7. Geography and Composition of the Global PV Supply Chain

Research showed that knowledge and technology-intensive R&D and capital equip-
ment segments have been traditionally located in Europe, the United States, and Japan.
This scenario, however, has recently changed as many segments of the PV value chain,
from polysilicon production to module manufacturing, have become part of a global value
network now featuring new players such as China and Taiwan [72]. China’s success in the
PV industry as a rapid innovation follower has been the result of government-sponsored
import-substitution policies where the infant Chinese PV industry first produced for
the local market before then exporting worldwide when firms reached an international
level of competitiveness [65,72,83,89]. Despite the new competitive landscape, low-labor,
high-value added activities, such as polysilicon production and capital equipment manu-
facturing, are still led by European and American players [91,130].

In terms of industry structure, the supply chain for c-Si modules is described as being
fragmented, because it is comprised of a plethora of firms specializing in either polysilicon
feedstock, wafer, cell, or module manufacturing [52]. The articles in our sample suggest
that the number of companies at the lower-end of the upstream supply chain (i.e., firms
in charge of sales and installation of PV systems) exceeded those located in the upper-
end (i.e., suppliers of raw materials and manufacturers of wafers, ingots, and cells) [124].
However, upstream manufacturers, particularly the suppliers of capital equipment, silicon
materials, and silicon wafers, provided the most value added and achieved the highest
profits, because upstream activities required more firm and labor expertise, rather than
standardized, routine tasks [72,89]. In contrast, manufacturers and installers of modules
and panels achieved the lowest profits because barriers to entry were low and competition
high [6].
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5.2. Midstream PV Value Chain: Business Models

Barriers to PV system adoption, among them high up-front costs, long payback
periods, and the difficulty of planning and installing a PV system, spurred the need to
look for new business models (BM), or for new ways of creating, capturing, and delivering
value in the industry [71,182]. The literature on business models for the PV industry was
not vast. In the few identified publications, authors focused on exploring the characteristics
surrounding three main PV BMs: (i) home-owned systems, (ii) third-party ownership
(TPO) models, and (iii) community solar systems.

5.2.1. Home-Owned Systems and Feed-in-Tariffs (FITs)

In a home-owned system, customers own and finance (directly or indirectly) the
upfront costs of their PV system [6] (see Figure 8). This type of business model is targeted
at households and SMEs who own a sufficiently large roof (with a good solar orientation
and no shadows) and have incentives to reduce the financial burden caused by high
electricity costs [69,70]. The Netherlands, Denmark, China, and Germany are part of
the fifty plus countries that have implemented FIT schemes [6]. Currently, most of the
electricity generated by these home-owned systems has been connected to the grid and
is reimbursed by utilities according to a regulated feed-in-tariff rate (FIT) [71]. A FIT is
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an energy-supply policy aimed at attracting investments in renewable energies by means
of a payment ($/kWh) to PV owners for any electricity that is fed back to the grid. This
payment is always embedded in a long-term guaranteed purchase agreement that can last
up to 25 years.

The German solar industry is reportedly a prime example of how feed-in-tariffs have
helped the PV solar industry flourish. Germany, which held the world’s number one place
in PV installations from 2004 to 2012, was a pioneer in passing the “Renewable Energy
Sources Act” (EEG) that guaranteed a minimum 20-year FIT for customers. The German
EEG states that the PV electricity fed into the grid by PV installation owners has to be
purchased by utility companies at an enhanced price [77]. Variations in the payment rates
for FITs depend on multiple factors including energy prices, the state of the domestic
electric infrastructure, and the capacity and nature of the PV installation [75].
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5.2.2. Third-Party Ownership Models (TPOs)

Third-party ownership (TPO) models were born as a response to the “high up-front
costs, low operating costs” profile of PV energy provision. In a TPO model, solar service
firms plan, build, own, operate, and maintain solar PV installations at the customers’
premises, selling electricity to them for a predetermined period [9] (see Figure 9). Solar
service companies provide a full-service solution that includes the inspection of the po-
tential installation site, the evaluation of providers and installers (they might be the same
entity), the arrangement of financing, insurance, and permits, the negotiation with utilities
to sell surplus electricity to the grid, the maintenance of the solar system, and eventually
the responsibility for scrapping [9]. While customers or hosts benefit by not having to deal
with the high upfront costs associated with PV installations, and by passing the long-term
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operation and maintenance of the solar installation onto the TPO provider, the service
provider benefits from the tax credits and revenues resulting from the sale of electricity [9].

Under a TPO model, the literature differentiates between two types of financing meth-
ods: (i) leasing and (ii) Power Purchase Agreements (PPA). In the lease model, customers
(i.e., property owners or lease holders) consume the electricity generated by the PV system
and pay the installer/developer a fixed monthly installment, regardless of the system’s
energy production. Conversely, in the PPA case, customers buy electricity from installers at
a predetermined price each month, usually at a rate lower than the one offered by the local
utility. This is a way for residential and business customers to incorporate predictability
in volatile electricity markets. Contracts under the PPA model usually range from 15 to
25 years, after which customers can buy or return the PV system to the service provider or
renew their contracts [71].

The TPO model was found to be reliant on a set of contextual conditions (e.g., tax
credits, and tariffs, as well as market and consumer characteristics) that determined its
financial viability and deployment trajectory in different locations [71,116]. After its partic-
ular success in the United States, other countries, such as the UK, the Netherlands, and
Singapore, have implemented similar systems over the past few years [9,56].
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5.2.3. Community Solar Model

In a community model, multiple users purchase electricity from an off-site PV park
or garden without having to host their own PV systems on-site [70]. Users that subscribe
to this model either lack a suitable roof for installing a PV system (e.g., shaded, aged or
damaged rooftops) or property ownership rights (e.g., people who rent or lease instead
of owning, people who are planning to move). Under a community-shared business
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model, participants can purchase rights of the total output of the solar system without the
need to pay any upfront costs or deal with the technical complexity of the PV installation
(see Figure 10). In return, subscribers receive credit on their energy bills. Alternatively,
customers can pay an upfront fee to finance the costs of the project, thereby purchasing an
equity stake in the revenues from a portion of the plant [69].
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5.3. Downstream: End-of-Life Management of PV Systems

The appropriate end-of-life management of PV waste is of utmost importance, not
only for the collection and recycling of important raw materials such as aluminum and
glass, but also for the effective disposal of hazardous elements such as lead (from silicon
modules) and cadmium (from thin-film modules). Growing volumes of PV waste also
represent an opportunity to incorporate new value-added activities across the PV value
chain and an avenue for achieving combined environmental and socio-economic benefits
for multiple stakeholders. Downstream, most publications focused on PV panel recycling,
with no mention of other circular strategies such as PV refurbishing or reuse.

5.3.1. PV Panel Reuse

Although the second life use of PV panels represents a way to slow material loops in
a CE, there is no indication of significant academic research output in this area. Overall, a
lack of reliable data on module degradation and yearly aging, as well as on failure rates and
types, prevents relevant parties from analyzing which types of module failures warrant
repair, and at what cost and performance levels. Another important unknown relates to
the business case for reuse: (i) given the dramatic fall in PV module prices and increasing
module efficiency over time, would consumers opt for second life modules instead of new
ones? (ii) Depending on the cost structure and the technical performance of second life PV
panels, which customer segments would be suitable marketing targets (e.g., residential
vs. industrial customers, B2C vs. B2B, system owners pursuing the replacement of a
broken module at existing installations vs. investors pursuing optimized energy output at
a new, large-scale PV installations)? (iii) What would the value proposition and the value
capture formula for the target customer segments be? These are questions that are yet to
be investigated.
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Finally, it is not yet clear whether the definition for second life PV involves panels that
are a product of warranty returns, early defects, natural disaster damage, or production
scrap, just to mention a few possibilities. There is a crucial need to develop a terminology
to define the state and prospective use of second life panels so policy makers and industry
partners can encourage reuse and refurbishment through legislation, certifications, and
industry practices.

5.3.2. PV Panel Recycling

As pointed out before, most R&D funds in the PV industry have targeted improving
the efficiency of crystalline silicon panels, with less effort being devoted to devising cost-
effective, innovative processes for dismantling and recycling PV panel waste (see Figure 11).
Not much has been discussed about PV recycling because most of the PV systems that
are currently in operation have only been installed since 2010. Therefore, PV waste today
consists primarily either of pre-consumer waste (i.e., processing scrap from manufacturing)
or decommissioned failed panels, and not of end-of-life PV modules [10,54,123]. With no
substantial volume of panels to recycle, little research has been encouraged on this topic.

Current academic output in connection to recycling has mainly focused on: (i) the
probability that PV panels containing recycled materials are likely to generate reduced
levels of electricity, (ii) the presence of various manual activities that undermine the
effectiveness of the recycling process, (iii) the probability of cross-contamination when
PV waste is mixed with other types of waste [5], and finally (iv) the high dismantling,
transportation, and recycling costs resulting from the presence of hazardous elements in
PV panel waste [119].

In terms of regulations, the European Union introduced the EU Waste from Electrical
and Electronic Equipment (WEEE) directive to regulate the collection and recovery of end-
of-life PV modules in 2012. The so-called “WEEE Recast” demanded that all EU member
states encode the directive in national law by February 2014 and required that all PV panel
manufacturers, regardless of their geographical location, finance the costs of collecting,
recovering, and recycling all the PV panels sold in Europe [5,119].
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Environmental Issues Related to the Disposal of PV Panels

Some of the critical environmental issues associated with the disposal of EOL PV
panels include losses of scarce metals (e.g., silver, gallium, indium, and germanium) and
conventional materials (e.g., aluminum and glass), plus the release of hazardous metals
(e.g., cadmium, lead, tellurium, and selenium) and toxic gases (e.g., hydrofluoric acid) into
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the environment [119–121]. The leaching of hazardous materials such as Pb and Cd, which
takes place when the glass that encapsulates the PV cells is broken down or damaged,
has been of particular concern [119]. Cadmium, for instance, is believed to cause itai-itai
disease and to be toxic to fish and wildlife, as well as to the human body. Once absorbed,
cadmium can cause lung, kidney, and bone damage [124].

Furthermore, many elements critical to emerging PV technologies, such as indium,
tellurium, and gallium, today exhibit near-zero recycling rates [12]. Indium, for instance, is
present in amorphous silicon and copper indium gallium selenide panels, while gallium is
present in copper indium gallium selenide panels, concentrated photovoltaic panels, and
other emerging panel technologies [119]. Although these metals account for about 1% of
the panel volume, their value is significant, and their non-recirculation would signify a loss
for manufacturers and the industry in general. The main challenge is to find methods that
allow for recovery at the highest possible purity level.

Cost

Various authors report on the loss of profitability that will result from recycling PV
panels. Current low volumes of decommissioned panels not only make recycling expensive,
but also decrease the incentives that manufacturers have to proactively engage in recovery
and recycling schemes [5]. High collection, dismantling, transportation, and capital costs
(including machinery, chemicals, and other materials) associated with establishing recycling
infrastructure mean that it is not economical to recycle at low waste volumes today. High
recycling costs also increase competition for landfilling (i.e., it is cheaper to landfill than
to recycle) and the incentives for low value recycling (i.e., no material separation before
recycling). The question is also whether the recovery of certain precious materials might
profitably offset overall recovery costs, thereby supporting the competitive position of PV
manufacturers and PV technologies.

5.4. Electric Vehicle (EV) Batteries for PV Energy Storage

Giving electric vehicle batteries a second life as a stationary unit for renewable energy
storage not only helps the PV industry become more circular, but it also prolongs the
lifespan of batteries (through reuse) and delays costly recycling by 3–15 years. Lithium-ion
batteries (LIBs) are removed from the EV when their maximum capacity has degraded to
70–80% of the original capacity, which occurs about 8–10 years after the vehicle has entered
into operation [139]. At this point, when the vehicle is no longer suitable for automotive
purposes, EV batteries can be re-purposed and given a second life use in less stressful
applications such as stationary storage units for PV energy [149]. A business model that
couples PV technology with storage devices could help fit intermittent renewable technolo-
gies into the existing power generation system and increase solar energy dispatchability
(see Figure 12).

According to the few articles that simultaneously discuss LIBs and PV systems, the
second life use of LIBs can only be accomplished once some issues are resolved. This
would specifically involve: (i) finding out what the costs of refurbishing an EV battery
are; (ii) dealing with the uncertainty surrounding the reduction in capacity or efficiency of
the LIB after its first life; and (iii) dealing with warranties, reliability and safety concerns,
as well as regulatory barriers that hinder customer trust and the adoption of second life
LIBs [140,146]. A separate study that details the EV battery value chain could shed light on
more concrete answers to such questions.
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6. Discussion and Conclusions

Photovoltaic installations have experienced explosive growth globally following the
increasing attention of industry and policy on climate change mitigation, the decarboniza-
tion and diversification of the energy sector, and energy security. The expected expansion
of global solar PV generation capacity will inevitably translate into a large volume of solar
panel waste in the future. A similar growth/waste scenario is expected for lithium-ion
batteries, which end their automotive life when their maximum capacity has degraded to
70–80% of their original capacity.

In this article, we posit that a closer look at the current functioning and structure of the
PV value chain is necessary to highlight critical improvement areas to achieve circularity
in the PV industry. To paint a more refined picture of the PV value chain, we conducted
a systematic literature review based on 148 articles published between 2000 and 2020.
Results showed that most of the academic research output related to the studied topic has:
(i) increased since 2013; (ii) been primarily published by European research institutions,
with Germany, the United Kingdom, and Italy at the forefront; and (iii) been technology-
focused, concentrating on ways to achieve more efficient and competitive, brand-new
PV systems. Furthermore, almost all the papers that matched the search criteria for the
SLR provided a narrow view, describing the PV value chain as starting with raw material
procurement and ending with the installation of PV systems at the customers’ premises.

Table 7 provides a summary of some of the main issues, in connection with circularity
and throughout each stage of the PV value chain, that emerged during the SLR. These
issues can be understood as barriers to circularity from an industry perspective and have
been classified according to different criteria, such as technical, financial, customer-related,
and infrastructure-related. Upstream, both the PV and the EV industry allocate R&D funds
for efficiency improvements in the asset’s first life, disregarding investments in design of
easier-to-recover panels or more cost-effective recycling technologies. Ensuing module
circularity and smartness to enable module repairability (e.g., replacement of bypass diodes
in the junction box or the complete junction box), dismantlability (e.g., separation and
recovery of the semiconductor from the frame, glass, encapsulants and back sheet) and
material disclosure (e.g., metals and polymers) should be a priority for industry players
and policymakers if circularity in PV is to be achieved.

Midstream in the PV value chain, business models catered to the needs of brand-new
PV system owners only, e.g., home-owned, with no mention of innovative business models
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supporting the deployment of second life modules decommissioned due to technical
failures, insurance claims, repowering or early replacement. BMs that enable the diffusion
of second-hand PV modules in low-income economies, where the low-cost feature could
compensate for the lower remaining lifetime and lower performance of used modules,
could be an alternative. Because of their geographical location, developing countries
tend to be greatly endowed with renewable resources, including solar irradiation. Tighter
budgets, lower requirements for panel aesthetics, increased tolerance towards modules
with no warranties, and the need for still efficient, yet affordable modules, make second
life PV a suitable option for low-income areas that lack access to grid electricity. Examples
of use cases include not only home energy applications, battery charging and solar Wi-Fi,
but also solar irrigation and refrigeration for agriculture. The latter are particularly critical
for developing countries, where households rely on small-scale agriculture for sustenance,
income, or both. All in all, off-grid solar solutions represent a clean energy alternative to
replace environmentally harmful energy sources (e.g., charcoal from fuelwood) and reduce
carbon-related emissions, increase rural electrification levels, and help provide income-
enhancing opportunities and raise living standards for disadvantaged communities. Recent
environmental and health-related shocks are also a reminder of the need for establishing
off-grid energy preparedness to increase self-sufficiency and systemic resilience for energy
provision. This is especially true in the mentioned areas where the impact of such shocks
tends to be of a higher magnitude.

We also highlight the fact that scarce statistical data on PV module failures and the
costs of the corresponding repairs hinder the emergence of BMs for PV and battery reuse.
We therefore believe that additional research is necessary to more accurately estimate not
only the possible volume trajectories of second life PV and EOL waste but also the levelized
cost of electricity (LCOE) (i.e., the net present value of the total cost of a system divided
by the total amount of energy it produces) for both new and second life PV and batteries.
Only when a second life PV system has a LCOE that is lower or at least the same as the
LCOE of a system with new panels, is it financially attractive for customers in all market
segments. With decreasing costs and increased efficiencies for newer PV panel technologies,
one could argue that new PV systems will be the preferred choice in developed economies,
where consumers rely heavily on high efficiency, aesthetics, and warranties. If this is the
case, and early replacement takes place, volumes of decommissioned PV panels will be
higher than expected. Finally, business models dealing with new PV systems were found
to be contextual and adapted to the market needs and regulatory landscape of the country
where they were the most prevalent (e.g., home-owned systems in Germany or third-party
ownership models in the United States).

At the downstream end of the PV value chain, lack of design for refurbishing, dis-
assembly, and recycling, current low volumes EOL panel waste, differences in PV panel
architectures, and infant recycling technologies and infrastructure, currently turn PV re-
cycling into an unattractive and unprofitable activity for manufacturers and recyclers.
Similarly, low volumes of waste combined with different battery chemistries and configu-
rations, as well as uncertainties surrounding the economic, technical, and environmental
viability of repurposed EV batteries for energy storage, represent some of the main hurdles
to the cost-efficient deployment of EV batteries for second life. When these uncertainties
are eliminated, public policy could support the development of certification schemes that
can boost customer trust and accelerate market adoption for both second life PV and LIBs.
Finally, the barriers presented in Table 7 evidence the extent to which, from the perspective
of the customer, both intrinsic (e.g., knowledge and perception of circular products) and
extrinsic attributes (e.g., product infrastructure, pricing, warranties) must be addressed
if the diffusion of circular business models in the PV industry is to be secured. All in all,
we posit that value chain challenges and barriers can be taken as opportunities for the
creation of future innovative value formulas and policies that address current technical,
socio-economic and regulatory hurdles.
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Table 7. Summary of CE-related challenges derived from the SLR.

Design and Manufacturing Business Models Reuse (PV and EV Batteries) Disposal Recycling

Technical

• Current PV module design
does not facilitate the
proper separation of PV
module components at
EOL

• Manufacturers optimize
product design for first life,
not for use thereafter (i.e.,
design for disassembly,
refurbishment, and
recycling)

• R&D activities concentrate
on material technologies
and cell efficiency
improvements, rather than
design for EOL

• All possible diffusion paths
of the different PV
technologies are key
limitations to forecasting
the trajectory of solar
energy production and
storage

• Business models are
designed for brand new PV
system owners. New BMs
for second life and recycled
PV and LIBs are therefore
needed

• All the unknowns
associated with second life
PV and LIBs (e.g., cost,
performance, volumes)
interfere with the
development of innovative
value proposition packages
for new business models

• Accurate data on PV panel
failure (e.g., failure types and
rates, performance after
repair, and repair costs) are
still a work-in-progress, due
to the low volume of
decommissioned PV panels
and infant PV monitoring
systems available (Currently,
however, some technological
solutions for fault finding and
tracking are under research)
[20]

• The repurposing process of
LIBs is demanding as each
cell needs to be controlled
and the BMS needs to be set
up to fit the battery’s new
surroundings and application

• There is uncertainty about the
remaining battery capacity
after its use in firstt life (i.e.,
the ageing performance of
second life batteries)

• Most tests measuring the
efficiency and longevity of
LIBs for stationary energy
storage have been performed
as demonstrations at the
laboratory level only

• When landfilled, PV panels
can break and leach toxic
chemicals and gases into the
environment

• Lack of proper material recovery
technologies. Many pilot projects
are underway to improve the
efficiency of different recycling
methods

• Lack of sufficient recycling
infrastructure

• PV panels contain toxic chemicals
(e.g., Pb, Cd, Cr) that cannot be
removed without breaking apart
the entire panel. When the PV
cells are separated from the glass
that contains them, hazardous
substances are likely to be
released into the environment

• Due to the need for accurate
handling, the disassembly of
aluminum frames and other
components in the PV panel is
highly manual. This limits the
efficiency of the recycling process

• Many elements critical to
emerging PV technologies, such
as indium, tellurium, and gallium,
exhibit near-zero recycling rates

• There are concerns about the
performance of PV panels
manufactured out of recycled
materials (i.e., the more the
recycled material in new PV
panels, the greater the probability
of lower levels of electricity
generation)

Collaborative
• Lack of coordination and

collaboration between
producers and recyclers

• The non-disclosure of proprietary
product information and different
material combinations in PV
panels complicate the recycling
process
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Table 7. Cont.

Design and Manufacturing Business Models Reuse (PV and EV Batteries) Disposal Recycling

Customer

• Current BMs do not
provide avenues or
incentives to refurbish or
recycle PV panels

• Customers might perceive
refurbished or recycled
products as exhibiting
lower performance

• Dropping prices and
increased efficiency of new
PV panel generations may
lead to earlier panel
replacement than what it is
expected

• Warranties, reliability, and
safety concerns of second life
PV and LIBs hinder customer
trust and product adoption

• Lack of awareness and/or poor
market confidence in
refurbished/recycled PV panels

Infrastructure

• The transport of LIBs is costly
and highly regulated because
it can be considered as
hazardous waste

• If second life battery storage
is pursued on a massive scale,
how will grid infrastructure
be affected? (in terms of its
capacity for external
connections)

• Although some OEMs have
implemented take back
systems, adequate collection
systems/plants are lacking

• PV panels are manufactured
in key locations, but they are
geographically dispersed
across the globe

• Lack of adequate collection
centers and recycling systems and
plants

• Risk of overinvesting in capacity
due to the uncertainty in the
material composition of future
technologies and the difficulty in
determining future PV waste
volumes

Financial

• Although the recycling of
PV panels is expected to
decrease the economic costs
associated with their
production, there is still no
realignment of operations
or asset prices based on
recycled materials

• Due to the low volume of
decommissioned PV systems and
EV batteries, there is a lack of
evidential data on the costs of
collecting, dismantling, and
recycling both types of systems

• The recycling of EOL PV panels is
currently not profitable (high
transportation, collection, and
infrastructure costs vs. low
volumes of waste)



Sustainability 2021, 13, 9615 26 of 35

Table 7. Cont.

Design and Manufacturing Business Models Reuse (PV and EV Batteries) Disposal Recycling

• The profitability of recycling also
depends on the technology. For
instance, thin-film technologies
promise higher profit thanks to
the presence of precious materials.
In the case of c-Si panels, the
absence of valuable
metals/materials produces
economic losses

• Many consumers and OEMs
prefer landfill if it is cheaper than
recycling

• With higher cell efficiencies and
lower material prices expected in
the future: will the recycling of
PV panels make economic sense?

Government
regulations

• Legislation for second life use
of LIBs has not been
developed in the EU. There
has to be a business case for
reuse rather than recycling

• Will regulations at the local
level (e.g., FITs that enable
the sale of excess solar power
to the grid) minimize the
financial benefits of energy
storage?

• Undefined roles of producer
responsibility throughout the
PV value chain

• Lack of proper government
regulation (recovery targets and
responsibilities along the value
chain)
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7. Future Research

In the previous sections we identified and discussed different research streams related
to the echelons of the PV value chain. Based on these results, it became clear that published
literature has studied the PV industry in a fragmented manner and often from a purely
technological standpoint. Although the technical aspects of PV and LIB technologies
are critical, and certainly warrant further research efforts, more socio-economic analyses
connecting some of interacting segments of the value chain might provide a more holistic
and dynamic view of the industry in the short, medium, and long term. In this section,
we raise some key questions based on the belief that a holistic and dynamic view of the
industry is the most effective strategy to guide future research and to prevent researchers
from making unnecessary deviations. We suggest future studies could, for instance, address
the following questions:

• What will be the impacts of raw material scarcity, price fluctuations, or other external
shocks such as pandemics or extreme weather events on the resilience of the PV
and battery supply chain? Additionally, what are the implications of scarcity and
fluctuating prices for R&D activities and high-value material recovery activities at
EOL (i.e., at the raw material stage)?

• Which PV technologies and battery chemistries will triumph over others in the quest
to dominate market share over the medium and the long term? Additionally, what
are the effects of these trajectories on the adoption, uptake, second life use, and
decommissioning of PV systems and LIBs (i.e., PV and EV battery cell/module manu-
facturing stage)?

• How will the mix of dominant PV and battery technologies affect different policy
options and industry arrangements for the deployment of innovative business models
(that facilitate monitoring, collection, reuse, and recycling)? How do new BMs create
simultaneous value for manufacturers, service providers, end-customers, and utilities
(i.e., at the deployment and business model stage)?

• For both reuse and recycling scenarios, what are the estimated recovery rates, costs,
and performance indicators for each PV technology? Additionally, at what rate will
the recovered materials be used in new manufacturing cycles? Moreover, with new
“circular tasks” to be performed (i.e., refurbishment for reuse, recycling, and so on)
new ecosystem actors are likely to emerge. If so, what will be the nature of the work
performed by these actors and what is their connection with the traditional actor
network of the PV and LIB value chain (i.e., circular economy strategies)?

Given the complexity of a circular PV industry, answering some of these questions with
the aid of quantitative complex system methods such as system dynamics or agent-based
modelling might be appropriate. These tools have the power to capture the many dynamic
relationships (e.g., feedbacks, non-linearities, individual actor behavior) and the various
impact types (e.g., social, environmental, and economic) inherent in PV and EV value
chains. For instance, a time-dependent analysis of how price changes in conventional and
alternative energy sources, coupled with how different business models and government
policies, as well as customer-related behavioral factors, affect the competitiveness of the
PV industry, the uptake of different PV technologies, and the subsequently available
resource types and qualities for reuse, refurbishment, and recycling, is a concrete example
of a modelling application. Additionally, simulation models could not only enhance
understanding about different industry development scenarios but could also help identify
key circularity metrics at the firm and industry level.
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Abbreviations

AC Alternating current
BESS Battery energy storage systems
BEV Battery electric vehicle
BMs Business models
BMS Battery management system
C Carbon
Cd Cadmium
CdTe Cadmium telluride
CE Circular economy
Co Cobalt
CO2 Carbon dioxide
Cr Chromium
c-Si Crystalline silicon
CSP Concentrating solar power
Cu Copper
DC Direct current
EOL End-of-life
EV Electric vehicle
FIT Feed-in-tariff
GW Gigawatts
GWh Gigawatt hours
LbD Learning by doing
LIB/Li-ion Lithium-ion battery
mc-Si Multicrystalline silicon
MG-Si Metallurgical-grade silicon
MW Megawatt
N/A Not available
OEM Original equipment manufacturer
Pb Lead
PPA Power purchase agreement
PV Photovoltaic
R&D Research and development
SLR Systematic literature review
SOG-Si Solar-grade silicon
TPO Third-party owned
WEEE Waste electrical and electronic equipment
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