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Abstract: The connectivity of our surrounding objects to the internet plays a tremendous role in
our daily lives. Many network applications have been developed in every domain of life, including
business, healthcare, smart homes, and smart cities, to name a few. As these network applications
provide a wide range of services for large user groups, the network intruders are prone to developing
intrusion skills for attack and malicious compliance. Therefore, safeguarding network applications
and things connected to the internet has always been a point of interest for researchers. Many
studies propose solutions for intrusion detection systems and intrusion prevention systems. Network
communities have produced benchmark datasets available for researchers to improve the accuracy
of intrusion detection systems. The scientific community has presented data mining and machine
learning-based mechanisms to detect intrusion with high classification accuracy. This paper presents
an intrusion detection system based on the ensemble of prediction and learning mechanisms to
improve anomaly detection accuracy in a network intrusion environment. The learning mechanism
is based on automated machine learning, and the prediction model is based on the Kalman filter.
Performance analysis of the proposed intrusion detection system is evaluated using publicly available
intrusion datasets UNSW-NB15 and CICIDS2017. The proposed model-based intrusion detection
accuracy for the UNSW-NB15 dataset is 98.801 percent, and the CICIDS2017 dataset is 97.02 percent.
The performance comparison results show that the proposed ensemble model-based intrusion
detection significantly improves the intrusion detection accuracy.

Keywords: intrusion detection; intrusion accuracy; automated machine learning; CICIDS2017;
UNSW-NB15

1. Introduction

An expeditious rise in the development of network and communication technologies
leads to an immense amount of network data generated from a wide range of services. For
instance, pervasive computing networks such as the Internet of Things (IoT) generate enor-
mous data [1–3]. A wide range of network applications is developed in every domain of
life, including business, healthcare, smart homes, and smart cities, to name a few [4–7]. The
plethora of high-dimensional data increases the need for analysis tools based on advanced
data mining and statistical methods [8,9]. There is a dire need to tune the contemporary
data mining and statistical methods to address the challenges of the growing internet
applications, such as bandwidth handling, network intrusion detection, and scalability.
Network applications and resources’ security using intrusion detection systems, intrusion
prevention systems, and hybrid systems are becoming more challenging due to the enor-
mous number of diverse networking applications. However, the rule-based approach for
the analysis of enormous data has many limitations. The existing state-of-the-art intrusion
detection-based systems focus on increasing the reliability aspect of these applications [10].
An efficient intrusion detection system can strengthen the defense system of such applica-
tions against anomalies and network intrusion attacks. The intrusion detection system also
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provides real-time analysis of the collected critical reconnaissance data during defensive
attacks. Intrusion detection systems based on artificial intelligence(AI) hold a significant
potential to enhance the performance of detection mechanisms by learning from historical
data and real-time data patterns.

Scientific community has presented various machine learning-based intrusion de-
tection systems such as support vector machine (SVM) [11], Naive Bayes (NBs) [12],
clustering [13], artificial neural network (ANN), and deep learning network (DNN) [14].
Conventional machine learning algorithms can better classify small and low dimension
datasets. However, the classification accuracy of these algorithms deteriorates when it
comes to addressing problems involving high dimensionality and nonlinearity. Hence,
the need for intrusion detection models to address the classification accuracy problem
increases as AI advances. For example, a convolutional neural network (CNN) [15] and
long short-term memory (LSTM) [16] have been applied in natural language processing
(NLP) and computer vision applications. The problem with deep learning techniques
such as CNN and LSTM is adaptability to nonlinear and high-dimensional data. The
issue of nonlinearity has been addressed in CNN and LSTM for modeling nonlinear sys-
tems [17–22]. In literature, the issues of high dimensional data are handled in CNN, and
LSTM using a deep learning paradigm [23–26]. Automated machine learning (autoML) is
a newly emerged subfield of machine learning and data science. The feasible adaptability
of autoML makes it equally useful for trainees of machine learning, data scientists, and
machine learning engineers. Research articles demonstrate that autoML can revolutionize
constructing machine learning models without machine learning expertise and knowing
technical specifications. AutoML architectures produce a code pipeline by suggesting and
selecting a model from a list of machine learning model-based input datasets [27]. The
selection is performed based on the accuracy of these machine learning models. AutoML
results in coding the pipeline of the best performing model, which will be very difficult to
find using manual configurations of the models’ parameters.

This paper presents an intrusion detection system based on the ensemble of prediction
and learning mechanisms to improve intrusion detection accuracy. The conceptual design
of the proposed ensemble intrusion detection model for improving the performance accu-
racy of anomaly detection is envisioned in Figure 1. The proposed learning mechanism
is based on autoML [28], and the prediction mechanism is based on Kalman filter [29].
First, the automated neural architecture search paradigm of autoML improves the accuracy
of the learning model using parameters optimization. Then, the optimal DNN (o-DNN)
model pipeline is created from an autoML based learning mechanism. Next, an optimal
Kalman filter-based intrusion detection system is produced using measuring and updating
errors. Finally, the o-DNN and Kalman filter are utilized to develop the ensemble intrusion
detection model based on the weighted voting mechanism.
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Kalman Filter 
Algorithm

Testing
 data

Ensemble 
Mechanism

predicted 
Anomaly data

Calculate  
Accuracy

Accuracy 
increase

Deploy Intrusion 
Detection Model
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Figure 1. Conceptual diagram of ensemble of learning and prediction mechanism for anomaly detection.
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The proposed ensemble-based intrusion detection model is selected based on accuracy
comparison with DNN and Kalman filter-based intrusion detection models. If the accuracy
of intrusion detection is improved using the proposed ensemble approach, it is deployed
as an intrusion detection model in a network intrusion environment.

The main contributions of this paper are as follows:

• Design of ensemble mechanism based on learning and prediction models.
• Implementation of ensemble model based intrusion detection system for improving

the detection accuracy.
• Case studies based on benchmarks’ intrusion detection datasets.

The case studies based on intrusion detection datasets are used to assess the proposed
ensemble mechanism for intrusion detection environments. The performance of the pro-
posed model is compared with some contemporary models, including DNN, autoML, and
other algorithms from the literature on these benchmark datasets. The case studies are
evaluated using benchmark datasets UNSW-NB15 and CICIDS2017.

The rest of the paper is organized as follows: a brief literature review is presented
in Section 2. Section 3 presents the methodology for the proposed intrusion detection
system. Experimental results are discussed in Section 4. Section 5 presents performance
analysis and significance of the study. Finally, the conclusion and future work directions is
presented in Section 6.

2. Related Work

Artificial intelligence is taking over the current era and is changing the current era
into a revolutionary practical world. Data analysis, predictive analytics and optimization
models are used for many real-life applications [30–32]. Anomaly detection is a type of
data analysis used to identify irregular and abnormal data from a given data set. Anomaly
detection is the approach used in data mining applications for discovering and finding
patterns inside the data [33]. It is also used as a standalone module in many studies related
to machine learning and statistics applications. Deviation detection, outlier detection,
and exception mining are related terms used for anomaly detection [34]. Narayana et al.
defined anomaly as a mechanism generated from the deviation of several observations [35].
Anomaly detection is used in several scientific domains such as healthcare, intrusion
detection, sensor network, and fraud detection, to name a few. Detecting irregularities in
the network, identifying anomalies in financial transactions, detecting fraudulent activities,
and detecting anomalies in medical images are some anomaly detection applications [36].
In networks, anomaly patterns can be identified based on the classification of packet data
containing abnormal patterns.

Xie et al. published a survey study related to intrusion detection in wireless sensor
networks [37]. According to most of the studies, intrusion detection depends on the com-
munication medium; for example, wired connection-based techniques cannot be applied
to the wireless communication medium. The survey emphasizes the need for standard
anomaly detection techniques for all types of networks. One challenge for detecting anoma-
lies in the network is the lack of a comprehensive dataset. Most of the current anomaly
detection systems are based on supervised approaches that use labeled data knowledge.
During the past few years, research has been conducted in network intrusion detection
segregated into audit source, network behavior, detection method, location, frequency of
usage, and detection method. In [38], Debar et al. presented a standard technique based
on the extension of transaction-based detection paradigm. Axelsson et al. [39] proposed
a study based on detection principle and focus on operational aspects. Furnell et al. [40]
proposed an intrusion matrix based on the data scale and output type. Estevez-Tapiador et
al. presented a wired-based network intrusion detection based on anomaly detection [41].
Boukerche et al. presented an outlier-based classified detection approach using the unsu-
pervised and supervised models [42]. Under the supervised category, a proximity-based
technique has been used recently [43].
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Chandola et al. also presented another detailed survey study on anomaly detec-
tion [44]. Their study presents different techniques related to intrusion detections. Some
studies proposed several anomaly detection techniques based on supervised, unsuper-
vised, and clustering methods [45–49]. The lack of discussion and research problems in
the available datasets are one of the research gaps that need to be addressed. The most
used datasets for network anomaly detection are the DARPA/KDD, which developed in
2013. Various variants of datasets are developed based on this dataset to address the causes
of data errors and inconsistency. As network anomaly detection based on the aforemen-
tioned dataset has no significant performance improvements; therefore, more anomaly
detection datasets have been introduced recently to improve intrusion detection system
efficiency. Some research surveys focused on these dataset issues and challenges to develop
an efficient intrusion detection system [50]. The network attack profile feature relies on
classification-based techniques and the size of the data [51]. The intrusion detection system
process is based on the signature of the attack and the capability of intrusion detection
system to detect the attack from data patterns [52]. The intrusion detection engine can
also enhance the defense system using intelligent mechanisms for various attacks’ variants.
This process is quite expensive for creating a new attack in case of loss or replacement [53].
Furthermore, the regular traffic does not contain the knowledge base attack, and it will be
raising the wrong alarms.

In summary, anomaly detection mechanisms are costly in terms of time and are relying
on the existing network traffic dataset. Furthermore, keeping the standard profile up-to-
date is very difficult in today’s network. The network traffic analysis dataset does not have
easy access due to privacy limitations. Examples of benchmark datasets for intrusion detec-
tion are DARPA/KDD, UNSW-NB15, CICIDS2017, and CSE-CIC-IDS2018 [54]. The main
challenge that needs to be addressed is improving intrusion detection systems’ accuracy
on these benchmarks’ datasets. Table 1 presents a summary of existing intrusion detection
and prevention systems organized as applications, datasets, models, and relative demerits.

Table 1. Summary of existing intrusion detection and prevention systems.

Application Datasets Model Relative Demerits

Anomaly Detection [55] InSDN TRW-CB algorithm Standardized programmability and can predict anomalies in
SOHO Network

DoS attacks detection [56] KDD-99 Self-organizing maps, ANN Lightweight DDoS Flooding Attack but do not have any flow rules installed.

Anomaly Detection [57] NSL-KDD DNN approach
Does not scale well for commercial product but is a good alterna-
tive solution for signature-based intrusion detection system

DDoS Detection System [58] Simulated data Stack auto-encoder and
DNN

Detect all DDoS attack, but has a Controller bottleneck in a wide
networks.

Intrusion Detection [59] Simulated data
Self organizing map and
learning vector quantiza-
tion

Detect U2R attacks but limited to deep packet inspection tech-
nique.

Monitor traffic flow [60] Simulated data Flow analysis tool
Improve computation time of flow but difficult to handle due to
batch processing. Flow analysis tools are not compatible with the
MapReduce interface.

P2P botnet detection [61] CAIDA,simulated data Random forest
Process high bandwidth and efficiently analyze malicious traf-
fic data. However, the high drop rate of packets and delay in
detection make it inefficient for new complex threats.

Intrusion detection [62] NSL-KDD 99 NB tree, random forest
Improved performance accuracy reduces false-positive rate for
hybrid approaches, but the false-positive rate is high for non-
hybrid approaches.

Phishing-based attack de-
tection [63]

Simulated data Collaborative mechanism Practical method for generalization to any attacks but no valida-
tion with real datasets.

Intrusion detection [64] KDD 99, CMDC 2012 OneR algorithm, KNN, SVM Faster but feature reduction and training mechanism is real over-
head.

Malware detection [65] Simulated data Choi–Williams distribution Effective for Kelihos injection but not tested with real datasets.

Intrusion detection system [66] Simulated data RSFSA, fuzzy logic based SVM
Faster mechanism for decision attributes and log data reduction
though not tested with real datasets.

Network traffic monitoring [67] CAIDA IP Trace Analysis System
Useful for passive analysis but does not provide a fine-grained
analysis.

3. Materials and Methods

This section presents the design of the proposed ensemble mechanism-based intrusion
detection methodology. The datasets and methods used for data preparation are briefly
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discussed. The intrusion detection system is based on the ensemble of learning and
prediction models. The main aim of the proposed ensemble mechanism-based intrusion
detection system is to improve the accuracy of intrusion detection. The proposed intrusion
detection system has two main phases. The first phase is training, and the second phase is
deployment in an intrusion detection environment. The first phase of the methodology
for the ensemble intrusion detection model based on comprehensive datasets is shown in
Figure 2. Two comprehensive benchmark datasets are prepared using feature engineering
techniques to assess the performance of the proposed ensemble model. The data are
prepared and split into training, validation, and testing datasets for the training, testing,
and validation of the proposed intrusion detection model.

Kalman filter based Prediction Mechanism 
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Figure 2. Ensemble model based on learning and prediction mechanisms.

The autoML based learning mechanism utilizes automated neural architecture search
to obtain O-DNN using hyperparameter optimization, and accuracy metric. We used the
Bayesian optimization (BayesOpt) method for hyperparameter optimization. Auto-kreas
uses BayesOpt as an optimization method for neural network architecture search(NAS).
BayesOpt has a sequential procedure for global optimization of black-box functions. The
BayesOpt requires a dataset prepared for machine learning models and defined search
space. The search space is based on a large set of neural network architectures. The search
space consists of architectural parameters such as the number of layers, activation functions,
and density. The next step involves defining an objective function that aims to search
for architectural parameters to improve the training and testing accuracy. Edit distance
function is used to find the distance between architectures. Let f(accuracy) be the objective
function for maximizing the accuracy. The goal of the BayesOpt mechanism is to find a
deep learning architecture D ∈ set of architectures list, which maximizes f(accuracy). The
Kalman filter model is used for intrusion detection, and its parameters are tuned to improve
the accuracy. For instance, the final R parameter value of the Kalman filter is selected
based on the average of R values which performs better for both comprehensive datasets.
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The ensemble model is based on the O-DNN model and the Kalman filter. The ensemble
model is based on the weighted voting mechanism. The predictions of both learning and
prediction mechanisms are weighted based on their average prediction accuracy.

The second phase of the methodology is testing the proposed ensemble model for
the intrusion detection system. Figure 3 presents the testing of the proposed intrusion
detection system based on the ensemble model in the intrusion detection environment.

• Packet  reprocessing 
• Extract features from 

packet

Testing in Intrusion Detection Enviornment

Add detected intrusion
 ProfilePre-trained model 

based on Proposed 
model

Normal pattern data

Packet Sniffer
Attack Database

(Intrusion profile)

Detection Engine
(Intrusion profile 

matching)

Abnormal pattern data

Figure 3. Intrusion detection system based on the proposed ensemble model.

The pre-trained model based on the ensemble mechanism is deployed in a networking
environment to predict anomalies in the network data. For network capturing and pre-
processing, a Raspberry Pi based capturing probe is used. The extracted data profile is
given as an input to the ensemble model to analyze the data pattern for intrusions. If the
input packet pattern is abnormal and matches the signatures in the intrusion detection
engine, the packet is dropped. Suppose that the abnormal pattern signature is not present
in the intrusion detection engine. In that case, the database is updated with the new
signature, and the packet is dropped. In summary, the intrusion detection system based on
the proposed ensemble model analyzes the packet for intrusion data patterns.
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Datasets

An intrusion detection system is evaluated based on their performance analysis of
comprehensive labeled data of normal and abnormal behavior to identify types of network
attacks [68]. UNSWNB15 and CICIDS2017 pp. datasets previously used for network
intrusion detection [69]. Older data sets such as KDD CUP 99 [70] and NSL KDD [71]
have been widely used for evaluating performance of the intrusion detection system.
Studies [72–74], evaluating intrusion detection system using these data sets do not reflect
realistic output performance. The KDD CUP 99 data set contains an enormous amount
of redundant data; therefore, it has been improved to obtain the NSL KDD dataset. As
the NSL KDD dataset is not comprehensive, the comprehensive dataset of UNSWNB15 is
prepared in the cyber range lab of the Australian center for cybersecurity. UNSW-NB15
represents nine types of attacks obtained through the IXIA PerfectStorm tool. The dataset
contains 49 features developed using Bro-IDS and Argus tools. These datasets contain a
limited number of network attacks and outdated information about packets. The training
dataset contains 175,341 data instances, whereas the testing dataset contains 82,332 normal
and attack data instances. Table 2 presents data distribution from the UNSW-NB15 dataset
based on the types of data. The issues of the UNSW-NB15 dataset are addressed in the
CICIDS2017 dataset.

Table 2. UNSW-NB15 dataset data distribution.

Type of Data Description No of Records

Normal Normal network data 2,218,761
Analysis Contains attacks such as spam, port scan and HTML web pages penetration 2677

Dos Denial of service attack 16,353
Fuzzers Causing a program suspension using randomly generated data feeding 24,246

Backdoors Technique for bypassing system security 2329
Exploits Exploiting the known security problems 44,525

Shellcode Piece of code for exploiting the vulnerability of software 1511
Generic Technique which targets all block ciphers 215,481
Worms Worms replicate themselves to spread to other computers 174

Reconnaissance Strikes which can simulate attacks to gather information 13,987

The CICIDS2017 dataset, on the other hand, is one of the updated intrusion detection
systems’ datasets. It contains benign, and seven general network flows’ attacks. The
dataset has been used to evaluate the performance of machine learning models on a set
of networking traffic data features for anomaly detection. In the paper, the analysis of the
CICIDS2017 shows that random forest outperforms other algorithms [75]. Table 3 presents
a summary of the features of CICIDS2017.

Table 3. CICIDS2017 dataset data distribution.

Type of Data Description No of Records

Normal Normal network data 2,358,036
DoS hulk Denial of service attack data generated using hulk tool 231,073
DDos Attack using multiple machines 41,835
Port scan Attack using a port scan mechanism 158,930
Dos GoldenEye Attack data using a GoldenEye tool 10,293
FTP patator Brute force attack attempt for guessing FTP passwords 7938
SSH patator Brute force attack attempt for guessing SSH passwords 5897
Botnet Attacks using trojans and utilization of the victim system in the Botnet network 1966
DoS slow loris Denial of service attacks using a Slow Loris tool 5796
DoS slow HTTP Test Excess of HTTP get request to prevent HTTP usage 5499
Web attack Brute force attack for finding personal identification numbers from web pages 1507
XSS Web attack Malicious scripts injection in trusted websites 625
HeartBleed Injection of malicious information into openSSL memory using openSSL exploitation 11
SQL injection Web attack Attack using the famous attack method called SQL injection 21
Infiltration Unauthorized access to system using infiltration methods and tools 36
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As part of data pre-processing, dataset features are transformed and normalized.
Categorical features such as attack types are converted into numerical values using one-
hot-encoding. Data features with large values are normalized. The intrusion detection
datasets contain many redundant data records, which causes biasness toward the many
data records [76]. Furthermore, missing data records are also reasons for changing the
characteristics of the data [77]. Hence, datasets are improved to solve data issues such
as unbalancing between normal and abnormal data records and the missing values [78].
Therefore, data features with irrelevant and redundant data are eliminated, and necessary
features are selected. For feature selection, the univariate feature selection technique
with analysis of a variance (ANOVA) F-test is used [79,80]. An ANOVA f-test is used
to analyze to determine x individual performance of all the features and strength of the
relationship between the data feature and label features of the dataset. Sklearn library-
based Select Percentile is used to select features based on the highest scores percentile.
After selecting the subset of the features, the recursive feature elimination technique is
applied to eliminate the irrelevant features. After the dataset is prepared, a model based
on the ensemble of learning and prediction mechanism is trained and evaluated using
the training and validation dataset. The pre-trained model of the ensemble of learning
and prediction mechanism is used as an intrusion detection system model in the intrusion
detection environment for improving the security of the environment against any malicious
traffic. In recent network applications, such as the IoT paradigm-based cloud system, the
system transmits data between the cloud and end-user through the IoT gateway. This
gateway is an important location for deploying the intrusion detection system based on
the proposed ensemble model. Like traditional IDSs, the proposed anomaly detection
system uses a set of principal components: a sniffing unit that sniffs packets from the traffic
and analyzes them and an intrusion database engine that stores rules and attack profiles.
Response units drop the packet with anomalous attack patterns or maintain the traffic if
regular. The analyzer unit is a critical component where the data processing techniques
are applied on the packet, and detection models are deployed. An enormous amount
of network data can be extracted from packets, so pre-processing the data is critical and
requires more processing power and resources.

As explained earlier in the datasets, basic features are extracted for the data flow.
Furthermore, the extracted data features are standardized for the pre-trained intrusion
detection system model to reduce the data dimensionality problems. Therefore, the an-
alyzer unit helps prevent biases and confusion for the intrusion detection system. The
pre-processed data are sent to the intrusion detection model for making the final decision
on each data batch. The intrusion detection model detects known and unknown attacks by
learning from real-time data and updating the intrusion database engine. If the input data
profile does not match the normal network profile stored in the intrusion database, it is
classified as an attack. The response unit alerts the system’s administrator with abnormal
behavior based on the predicted attack profile. The response unit also updates the new
signature of the attack types into the intrusion database engine.

4. Results and Discussion

In this section, the implementation results are discussed. Firstly, we will discuss the
implementation environment and the datasets. The implementation environment and
software used in the experimentation are illustrated in Table 4. Four sets of Raspberry
Pi devices are utilized for the experimentation. However, two Raspberry Pi devices are
enough to evaluate intrusion detection systems in the local area network. The other two
Raspberry Pi devices are used for checking the performance of the intrusion detection
system in an online environment such as a wide area network. One Raspberry Pi device is
used for IoT server configurations that communicate with a PC-based server. The second
Raspberry device is used to test the proposed ensemble model in a local area network-
based intrusion environment. The third Raspberry Pi is connected to a network switch,
where three virtual area networks are configured to make a wide area network. The third
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Raspberry Pi based intrusion detection testing is implemented to evaluate the performance
of the proposed ensemble model for larger networks like workplaces. Finally, the fourth
Raspberry Pi is used to create a snort software-based intrusion prevention system for
real-time traffic and packet analysis. Normal and abnormal traffic is generated on the PC
server and passed to the networking server.

Table 4. Implementation environment.

Component Description

Operating System Windows 10
Hardware 4 sets of Raspberry PI devices
Memory 24 GB
Server PC Server and networking server

Programming language Python and Flask Framework
Simulation Softwares Cooja Simulator, Wireshark,Keras
AutoML Framework AutoKeras

As part of the descriptive analysis, the comprehensive dataset is analyzed using pre-
processing techniques. As a result, the prepared datasets are easily interpretable for the
proposed intrusion detection model. In addition, descriptive analytics are presented on the
intrusion detection datasets to identify attacks and normal traffic data patterns. Finally,
the datasets used for the case studies are split into training, test, and validation sets for
training, testing, and validation of the proposed intrusion detection system model. To
implement NAS, AutoKeras is used. AutoKeras is an autoML framework for deep learning
using the Keras library’s APIs. NAS is the process of neural network architecture searching
to solve a problem using neural networks efficiently. For instance, an AutoKeras based
anomaly detection engine is used to discover optimal classification models on classification
datasets. Table 5 presents some parameters that resulted from the NAS in AutoKeras.

Table 5. AutoML constant hyperparameters resulted from NAS.

Batch Size Learning Rate Epochs

260 0.001 250

Table 6 presents Kalman filter configurations and prediction accuracy with various
sets of R parameter values. For instance, for the UNSW-NB15 dataset, the Kalman filter
with an R-value of 15 achieves high accuracy, whereas, for the CICIDS2017 dataset, the
Kalman filter with an R-value of 10 achieves high accuracy.

Table 6. Kalman filter configurations and accuracy.

R 2 5 10 15 20

Accuracy of UNSW-NB15 dataset 95.08 95.78 97.12 98.801 96.95
Accuracy of CICIDS2017 dataset 96.28 96.78 97.02 95.801 95.25

The training, test, and validation split ratio used is 70, 20, and 10 percent, respectively,
for both datasets. The ten-fold cross-validation mechanism is used with stratified splits,
keeping 20 percent for testing and 80 percent for cross-validation. The averages of the
ten folds are used to pick the best model. Statistics of normal and attack data instances in
the training, test, and validation sets of the UNSW-NB15 dataset are given in Table 7. In
the training set, there are 1,014,221 normal training data records and 157,748 attack data
records. In the testing set, there are 289,777 normal testing data records and 45,071 attack
data records. In the validation set, there are 144,889 normal validation data records and
22,535 attack data records.
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Table 7. Statistics of normal vs. attack data records in the UNSW-NB15 dataset.

Label Training Dataset Testing Dataset Validation Dataset

Normal data 1,014,221 289,777 144,889
Attack data 157,748 45,071 22,535

Statistics of normal and attack data instances in the training, test, and validation sets
of the CICIDS2017 dataset are given in Table 8. There are 318,014 normal training data
records 7800 attack data records. There are 90,861 normal testing data records and 2229
test set-based attack data records. There are 45,431 normal validation data records and
1114 validation set-based attack data records.

Table 8. Statistics of normal vs. attack data records count in the CICIDS2017 dataset.

Label Training Dataset Testing Dataset Validation Dataset

Normal data 318,014 90,861 45,431
Attack data 7800 2229 1114

The attack data of the UNSW-NB15 dataset comprises nine types: analysis, fuzzers,
shellcode, reconnaissance, generic, backdoor, doS, and exploits. Statistics of these attack
data in training, test, and validation datasets are given in Table 9.

Table 9. Statistics of attack data count in training, testing, and validation of UNSW-NB15.

Label Training Dataset Testing Dataset Validation Dataset

Analysis 1249 357 178
Fuzzers 12,273 3507 1753

Shellcode 898 257 128
Reconnaissance 6946 1985 992

Generic 102,930 29,409 14,704
Backdoor 1139 325 163

DoS 9905 2830 1415
Exploits 22,172 6335 3167
Worms 85 24 12

CICIDS2017 dataset’s data imbalance issue is addressed by introducing new labeling
attack types. The newly labeled attack data of the CICIDS2017 dataset is comprised of
six types: bot, brute force, infiltration, DoS/DDoS, web attack, and port scan. Statistics of
these attack data in training, testing, and validation sets are given in Table 10.

Table 10. Statistics of attack data count in training, testing, and validation of the CICIDS2017 dataset.

Label Training Dataset Testing Dataset Validation Dataset

Bot 257 73 37
Brute Force 1902 543 278
Infiltration 4 1 1
Port scan 22,317 6376 3188

Web attack 298 85 43
DoS/Ddos 390,072 111,449 55,724

Before performing correlation analysis, feature engineering techniques are applied to
the dataset, including analysis of feature types such as finding continuous, categorical, date,
and features with text. The dataset is transformed by encoding categorical features using
one-hot-encoding (one-of-K) and converting text features to numeric. The mean values
of the feature data are used for handling missing values. The performance of machine
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learning models is good if the data are good. Hence, appropriate pre-processing and
cleaning of the data are a significant step. Those features that contribute most to a machine
learning model’s performance should be used for training the intrusion detection system
model to improve the accuracy of intrusion detection.

Feature selection is a technique used to eliminate features from the dataset that do
not solve or contribute to the problem’s solution. For the selection of the features, feature
importance and correlation analysis methods are used. Data correlation analysis is used
to understand the relationship between the dataset’s features. The association of multiple
features with other dataset features is analyzed during correlation analysis. Correlation
analysis is used in the literature as an essential technique for feature selection and reduction.
Figure 4 visualizes a heatmap of correlation analysis of the dataset.

Figure 4. Correlation analysis of the dataset.

The highly correlated features are listed below:

• Source to destination packet count (Spkts), source to destination bytes (sbytes), and
source packets re-transmitted or dropped (sloss).
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• Destination to source packet count (Dpkts), destination to source bytes (dbytes), and
destination packets re-transmitted or dropped (dloss).

• Source inter-packet arrival time (sinpkt), IP address, and port number based on source
(is_sm_ips_ports).

• Source TCP window advertisement (swin), and destination TCP window advertise-
ment (dwin).

• The sum of TCP acknowledgment data features (Tcprtt) and time between SYN and
SYN_ACK packet of the TCP (synack).

• Connection count with same service and source address (Ct_srv_src), connection
count with same service and destination address (ct_srv_dst), connection count of
same source and destination address (ct_dst_src_ltm), connection count of the same
source address and destination port number (ct_src_dport_ltm), and connection count
of the same destination address and source port number (ct_dst_sport_ltm).

• Access to ftp session (Is_ftp_login), and (Flows count in ftp session consists of com-
mands(ct_ftp_cmd).

Features such as sloss, dloss, sbytes, and dbytes are dropped because they have a high
correlation with spkts and dpkts features. Stcpb and dtcpb are dropped because the range
of the TCP base sequence is high (0 to 5× 109). However, connections containing anomalies
are close to 0. Tcprtt is the round trip time of connection setup and the sum of synack
and ackdat features. Tcprtt is dropped because it does not add any extra information to
the model. Synack, sload, dload, sjit, djit, and ackdat are dropped because they have not
played a role in improving the accuracy of the model.

As explained earlier, the data correlation is used to analyze the relationship between
data features. For instance, correlation analysis in machine learning is used to understand
the relationship between input data features and output data features. If the machine
learning model is trained with a set of data features with little correlation, the results are
more likely to be inaccurate [81–83]. For example, data features’ Ct_srv_src’ and ‘ct_srv_dst’
are highly correlated but have poor correlation with the rest of the data features and output
feature. Consequently, both ’Ct_srv_src’ and ’ct_srv_dst’ are dropped. ‘Dur’ feature is
the total duration recorded, ‘Dur’ feature is dropped due to no correlation with the label
data feature. The ‘rate’ feature is dropped because it has a value range of up to 1M and
anomalous connections are mostly around zero. ‘Sinpkt’ and ‘dinpkt’ are highly correlated,
so we dropped ‘dinpkt’ as ‘sinpkt’ has a better correlation with the rest of the data features.

Figure 5 presents the normal and abnormal mean of packet flow size. The mean packet
flow size is an essential network measure. Likewise, the flow byte size is a fundamental
metric for network measurement. X-axis presents the packet arrival time from the source to
destination and vice versa. Y-axis presents comparison of the normal and abnormal mean
packet size.

The mean of packet flow size is an essential measure as low-rate distributed denial-
of-service is a challenge to network security. In this attack, many attack packets flow
similar to regular packet flow is sent to throttle legitimate flows. Figure 6 presents a
normal and anomalous packet count. The mean packet flow size is an essential network
measure. ‘SPKTS’ stands for source to destination packet count, whereas ‘dpkts’ stands for
the destination to source packet count. ‘Spkts’ and ‘dpkts’ contain integer values of packet
count. The primary axis presents source to destination packet count comparison in terms
of normal packet count. The secondary axis presents destination to source packet count
comparison in terms of anomalous packet count.
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Figure 5. Mean of packet flow size by source and destination.

Figure 6. Packet count based analysis.

Figure 7 presents normal and anomalous time to live (TTL). TTL, also called hop
limit, is a procedure for limiting the lifetime of the data packet in a computer network.
TTL is usually implemented as a timestamp or counter mechanism embedded in the data
packets. Figure 7a presents a source to destination time live comparison with anomalous
packet time to live. Figure 7b presents a destination to source time to live comparison with
anomalous time to live.
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(a) Source to destination time to live

(b) Destination to source time to live

Figure 7. Normal and anomalous time to live.

Figure 8 presents normal and anomalous inter-packet arrival time (inpkt). Inpkt is the
time taken by a packet to arrive on the host node over a period. It is also known as a delay.
‘Sintpkt’ is the source interpacket arrival time in milliseconds, whereas ‘dintpkt’ is the
destination interpacket arrival time in milliseconds. ‘Sintpkt’ and ‘dintpkt’ features contain
float values of inter-packet arrival. The primary axis presents source and destination
normal inter-packet arrival. The secondary axis presents abnormal source and destination
inter-packet arrival.
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Figure 8. Inter-packet arrival time based analysis.

5. Performance Analysis and Discussion

This section presents the comparative performance analysis of the proposed ensemble
model-based intrusion detection system and state-of-the-art intrusion detection models.
Classification metrics such as accuracy, detection rate, false alarm rate, and F1 score are
used for the evaluation of the models. First, we discuss the classification metrics used for
evaluation and then present the comparison of the performance analysis. The comparison
of the performance analysis is made in two stages. The first stage of the comparison is
based on the state-of-the-art machine learning models implemented during this study. The
second stage is the comparison of the performance analysis with state-of-the-art intrusion
detection models from the literature. Now, we discuss the classification metrics along with
their mathematical representation.

Accuracy is the percentage of correctly classified anomalies among sets of network
data samples. Detection rate is the ratio of positively identified intrusion samples detected
correctly [84]. An anomalies detection rate is calculated using Equation (1):

Detection Rate =
Number o f True Positive

Number o f True Positive + Number o f False Positive
(1)

False alarm rate is the ratio of negative identified intrusion samples, which are identi-
fied as positive ones [85]. The false alarm rate of anomalies is calculated using Equation (2):

False Alarm Rate =
False Positive

False Positive + True Negative
(2)
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F1 score is used to calculate the average of precision and recall. The confusion metric
is the mathematical matrix used for all these performance measures. Equation (3) presents
the formula for the calculation of the accuracy of classification models [86]:

Accuracy = Number o f True Positive+Number o f True Negative
Number o f (True Positive+True Negative+False Positive+False Negative) (3)

F1 score is defined as the weighted average or harmonic mean of precision and recall
metrics values [87]. The F1 score value is between zero and one. The F1 score presents the
precision of a classification model. High precision and lower recall lead to high accuracy
but are inefficient for large data instances. Therefore, classification models with more
excellent F1 scores are better and vice versa. Equation (4) presents the F1 score:

F1 score = 2 ∗ 1
1

Precision o f Intrusiondetectionsystem + 1
recall o f Intrusiondetectionsystem

(4)

The precision of a detection system based on supervised machine learning is given
in Equation (5). Thus, the intrusion detection model’s precision is the number of correct
anomaly prediction results divided by the total number of anomaly prediction results:

Precision =
True Positives

True Positives + False Positives
(5)

A recall is the number of correct predicted anomalies divided by the number of total
samples of an intrusion detection identified anomalies. The recall is given in Equation (6):

Recall =
True Positives

True Positives + False Negatives
(6)

Performance analysis of the proposed intrusion detection system model is compared
with state-of-the-art machine learning-based intrusion detection systems from the literature
and models implemented during the experimentation. Most of the classification models
consider accuracy as the main measuring metric. Despite this, we also compared the
proposed intrusion detection model performance with literature on the same datasets and
implemented state-of-the-art models using detection rate and F1 score. Table 11 presents a
performance comparison of the proposed intrusion detection system model with DNN,
and AutoML for the UNSW-NB15 dataset. Table 12 presents a performance comparison of
the proposed intrusion detection system model on the CICIDS2017 dataset. The proposed
intrusion detection system model has identified anomalies with an accuracy of 98.801
percent and F1 score of 98.76 percent on the UNSW-NB15 dataset. The intrusion detection
system model based on DNN with one layer performs better than the five variants of DNN
models implemented in this study.

Table 11. Comparison of the proposed model with state-of-the-art models on UNSW-NB15.

Intrusion Detection Model Accuracy Detection Rate F1 Score

DNN with 1 layer 78.4% 94.42 82.0
DNN with 2 layers 75.1% 97.09 78.05
DNN with 3 layers 76.3% 96.03 79.5
DNN with 4 layers 76.5% 94.6 80.1
DNN with 5 layers 78.90% 95.1 79.6
AutoML 96.40% 95.0 95.09
Proposed intrusion detection model 98.801% 97.92 98.76

The DNN model-based intrusion detection with one layer performs better than the
other versions of DNN in terms of classification accuracy and F1 score. The DNN with
two layers performs better in terms of detection rate as compared to other variants of the
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DNN. The proposed intrusion detection model classified anomalies with 97.02 percent
accuracy and the F1 score of 96 percent on the CICIDS2017 dataset. In summary, an
intrusion detection system based on one layer performs better than the five variants of the
implemented DNN.

Table 12. Comparison of the proposed model with state-of-the-art models on the CICIDS2017 dataset.

Intrusion Detection Model Accuracy Detection Rate F1 Score

DNN with 1 layer 96.3% 90.8 93.9
DNN with 2 layers 95.1% 89.07 91.09
DNN with 3 layers 94.4% 85.04 91.2
DNN with 4 layers 93.6% 83.6 90.1
DNN with 5 layers 93.1% 82.7 89.4
AutoML 96.0% 90.0 94.09
Proposed intrusion detection model 97.02% 92.80 96.0

Significance and Comparison

This section presents the significance and comparison of the proposed ensemble
model. The comparison of the proposed ensemble mechanism-based intrusion detection
system with the existing state-of-the-art models shows the significance of the proposed
intrusion detection model. The performance results of the proposed intrusion detection
model with existing models are compared in terms of accuracy, detection rate, false alarm
rate, and F1 score. The performance results presented in Table 13 show that the proposed
ensemble model for the intrusion detection model significantly improves the intrusion
detection accuracy, detection rate, and F1 score. The accuracy of the proposed ensemble
model-based intrusion detection system is 98.801, the detection rate is 97.92 percent, and
the F1 score is 98.76. SGM-CNN, a CNN model with synthetic minority over-sampling
technique(SMOTE) and Gaussian mixture, is used to develop intrusion detection which
performs better than the rest of the intrusion detection models. The accuracy, detection
rate, and F1 score of the SGM-CNN are 96.54, 96.54, and 97.26, respectively. The SCM3 +
RF model is an ensemble approach for intrusion detection based on the subset combination
method (SCM). SCM3 is used to produce the final subset by selecting data features from
two subsets SCM1 and SCM2. The intrusion detection is based on the random forest (RF)
model. The ensemble model of SCM3 and RF achieved an accuracy of 95.87, the detection
rate of 97.80, and a false alarm rate of 7.70. Table 13 presents significant improvement in
the accuracy, detection rate, and F1 score of the intrusion detection model compared to
existing intrusion detection models.

Table 13. Comparison of the proposed intrusion detection system model with the state of the art.

Intrusion Detection Model Accuracy Detection Rate False Alarm Rate F1 Score

CSCADE-ANN [88] 86.40 86.74 13.10 –
SGM-CNN [89] 96.54 96.54 – 97.26
SCM3 + RF [90] 95.87 97.80 7.70 –
RCNF [91] 95.98 4.02 –
ICVAE-DNN [92] 89.08 95.68 19.01 90.61
Intrusion detection system for
IICS [93] 92.4 93 8.2 –

Bi-directional LSTM [94] 85 85 – 86
Proposed intrusion detection system 98.801 97.92 – 98.76

In short, the main contribution of this study is to improve the accuracy of the intrusion
detection model. The improvement in detection accuracy is evident from the comparative
analysis of the proposed intrusion detection system with state-of-the-art models developed
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during the case study and with existing intrusion detection models from the literature such
as SMOTE and Gaussian mixture.

6. Conclusions

An expeditious rise in the development of network applications leads to an immense
amount of network data generated from a wide range of services for large user groups.
Safeguarding network applications and things connected to the internet has always been a
point of interest for researchers. Many studies propose solutions for intrusion detection
systems and intrusion prevention systems. Nevertheless, there is a dire need to tune
the contemporary data mining and statistical methods to address the challenges of the
growing internet applications, such as bandwidth handling, network intrusion detection,
and scalability. This paper presents an intrusion detection system based on the ensemble
of prediction and learning mechanisms to improve anomaly detection accuracy in a net-
work intrusion environment. Case studies of intrusion detection are implemented using
publicly available benchmark intrusion detection datasets UNSW-NB15 and CICIDS2017.
The performance of the proposed model is compared with some contemporary models,
including DNN, autoML, and other algorithms from the literature on these benchmark
datasets. The performance evaluation is compared in terms of accuracy, precision, recall,
and F1 score. The proposed model accuracy for the UNSW-NB15 dataset is 98.801 percent,
and the CICIDS2017 dataset is 97.02 percent. The performance comparison analysis shows
significant improvements in the intrusion accuracy, detection rate, and F1 score. As part
of future work, the proposed intrusion detection model will be leveraged for IoT-cloud
applications for detecting anomalies in the sensing data.
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