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Abstract: The Fourth Industrial Revolution drives industries from traditional manufacturing to the
smart manufacturing approach. In this transformation, existing equipment, processes, or devices
are retrofitted with some sensors and other cyber-physical systems (CPS), and adapted towards
digital production, which is a blend of critical enabling technologies. In the current scenario of
Industry 4.0, industries are shaping themselves towards the development of customized and cost-
effective processes to satisfy customer needs with the aid of a digital twin framework, which enables
the user to monitor, simulate, control, optimize, and identify defects and trends within, ongoing
process, and reduces the chances of human prone errors. This paper intends to make an appraisal of
the literature on the digital twin (DT) framework in the domain of smart manufacturing with the
aid of critical enabling technologies such as data-driven systems, machine learning and artificial
intelligence, and deep learning. This paper also focuses on the concept, evolution, and background
of digital twin and the benefits and challenges involved in its implementation. The Scopus and Web
of Science databases from 2016 to 2021 were considered for the bibliometric analysis and used to
study and analyze the articles that fall within the research theme. For the systematic bibliometric
analysis, a novel approach known as Proknow-C was employed, including a series of procedures for
article selection and filtration from the existing databases to get the most appropriate articles aligned
with the research theme. Additionally, the authors performed statistical and network analyses on the
articles within the research theme to identify the most prominent research areas, journal/conference,
and authors in the field of a digital twin. This study identifies the current scenarios, possible
research gaps, challenges in implementing DT, case studies and future research goals within the
research theme.

Keywords: digital twin; Industry 4.0; Proknow-C; artificial intelligence; machine learning; deep
learning

1. Introduction

The technological advances, increases in global competitiveness, diversification of
customer requirements, dynamic market trends, digitalization, and constantly increasing
process complexities of the 21st century have significantly influenced traditional manu-
facturing industries [1]. This divergence drives the traditional manufacturing industries
towards smart manufacturing, which integrates the elements (robots, Big Data, cloud
computing, Internet-of-Things (IoT), Industrial Internet-of-Things (IIoT), simulations etc.)
of the Industry 4.0 framework [2]. This helps in developing processes or products with
built-in capabilities, such as decision-making, performance optimization, reconfiguration,
and adaptation within the stated framework [3]. It is estimated that the smart manufactur-
ing market will grow from USD 214.7 billion to USD 384.8 billion with a CAGR of 12.4%
for the period of 2020–2025 [4]. Along with all the benefits of integrated elements and
digitalization, maintenance is still a challenging issue in smart manufacturing.
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Maintenance is one of the key factors that affects the industry economically and has
gained special attention in the era of digitalization. With the use of advanced technologies,
such as sensors, actuators, automation, and mechanization, maintenance has become the
key issue in today’s industry [5]. The overall cost of maintenance is estimated at approxi-
mately 15–40% of the total production cost [6]. A lack of maintenance activities leads to
sudden equipment failure, unplanned downtime, loss of productivity, and increases in
production cost and time [7]. Hence, a proper maintenance strategy needs to be deployed
to address the issue. In general, there are three maintenance strategies, viz. preventive
maintenance, reactive maintenance, and predictive maintenance [8]. Preventive main-
tenance is analogous to scheduled maintenance or planned maintenance, in which the
maintenance activities are scheduled or timed based on a process or product cycle [9]. Too
high a frequency of preventive maintenance leads to higher production costs, excessive
equipment planned downtime, and loss of resources [10]. However, reactive maintenance
is a kind of failure-based maintenance, in which maintenance is performed after the failure
of equipment or a component. It is also called “corrective maintenance” or “breakdown
maintenance” [11,12]. Reactive maintenance leads to sudden equipment failure, unplanned
downtime, losses of productivity, and increases in costs of production [13].

Among all the maintenance strategies, predictive maintenance is the most cost-
effective maintenance strategy, which allows one to schedule maintenance when the equip-
ment or machinery needs maintenance. It is condition-based, and its performance is based
on the predictions made from the signals acquired from the machine [14,15]. Predictive
maintenance offers various benefits over traditional maintenance strategies such as ear-
lier fault detection, reduced downtime, improved reliability, reduced cost, and improved
performance [16]. According to U.S. department of energy, predictive maintenance saves
approximately 8–12% over preventive maintenance, and up to 40% over reactive mainte-
nance [17]. The use of predictive maintenance increased from 47% to 51%, which reduced
equipment failure from 61% to 57%, between 2017 and 2018 [18]. Therefore, maintenance
has a direct influence on the industry’s economics. Additionally, in the present era of
Industry 4.0, intelligent maintenance strategies with the help of digital twin (DT) can offer
huge benefits over present maintenance approaches [19].

Within the Industry 4.0 paradigm, the technological advancements in cyber–physical
systems (CPS) and the steady improvements in the smart manufacturing frameworks
spawn the concept of “digital twin” [20]. DT is the systematic integration between a
physical entity and virtual entity through different connections, and the real-time data of
the process [21]. The advancement in enabling technologies, such as data analytics, IoT, IIoT,
big data, cloud computing, sensors, augmented and virtual reality, simulation, artificial
intelligence, etc., facilitates the seamless integration of DT into prominent fields [22]. The
DT environment allows real-time decision making, rapid reconfiguration, and optimization;
it also facilitates improved reliability, better productivity, reduced risk, early fault detection
and lowered downtime [23]. Due to the enormous advantages, DT can be used in different
fields, such as aerospace, automotive, biomedical, healthcare, manufacturing, etc. [24].
Therefore, the DT market is estimated to grow from USD 3.1 billion to USD 48.2 billion
with CAGR of 58% between 2020 and 2026 [25]. Hence, to study the different aspects of DT
in the context of smart manufacturing, this paper provides a comprehensive bibliometric
analysis of DT in the domain of smart manufacturing, and studies the benefits, applications,
and challenges in implementing a DT in real-time.

Significance of the Study

The present industrial scenario in the context of Industry 4.0 drives the industries
towards smart and intelligence. Additionally, with technological advancements in the
Fourth Industrial Revolution and market competitiveness, industries face challenges to
improve their position in an exponentially growing market [26]. As such, the industries
thrive on making their product, process, or shop floor intelligent and smart, which involves
self-decision-making and parameter optimization [27,28].
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In the above context, the concept of digital twin proves to be a game-changer. DT
has a wide variety of applications in manufacturing industries. Additionally, the grow-
ing demand for customized products and processes forces the implementation of DT
in the existing processes. In smart manufacturing, to create intelligent products and
virtual prototypes, manage industrial assets and systems, optimize processes, improve
self-decision-making, reduce equipment downtime, and improve production efficiency,
the development of intelligent shop floors with customer-driven product designs requires
digital twin [29–31]. The DT model is built by retrofitting various sensors and actuators
and applying different machine learning and artificial intelligence techniques, cloud tech-
nologies and IoT technologies to satisfy the above needs. In manufacturing industries,
the processes can be monitored, controlled, and optimized through a DT model also known
as “digital shadows”. Digital shadows receives all the relevant data from the process, which
aids in understanding the mechanism of process and its control [32]. In past studies, the
characteristics, concept and definitions of digital twin and related processes have been
discussed, along with a complete framework for identifying the future research trend of
DT only in product-life cycle management [33]. As such, the present study focuses on
the possible research gaps and future research potential in implementing digital twin for
building a customized DT model in the context of smart manufacturing using bibliometric
analysis.

Bibliometric analysis is used to study and analyze scientific activity. It can quantita-
tively measure and analyze the influence of research on a topic of interest by recognizing
past characteristics, present critical points, and future research trends [34]. In this context,
bibliometric analysis helps to identify the most prominent research community, research
location, and application area in the domain of smart manufacturing using DT. The pro-
posed bibliometric analysis uses two databases, viz., Scopus and Web of Science (WoS), to
obtain the most relevant article regarding digital twin in the domain of smart manufac-
turing. The bibliometric analysis method uses a novel approach known as Proknow-C,
which includes a series of procedures for article selection, filtration, and the formation of
a bibliographic portfolio. Additionally, it consists of the statistical and network analysis
of the articles obtained from two databases to get the most relevant articles, prominent
authors, institutions, and countries aligned with the research theme. The paper covers
the various aspects of digital twin, viz., evolution, background, architecture, framework,
applications, challenges, benefits, methods of data collection, communication protocols,
and decision-making algorithms used for implementing a DT in the domain of smart
manufacturing.

Given the above discussion and to identify the potential research gaps and future
research objectives, the rest of the paper is organized as follows. Section 2 presents a
literature review of digital twin, which covers various aspects. Section 3 elaborates in
detail the methodology and tools required for the bibliometric analysis. Section 4 critically
analyzes the articles from the different aspects and case studies. Finally, Section 5 draws
conclusion and outlines for the future work. Figure 1 shows the in-detail organization of
the present article.
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2. Literature Review

DT is a blend of Big Data, cloud computing, IoT, IIoT, sensors, artificial intelligence,
machine learning and many other technologies. These technologies are on a path of
constant evolution. Hence, DT is assumed to evolve continuously with these technologies.
Digital twin for manufacturing processes has undergone significant technological evolution
over the past four decades, as shown in Figure 2. The recent technological advancements
in sensing, monitoring, and decision-making tools during Industry 4.0 have enabled the
precise implementation of digital twin for the real-time monitoring and optimization of
the process [35]. The term “twins” in manufacturing was coined during NASA’s Apollo
13 program [36]. NASA created two similar space vehicles during this program, of which
one was used by astronauts to travel into space while the other remained on the ground,
and was called its twin. The twin was used by NASA’s engineers to simulate, monitor,
and predict the condition of its counterpart, which helped the astronauts to make the
decisions in any emergencies. In this stage, the twin is a physical twin. Later stage involve
advancements in key computing and information technologies, such as CAD, CAM, CAE,
CAPP, PDM, MRP, MES, and PLM. Within this context, Grieves proposed the concept of the
virtual digital representation of equivalent physical products using three components, viz.,
virtual entity, physical entity, and networks of information and data [37]. After 2010, DT
entered into a new development phase when the U.S. Air Force Research Laboratory (AFRL)
proposed the concept of DT for the life prediction of aircraft structures, allowing better
maintenance decisions [38]. Moreover, NASA and ARFL suggested a DT architecture in
order for future vehicles to meet the demand of lighter weight while handling higher loads
and more severe working conditions [39]. Subsequently, DT can be used in the transition
from mass production to individualized production. DT in individualized production
offers geometrical assurance, and considers design, pre-design, and production phases [40].
For the seamless integration of DT, one needs to understand all the aspects of DT; hence,
the following subsection offers a brief overview of the different aspects of DT.
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2.1. Background and Definition of Digital Twin

Various organizations and researchers have defined DT. Among all the definitions,
two are broadly accepted: those characterized by NASA and Grieves. NASA described
the digital twin as follows: “A Digital Twin is an integrated multi-physics, multiscale,
probabilistic simulation of an as-built vehicle or system that uses the best available physical
models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying
twin” [41]. Grieves proposed that the basic digital twin model has three components, viz.,
physical entity in real space, virtual entity in virtual space, and the networks of information
data that tie the physical and virtual entities or space together [37]. DT constructs a virtual
replica of a physical scenario to monitor the behavior of the ongoing process, with condition
monitoring, detection of anomalies, and prediction of future trends within the process.
Based on the above literature research, the following are the definitions of the digital twin:

• DT is the digital representation of a physical entity with possible data and models.
The term “data” refers to the data from all the processes obtained during the run time
and the system’s development phase [42];

• DT should always be synchronized with its related physical entities [43];
• It is a simulation model for the working of the related physical entity or process [29].

2.2. Architecture of Digital Twin

For the proper integration of devices with their virtual replicas in the cyber–physical
domain, and the effective exchange of information and data among digital twins, physical
twins, and the outside world, Ref. [44] proposed a six-layer DT architecture, as shown in
Figure 3. The six-layer DT architecture is an extension of the 5C architecture [45]. The 5C
architecture was developed before the term DT was coined. Hence, it involves the CPS,
which replicates the physical system in the cyber domain. The 5C framework comprises
five different stages of implementation, viz., intelligent connection, conversion of data to
information, cyber integration, cognitive ability, and configuration of the architecture.

The architecture includes various physical devices, sensors, and data acquisition sys-
tems in the physical domain during the data transfer, processing, collection, computation,
and communication in the virtual environment. In the architecture, Layers 1 and 2 consti-
tute the physical entity or device. Layer 1 comprises actuators, sensors, and other physical
devices, while the data source of the physical entity is specified by Layer 2. Layer 3 contains
a local data vault, which acquires the controller values from Layer 2. The interface for
communication between different layers of architecture and the physical entity is in Layer 3.
Open Platform Communication—Unified Architecture (OPC-UA) is the most vital element
for effective data exchange between the layers. Layer 4 is a data-to-information converter,
aided by IoT technologies. This layer enhances the value of the information obtained from
Layer 3 and processes the acquired data to make it more valuable for the upper levels of
the architecture. Layer 4 links Layer 3 with Layer 5 by converting data from Layer 2 into
the information sent to Layer 5. Here also, OPC-UA plays a vital role in communication.
Layers 5 and 6 involve repositories of cloud and emulation and simulation tools, respec-
tively. Layer 5 stores the historical information obtained from the previous layer. Layer 5
enhances the availability, ease of access, and precision of the digital twin. Layer 6 is the
cognition layer of the architecture, which enables real-time monitoring of the machine
health, and contains historical information of the physical twin. This layer facilitates user
integration with a virtual replica of the physical twin, which helps in decision-making,
optimization, and predictions of the various tasks and processes. Tools such as Siemens
Tecnomatix Plant Simulation, OPC-UA and artificial intelligence prove advantageous in
this layer for decision making, analysis, prediction, and optimization. Additionally, the
digital twin’s actual implementation is made possible because of some recent advance-
ments in enabling technologies for DT, and the benchmark five-dimensional model of DT
developed by [21,43].
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2.3. Conceptual Framework of Digital Twin

The DT is a virtual replica of a physical entity or process running in physical space.
It contains a physical layer and a virtual (cyber) layer. The physical layer consists of the
actual physical system or process, while the virtual layer consists of the data and model
of the physical systems or processes. It has three characteristics: synchronization with
physical system/process; real-time data acquisition and simulation; behavior prediction.
Artificial intelligence turns these DT models into intelligent digital twin models, which can
make run-time decisions and optimize the process. To build a precise DT model of any
physical entity or process requires different technologies, such as sensing, communication,
and cloud and computation technologies. The systematic integration of these is also one of
the challenging tasks.

The technological advancements that enable the tools and technologies of DT facilitate
the effective integration of DT into existing systems. For the development and implementa-
tion of an efficient DT model, Ref. [21] proposed a five-dimensional model for DT, which
removes the barriers in implementing DT in various fields. The model can be formulated
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as M = (PE, VM, Ss, DD, CN). These terms represent physical entity, virtual model,
services, DT data and connections, respectively.

In the proposed models, the physical entity is the basis of the digital twin. “Physical
entity” many refer to the device, process, product, physical system, or organization. The
virtual replica can be built by considering physical and mathematical laws. Reconstructions
of the geometries, behaviors, properties, and behavioral rules of physical entities are
referred to as virtual models.

Data are a crucial part of a DT. During the development, implementation, and opera-
tional phases, the DT runs through multi-dimensional and heterogeneous data. The data
may come from multi-sensor fusion, or may be simulation data, service data, or expert
knowledge data. Service is a significant aspect of DT, since it involves the actual use of DT
in real-time. DT provides various application services, including monitoring, optimization,
simulation, diagnosis, validation, prognosis, etc. [46]. Additionally, it offers data, algo-
rithms, and knowledge services. The connection enables effective data and information
exchanges between the physical entities, virtual model, data, and services. In total, there
are six connections, which are those between a physical entity and its services, a physical
entity and the virtual model, a physical entity and data, a virtual model and its services,
a virtual model and data, and the services and the data.

The conceptual framework of DT in manufacturing using a five-dimensional model is
portrayed in Figure 4. The physical layer involves various physical scenarios playing out
on the shop floor, involving machining, machines, assembly, logistics, packing, products,
and workers, as shown in Figure 4. These physical objects and scenarios are the basis of the
DT model. The data transfer and collection layer, and the data storage and processing layer,
comprise the data center. The different sensors, actuators, and models are used to gather
and store the data from the actual physical process and process the data acquired from the
entity to remove the noise and filtration. Layer 4 constructs a communication gateway to
facilitate the effective data and information exchange between various framework layers.
Layer 5 gives real-time insights into the ongoing process by providing multiple services
through the cloud, such as condition monitoring, function simulation, evolution simulation,
predictive maintenance, dynamic scheduling, and quality control. This layer helps modify
the system design or operational parameters through a feedback loop using decision-
making and machining learning evolutionary algorithms. The final layer comprises the
actual virtual replica of the physical entity or process, which outlines the run-time evolution
of the physical entity or process and provides the services with artificial intelligence,
machine learning, and simulation models. Layer 5 and layer 6 are used to modify the
design, operational parameters, process plans and schedules through a feedback loop.
The developed DT model reduces downtime, cost and wastage, and increases production
efficiency, worker satisfaction, etc.

2.4. Enabling Technologies of Digital Twin

According to the five-dimensional model, achieving the successful implementation of
DT in a real-world environment requires various technologies for practical data capturing,
simulation, analysis and evaluation [46]. Recent technological advancements remove the
technical barriers in the implementation of DT. Various techniques are incorporated into the
DT framework, such as augmented reality/virtual reality, IoT, cloud computing, machine
learning, and an application programming interface [47], to achieve DT implementation.
These are discussed below.

• Machine learning—This is an exponentially evolving area of scientific computation.
It considers the data and information from both physical and virtual models. It is a
subset of artificial intelligence but has broader applicability. The advancements in
statistical analysis techniques and hybrid algorithms include the synchronization of
machine learning with the digital twin, which improves the DT model’s efficiency.
The DT model uses machine learning to predict, control, optimize, and generate
feedback [48].
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• Internet of Things (IoT)—This refers to the state wherein all the objects and attributes
comprising a DT model are connected to a network. The rapid growth in communi-
cating devices and embedded sensors enables effective communication between the
devices, the human operator, and the shop floor [49]. This empowers the DT to monitor
and control the ongoing process remotely without any human intervention [50].

• Cloud computing—Cloud computing is the evaluation service provided by the public
network. The development of cloud computing technologies facilitates data storage,
database access, communication, and computational ability. It reduces the cost of
purchasing costly software and hardware for data storage and data processing. Users
need to pay only for cloud services. Hence, cloud computing enables the production
of low-cost digital twin models, even for small components [51].

• Augmented reality/virtual reality—Virtual reality creates a replica of the physical
world in a virtual world and enhances user experience. It can also provide simulation
results. In contrast, augmented reality adds a new information layer to the existing
real world. In the digital twin, combining both techniques helps to realize the process
in the virtual and physical world [52,53].

• Application programming interface (API)—API facilitates the interaction between
sensors, databases, and networks, and allows information and data exchange. It
reduces the effort of reprogramming following changes in the scenario [54].
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All the technologies discussed above aid in the flawless integration of a digital twin
and effective data exchange for any application.

2.5. Application Domains of Digital Twin

Recently, digital twin technology has attracted extensive interest in various domains.
Many IT, manufacturing, and automotive firms have identified DT as the most valuable
technology for strategic and systematic development in recent times. The has numerous
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and diverse applications in healthcare, Industry 4.0 and smart manufacturing, aviation,
energy, social media, agriculture, and education [55] (shown in Figure 5).
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In healthcare, DT is used to predict diseases (cancer, cardiovascular and trauma),
human well-being, and appropriate treatments. It considers the whole body or a specific
human organ for monitoring, diagnosis, and prediction. The DT model is constructed
using various parameters and signals from the organ or body, viz., blood pressure, sugar
levels, heart rate, metadata and internal chemical secretion, and uses these to predict future
risk [56–58].

Smart manufacturing in the framework of Industry 4.0 uses DT technology for machine
health monitoring, predictive maintenance, estimation of useful life, process optimization,
cost-effective production, and parameter tuning. The DT model is built using multi-
sensor data fusion (vibration, temperature, acoustic, force, speed, position, and camera
images) and simulation models. It considers the various working parameters of the
process/equipment. Generally, it is used on the shop floor or assembly line, or in machinery
operation. Real-time data are also validated through simulation models, which later
generate a feedback signal to optimize the process [59–61]. Airplanes, air travel route
planners, and space vehicles employ DT to predict fatigue failure and maintenance, and to
create flight simulation models and thermal behavior models. It considers various data
from the vehicle, its surroundings, and weather, with the aid of intelligent sensors and
actuators, to build a real-time virtual replica of a space-going vehicle. Implementing DT in
the aviation field reduces planning and optimization costs [62,63].

The virtual replicas of the electricity grid, transportation routes and greenhouse elec-
tricity generation facilitate predictive maintenance, fault diagnosis, lifecycle management,
cost-effective generation, loss reduction, and usage analysis. The DT model considers
various parameters, such as temperature, flow rate, virtual energy flow models and fuel
characteristics using different data-capturing techniques [64–66]. Moreover, the DT model
can estimate the remaining useful life of equipment, and schedule a maintenance activ-
ity (i.e., predictive maintenance) to minimize the downtime and cost of production [67].
Another fundamental application of DT is in social media, which is a vastly growing
field. The DT models help to perform sentiment analysis, trend analysis, identification of
fraud, and planning of future marketing strategies using data from recent web-surfing and
logs from the visited platforms, as well as comments, likes, uploads and sharing to posts,
pages, etc. [68]. Due to recent technological advancements, the agriculture sector has also
incorporated DT into crop management, disease prediction, the evaluation of fertilizers
through data captured from the field (temperature, humidity, soil moisture, light intensity,
pressure) and plant image data [69,70].

Additionally, DT helps in effective content delivery, as well as skill and knowledge
development, in the education sector via a virtual platform. It stores e-content, recorded
or live-streamed videos, and animations on the cloud, and later delivers them through its
e-Learning platforms [71,72].
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2.6. Benefits of Digital Twin

The implementation of digital twin enables the user to perform their regular tasks re-
motely with or without human intervention. It reduces the cost of service and human error,
and facilitates the proper allocation of resources [47]. The advantages can be categorized as
analytical value, descriptive value, predictive value, and diagnostics value.

i. Analytical value is the ability of the digital twin to capture the data and analyze
them. Based on this analysis, decisions are to be made to improve the perfor-
mance [73,74].

ii. Descriptive value is the benefit to long-distance and remote data transportation and
collection, which helps off-site monitoring and the control of the process [73,74].

iii. Predictive value predicts the trends and behaviours of the process by analyzing
the data obtained from the sensors and detecting any abnormal activities in the
ongoing process. Based on the predictive analysis, an autonomous decision will be
generated [60,73,75].

iv. Diagnostics value helps identify the potential causes of failure and departure from
trends using advanced analytics and machine learning algorithms, employing data
from the process [60,73].

2.7. Challenges in Implementing a Digital Twin

The digital twin’s application has grown exponentially during the Fourth Industrial
Revolution, and it is a newly popular field of study [30,60]. The following problems are
encountered during its implementation.

i. Education—Recent technological advancements are a barrier to researchers and
engineers adopting DTs. With a lack of knowledge about changes and of expertise
in technologies, the implementation of the digital twin is cumbersome [76,77].

ii. Accurate representation—Owing to the intricate and complex nature of the process
and the lack of availability of technology, the replication of the physical system in
virtual space is difficult and time-consuming [73,77].

iii. Data quality—The data are the crucial part of DT. Most of the time, data obtained
from the various sensors include some noise due to environmental factors and
operational conditions. This necessitates data pre-processing and filtration, thus
increasing the computation time [60,78].

iv. Cost—Cost is the primary factor of any new technology. Digital twin implemen-
tation requires costly sensors, software modules and data acquisition and storage
systems, because of the high volume of data and the complex processes. In the
future, this cost will be reduced, but as of now, the cost is a significant concern
while implementing a digital twin [73,78].

v. Intellectual property protection—The data are distributed through various depart-
ments of an organization; this threatens the confidentiality of the ongoing research
activities of the organization [77].

vi. Digital security—Cyber-attacks made by competitive organizations or individuals
pose a threat to the security aspects of the digital twin [73,79].

To identify future research trends, tools, and technologies for realizing DTs in the
domain of smart manufacturing, the following section elaborates a detailed methodology
to perform bibliometric analysis on the selected databases.

3. Methodology

The literature review is the best tool for managing the knowledge within the research
domain, and evaluating it [80]. To reproduce and evaluate the research area requires ex-
tensive analysis and systematic reviews [81,82]. Bibliometric analysis is one such analysis
technique that is used in the present study [83]. Bibliometric analysis is a quantitative
methodology that allows one to study the scientific literature and its characteristics, evolu-
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tion, methodologies, etc. [34]. It is used in various fields, such as education, management,
engineering and agriculture [84].

The present study employs a methodology with five phases, as shown in Figure 6.
The phases of the proposed methodology are: (1) search criteria and source identification;
(2) software and data extraction; (3) data analysis and interpretation; (4) Proknow-C
methodology; (5) case studies. The following subsection deals with the literature review for
the bibliometric analysis, the requisite tools for the analysis, and the Proknow-C process.
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3.1. Literature Review Related to Bibliometric Analysis

Even though research on digital twins in the context of smart manufacturing is grow-
ing exponentially, reviews of the literature are lacking. Table 1 outlines the previous studies
that have presented a bibliometric analysis of the application of DT in smart manufacturing
and Industry 4.0.

Table 1. Literature on bibliometric analysis in the context of the digital twin.

Sr. No Authors Scope Journal Databases Method Sample Size Years

01
Bigliardi et al.,

2019
[85]

Logistics,
Industry 4.0,

Supply chain.

IET collaborative
intelligent

manufacturing
Scopus Bibliometric

and Statistical 131 2013–2020

02
Sayyad et al.,

2021
[86]

Predictive
maintenance,

RUL.

Library Philosophy
and Practice
(e-journal)

Scopus Bibliometric
and Statistical 1673 1985–2020

03
Kumar et al.,

2020
[55]

Digital Twins,
Artificial

intelligence,
manufacturing

Library Philosophy
and Practice
(e-journal)

Scopus Bibliometric
and Statistical 844 2015–2020

04
Fernandes
et al., 2019

[87]

Smart Factory,
Industry 4.0,

Process
optimization

Procedia
Manufacturing

IEEE, Academic Search
Ultimate, Science

Direct and Engineering
Village (Compendex),

Emerald Insight.

Proknow-C
and

Bibliometric
3562 2014–2018
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Table 1. Cont.

Sr. No Authors Scope Journal Databases Method Sample Size Years

05
Jerman et al.,

2018
[88]

Industry 4.0,
Smart factory,

Human
resources.

Machines—MDPI
Thomson Reuters’ Web

of Science and
Scopus

Bibliometric
and Statistical

Data Miner
43 1985–2018

06 Ante, 2021
[89]

Digital Twin,
Smart manu-

facturing,
Industry 4.0

Manufacturing
Letters Web of Science Bibliometric 23,419 1985–2020

(Oct)

07
De Felice et al.,

2018
[26]

Smart Manu-
facturing,
Artificial

intelligence

IFAC Papers Online Scopus Bibliometric
and Analytical 1498 2011–2018

In the research work shown in Table 1, most of the studies that have carried out
bibliometric analyses have considered the traditional approach for analysis—they used
all types of papers, irrespective of their area, language, and document type. Refs. [55,86]
used all sorts of documents and analyzed their citations, co-author occurrences, keywords,
subject areas, etc. Ref. [87] used the Proknow-C technique for systematic bibliometric
analysis in the context of smart factories and Industry 4.0.

No research on bibliometric analysis of digital twins used in smart manufacturing has
been identified in the literature. However, a bibliometric analysis of relevant fields, such as
fault diagnosis and predictive maintenance [86], RUL [86], and process optimization, has
emerged recently, from 2015 onwards. Additionally, research work on digital twins used
for smart manufacturing in the Fourth Industrial Revolution attracted significant attention
from the group of researchers from the year 2017 onwards [47,55,87,89].

Regarding the method, Table 1 shows that a single article [87] used the Proknow-C
method for the bibliometric analysis, which involves executing procedures serially until
a final portfolio of articles is obtained, which has a strong correlation with the research
theme and contains 3562 articles. As mentioned in Table 1, other studies use the traditional
approach to bibliometric analysis, which mainly considers the statistical data.

It can be concluded that there are few studies that provide foundational literature and
significant research themes for progressing the research on digital twins in the context of
smart manufacturing. Additionally, the present study covers more recent publications, as
most of the documents relating to this work have been published in the last three years.
Ultimately, a hybrid method for bibliometric analysis using Proknow-C, network analysis,
and case studies of the most relevant research articles is proposed. The novel contribution
of this work toward identifying the research gaps in, and the future research potential of,
this field is also stated.

3.2. Requisite Tools for Bibliometric Analysis

A bibliometric analysis is a comprehensive knowledge method that incorporates
statistics, mathematics, and linguistics techniques, while paying attention to quantification.
The cardinal motives of the bibliometric study are to summarize the current research
scenarios and possible research gaps, and to identify the most prominent authors, fields
of application, journals, publication titles, funding agencies and affiliations within the
defined research theme [90]. The documents used for the analysis were extracted from the
Scopus and Web of Science databases. Web of Science is a multidisciplinary database made
from an assortment of specific files, gathered by recorded research themes or by topic. The
fundamental part of WoS is CC (the Core Collection), which incorporates six primary refer-
ence files: SCIE (Science Citation Index Expanded); SSCI (Social Sciences Citation Index);
A&HCI (Arts and Humanities Citation Index); CPCI (Conference Proceedings Citation
Index); BKCI (Books Citation Index); and ESCI (Emerging Sources Citation Index) [91].
Scopus is a comparative multidisciplinary and specific database, which Elsevier dispatched
in November 2004 [91,92].
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Network analysis is a group of improved methods and calculations derived from the
network hypothesis and involving the improved utilization of the internet and PCs to
experimentally analyze the force of informal social impacts on research and its patterns.
Different software, such as Microsoft Excel (for statistical analysis), Citespace, VOSviewer,
nodeXL, Pajek, Gephi, and many others, have been used in network examination, repre-
sentation, and the improved comprehension of large quantities of information and data
through exploratory approaches. VOSviewer programming was utilized in this investiga-
tion [55,86,88]. VOSviewer programming has become relevant and undergone improved
utilization among scientists in business, particularly for use in graphical and metadata
metric studies; for instance, VOSviewer can utilize various data sets in a similar report.
Draw.io [86], Wondershare Edrawmax, and Microsoft Visio are utilized. Visio is an imagi-
native arrangement that assists with picturing information associated with measurements,
with a large group of coordinated highlights, that brings the benefits of Microsoft 365 to
Visio.

3.3. Methodology for Systematic/Qualitative Analysis Using Proknow-C

The Proknow-C (knowledge development process—constructivist) technique was
applied to determine the hypothetical reference and development of the vital information,
as put forth by [93], and it involves the scrutinizing and determination of articles with
relevance to the research theme [94–97].The Proknow-C method is useful for researching
within the given research theme and research boundaries. The author’s keywords, access
to the articles, and scientific recognition all affect the construction of the process [94,98].
As such, Proknow-C is the most structured technique for building a research portfolio,
based on which the researcher could identify possible research gaps and define the research
question.

Proknow-C consists of the following five phases, shown in Figure 7 below.
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The five different phases of the Proknow-C method are shown in Figure 7, which
elaborates the methodology of the bibliometric analysis in detail. Phase 1 of Proknow-C
consists of article selection for a bibliographic portfolio that correlates with the research
theme. The articles for the bibliographic portfolio were selected by defining the databases
(here Web of Science and Scopus), the search axes, keywords, and their combinations.
Figure 8 shows the process flow of article selection in Proknow-C.
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Three axes were defined for the searching of articles, called Master Keywords, Primary
Keywords and Secondary Keywords, and for these three axes, the chosen keywords are
listed in Table 2. This selection was made via three research axes: digital twin, smart manu-
facturing, and enabling tool and technologies. Based on the search string, the keywords
were segregated, and (AND) & (OR) Boolean operators were used in between them. The
keyword combinations with Boolean operators were structured as (Master Keyword) AND
(Primary Keywords) AND (Secondary Keywords), resulting in a total of 21 combinations.
The analysis in this paper is based on the Scopus and Web of Science database for the
period of 1985–2021 (March) for all the available languages, document types, and subject
areas. The databases were selected based on their availability and agreement with the
research theme.

Table 2. List of keywords and their combinations (search string).

Master Keyword “Digital Twin”

Primary Keywords “Machinery” OR “Manufacturing” OR “Smart Manufacturing”

Secondary Keywords
“Enabling Technologies” OR “Industrial Internet-of-Things” OR

“Internet-of-Things” OR “Machine Learning” OR “Artificial
Intelligence” OR “Deep Learning” OR “Data-Driven Systems”

The portfolio search was accomplished using two databases with blends of keywords,
with the help of search queries such as title, abstract, and keywords. The reviews were lim-
ited to the last five years (from 2016 to March 2021) and all document types. A compliance
test was conducted to ascertain whether there are any requirements for the incorporation of
new keywords, with the goal that the portfolio be sufficiently adjusted to finish the choice
phase of constructing the crude article bank.

Phase 2 of the Proknow-C considers three different article filtration criteria, described
as follows:

i. Filtration of raw articles—Multiple databases result in the repetition of articles.
Hence, the first criterion is to remove duplicate articles from the bank of raw
articles.

ii. Filtration of articles based on title alignment and scientific recognition—In the
second stage of article filtration and selection of Proknow-C, after removing the
repeated articles (articles that are common to both the databases), they are filtered
based on title alignment. Here, the articles whose titles are not aligned with the
research theme are removed from the bibliographic portfolio. Later, the articles are
removed based on the citation received (articles that have been cited less than ten
times are removed). In addition, articles from the last three years are filtered by
reading their abstracts and constructing a summary, since the more recent articles
have not received much scientific recognition within the stipulated time.

iii. Filtration of articles based on scientific knowledge—Once the articles are filtered
based on the above two criteria, the subsequent filtration process involves reading
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abstracts and checking the availability of entire articles. The articles whose abstracts
do not fall within the research theme are removed, and we remove articles whose
abstracts are not available.

After this filtration, the remaining articles comprise the final bibliographic portfolio,
which contains those with the most significant correlation with the research theme.

Phase 3 concerns the systematic analysis of each article in the bibliographic portfolio,
including reading the whole article and studying the techniques applied, the research
outcomes, the methodology incorporated, and the significant comments given by the
author. The articles that do not fall within the research context are removed from the
portfolio. Phase 4 identifies possible research gaps from the systematic analysis and
formulates the research question based on the identified research gaps, which helps in
defining the research objectives. In phase 5, based on possible research gaps and research
questions, the research objectives are defined, and we suggest a possible methodology
for achieving the defined research goals. The following section elaborates the Proknow-C
techniques and the results of each phase in the context of the stated research theme, based
on the use of data obtained from the specified databases.

4. Discussion
4.1. Interpretation from the Statistical Analysis of Publications from Scopus and Web of Science
Database (Quantitative Analysis)

We derived 341 documents from the Scopus database and 168 documents from the
Web of Science database (WoS). Different languages are used for the publication of the
articles related to the research theme. Table 3 summarizes the prominent languages in
which research regarding DT is published and considers the articles from both databases
that are relevant to the present analysis.

Table 3. No. of documents by languages in Scopus and WoS.

Sr. No. Publication Language Publications in Scopus Publications in Web of Science

1 English 323 196
2 Russian 0 3
3 Chinese 17 2
4 Korean 1 2
5 German 1 0

4.1.1. Documents by Type in Scopus and WoS

Both databases contain different types of publications, as shown in Table 4. It is
clear from Table 4 that 37% and 56% of the articles are published in the Scopus and WoS
databases. In comparison, 45% of the conference papers are published in the Scopus
database, and 31% of meeting papers are published in the WoS database. Other types of
documents, such as book chapters, reviews, and editorials, are also published, but there
are fewer of them. This variation shows the ongoing progress of research in the field of
digital twins.

Table 4. Types of documents in Scopus and Web of Science.

Sr. No. Document Type Scopus (%) Web of Science (WoS) (%)

1 Conference Paper/Meeting 45 31
2 Article 37 56
3 Review 6 6
4 Conference Review/Early Access 6 4
5 Book Chapter 5 1
6 Editorial Material 1 2
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4.1.2. Year-Wise Publications in Scopus and WoS Database

The bibliometric analysis of articles on the use of digital twin in smart manufacturing
proceeded from 2016 to 2021. Due to the wide range of digital twin applications, the
number of publications and their citation count increased tremendously in the given period.
Figure 9 shows a graphical representation of the publications per year in the context of the
research theme. From Figure 9, it is concluded that from 2019 to 2020, the research on the
use of digital twins in smart manufacturing increased suddenly and is still rising at present.
The trend line shows that a more significant number of documents were published in
Scopus than in WoS. Additionally, it shows that 2020 was the most influential year, during
which 136 and 75 documents were published in Scopus and WoS, respectively.
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4.1.3. Documents by Geographic Locations in Scopus and WoS

The availability of the internet and worldwide access to past research studies has
increased the research in this varied application field. According to the Scopus database,
most of the research has been done in China (70), followed by the United States (45),
Germany (27), Italy (21), and the United Kingdom (20). The least research work has been
carried out in countries such as India, France, Brazil, Sweden, and Finland. As per the WoS
database, most research works were carried out in the Republic of China (47), followed
by the USA (32), China (26), Germany (25) and Italy (17). The countries with the lowest
contributions are England, Sweden, France, India, and Singapore. Figure 10 shows the
research work carried out across the globe at different locations within the research theme.
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4.1.4. Documents by Subject Area in Scopus and WoS Databases

The amount of research work carried out in the different subject areas within the
boundaries of the research theme is depicted in Figure 11. According to the Scopus and
WoS databases, most of the research work was performed in the engineering and computer
science domains.
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4.1.5. Documents by Affiliations in Scopus and WoS Databases

A graphical representation of the top six universities and organizations making signif-
icant contributions to the research on digital twins is given in Figure 12. From the Scopus
and WoS analyses, it is observed that Beihang University, the Guangdong University of
Technology, and the University of Hong Kong made noteworthy contributions to the
studies in the research domain.
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4.1.6. Documents by Author in Scopus and WoS Databases

Many people are contributing to research on and development of digital twin tech-
nology. Figure 13 shows the prominent authors contributing to the literature related to
digital twins, leading to its further development. From the analysis of Figure 13, we see
that the authors with the greatest publication counts are Tao F (9), Borangiu, T. (6), Qi, Q (5),
Lu Y (5), Zhang M (5), Zhang C (5), etc.
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4.1.7. Documents by Source Titles in Scopus and WoS Databases

A quantitative analysis of the top six articles from the Scopus and WoS databases
within the research theme is presented in Figure 14. From the investigation, we see that
Procedia CIRP (12) contains the most publications, followed by Studies in Computational
Intelligence, International Journal of Computer Integrated Manufacturing, and others in the
Scopus database. In contrast, IEEE access (10) has the most publications, followed by the
International Journal of Computer Integrated Manufacturing, Procedia CIRP, and others in the
WoS database.
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4.1.8. Documents by Funding Sponsors in Scopus and WoS Databases

There are many funding agencies, institutions, and organizations worldwide that
provide funds for research. Figure 15 shows the statistical analysis of the funding agencies
providing funds to study within the research theme. In the Scopus database analysis,
the National Natural Science Foundation of China (29) funded most of the research work,
followed by the European Commission, Horizon 20202 Framework Programme, etc. In
comparison, the National Natural Science Foundation (25) funded most of the research
work, followed by research funds from the Central Universities, the National Key Research
and Development Program of China, and others, in the WoS database.



Sustainability 2021, 13, 10139 20 of 49

Sustainability 2021, 13, x FOR PEER REVIEW 20 of 55 
 

Scopus database. In contrast, IEEE access (10) has the most publications, followed by the 
International Journal of Computer Integrated Manufacturing, Procedia CIRP, and others in the 
WoS database. 

 
Figure 14. Number of publications by source title in Scopus and WoS (Top 6). 

4.1.8. Documents by Funding Sponsors in Scopus and WoS Databases 
There are many funding agencies, institutions, and organizations worldwide that 

provide funds for research. Figure 15 shows the statistical analysis of the funding agencies 
providing funds to study within the research theme. In the Scopus database analysis, the 
National Natural Science Foundation of China (29) funded most of the research work, 
followed by the European Commission, Horizon 20202 Framework Programme, etc. In 
comparison, the National Natural Science Foundation (25) funded most of the research 
work, followed by research funds from the Central Universities, the National Key Re-
search and Development Program of China, and others, in the WoS database. 

 
Figure 15. Number of publications by funding sponsor in Scopus and WoS (Top 6). 

4.1.9. Documents by Publication Citations in Scopus and WoS Databases 
The total yearly citations in the publications within the domain of research are shown 

in Figure 16. The total citation count from the year 2017–2021 is 3237 for Scopus publica-
tions and 1628 for WoS publications. The maximum citation counts for both the databases 
are from 2020—1530 for Scopus, and 815 for WoS publications. Table 5 shows the top ten 
articles obtained from the Scopus and WoS databases, which have received the maximum 
number of citations to date. It is observed that the publication entitled “Digital Twin Shop 
Floor: A New Shop Floor Paradigm Towards Smart Manufacturing” has received the most 
total citations (298). In contrast, a publication entitled “Digital Twin in Industry: State-of-
the-Art” has received the highest number of total citations per year (72.33), as depicted in 
Table 5. 

Figure 15. Number of publications by funding sponsor in Scopus and WoS (Top 6).

4.1.9. Documents by Publication Citations in Scopus and WoS Databases

The total yearly citations in the publications within the domain of research are shown
in Figure 16. The total citation count from the year 2017–2021 is 3237 for Scopus publications
and 1628 for WoS publications. The maximum citation counts for both the databases are
from 2020—1530 for Scopus, and 815 for WoS publications. Table 5 shows the top ten
articles obtained from the Scopus and WoS databases, which have received the maximum
number of citations to date. It is observed that the publication entitled “Digital Twin
Shop Floor: A New Shop Floor Paradigm Towards Smart Manufacturing” has received
the most total citations (298). In contrast, a publication entitled “Digital Twin in Industry:
State-of-the-Art” has received the highest number of total citations per year (72.33), as
depicted in Table 5.
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Table 5. Top ten publications from Scopus and WoS databases with the most citations.

Sr. No. Title Authors Journal Title Year
(Y)

Total Citation
(TC)

Citation Per
Year (TC/Y)

1

Digital Twin Shop-Floor: A
New Shop-Floor Paradigm

Towards Smart
Manufacturing

Tao and Zhang, 2017.
[27] IEEE Access 2017 298 59.6

2 Digital Twin in Industry:
State-of-the-Art

Tao et al. 2019.
[43]

IEEE Transactions on
Industrial Informatics 2019 217 72.33

3
Digital twin workshop: a
new paradigm for future

workshop

Tao et al., 2017
[99]

Jisuanji Jicheng
Zhizao Xitong/

bComputer Integrated
Manufacturing Systems,

CIMS

2017 161 32.2

4

Digital Twin Data Modeling
with Automation ML and a

Communication
Methodology for Data

Exchange

Schroeder et al., 2016
[100] IFAC-Papers Online 2016 154 25.66

5
Digital Twins: The

Convergence of Multimedia
Technologies

El Saddik A., 2018
[68] IEEE Multimedia 2018 139 34.75

6

A systematic design
approach for service
innovation of smart

product-service systems

Zheng et al., 2018
[101]

Journal of Cleaner
Production 2018 127 31.75

7

Digital twin-driven
manufacturing

cyber-physical system for
parallel controlling of smart

workshop

Leng et al., 2019
[78]

Journal of Ambient
Intelligence and

Humanized Computing
2019 112 37.33

8

Scanning the Industry 4.0: A
Literature Review on

Technologies for
Manufacturing Systems

Alcacer, V and
Cruz-Machado, 2019

[102]

Engineering science and
technology—an

international
journal—jestech

2019 109 36.33

9

Digital Twins and
Cyber–Physical Systems

toward Smart
Manufacturing and Industry

4.0: Correlation and
Comparison

Tao et al., (2019)
[20] Engineering 2019 101 33.66

10

Review of job shop
scheduling research and its

new perspectives under
Industry 4.0

Zhang et al., (2019)
[28]

Journal of Intelligent
Manufacturing 2019 98 32.66

4.2. Network Analysis of the Publications from Scopus and Web of Science Databases

Network analysis is used to investigate the subjects identified via the relationship
among different attributes. This is completed by utilizing graphical configurations. There
are several resources available to perform the network analysis, such as VOSviewer, Gephi,
Node XL, etc. However, VOSviewer [103] is being used in this analysis to render the
network analysis graphs.

4.2.1. Network of Co-Occurrence of Author Keywords

Co-occurrence indicates the existence or closeness of comparable keywords, which al-
lows us to examine concepts (keywords) and topics (grouped concepts) [104,105].
Figure 17 shows a network analysis of the co-occurrence of author’s keywords in Sco-
pus documents. Each circle denotes a keyword utilized in the articles’ source names. As
the degree of keyword usage increases, the size of the circle also increases. The links associ-
ating the circles show the distance between two keywords. A total of 2300 keywords were
extracted from the documents, of which 247 co-occurred in the documents at least three
times. In the network analysis shown in Figure 17, cluster 1 emphasizes the importance
of the use of digital twin with its enabling technologies. Cluster 2 shows the importance
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of research on smart manufacturing and its enabling technologies. Cluster 3 emphasizes
the importance of research in the domain of cyber–physical systems, cyber–physical pro-
duction systems, Industry 4.0, and Internet-of-Things for the implementation of DT in a
real-life scenario. Cluster 4 depicts the importance of progress in the fields of artificial
intelligence, augmented reality, digitalization, and data analytics for decision-making in
DT. Cluster 5 highlights the technologies enabling the real-time implementation of DT.
Table 6 shows the co-occurrence of the keywords, their links, and their link strength within
the Scopus databases, which helps in finding the correlation between various concepts.
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Table 6. Results of co-occurrence of author keywords in the Scopus database.

Cluster Co-Occurrences Links Total Link Strength Author—Keywords

1 Red
(10 Items)

4 9 11 Blockchain

3 6 10 Convolutional Neural Network

13 12 23 Deep Learning

21 24 46 Digital Twins

4 6 8 Industrial Internet of Things

13 11 21 Intelligent Manufacturing

4 5 7 Internet of Things

37 37 96 Machine Learning

8 13 22 Manufacturing

29 26 68 Smart Manufacturing
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Table 6. Cont.

Cluster Co-Occurrences Links Total Link Strength Author—Keywords

2 Green
(9 Items)

6 14 29 Cloud Manufacturing

3 8 16 Cloud Services

4 10 19 Cyber Physical Production
Systems

9 19 35 Digital Manufacturing

3 3 6 Industrial Internet

13 22 46 Industrial Internet of Things

3 8 17 Multi Agent Systems

4 11 22 Resource Virtualization

3 5 6 Virtual Commissioning

3 Blue
(9 Items)

4 13 17 Big Data Analytics

4 5 15 Cyber Physical Systems (cps)

7 7 16 Cyber Physical Systems

3 9 10 Industry 4.0

63 39 154 Industry 4.0

31 29 90 Internet of Things

11 18 36 Internet of things (iot)

3 5 12 opc

4 6 10 Product Lifecycle management

4 Yellow
(7 Items)

18 23 48 Artificial Intelligence

5 11 17 Cyber Physical Systems

5 10 14 Data analytics

8 15 26 Digitalization

4 12 17 iiot

12 17 32 iot

3 7 8 Smart Cities

5 Purple
(6 Items)

5 10 17 Augmented Reality

4 8 10 Cyber Physical Production
Systems

159 53 300 Digital Twin

3 2 4 Five-Dimensional Digital Twin
Model

5 9 13 Life Cycle

7 13 19 Virtual Reality

The network analysis of the co-occurrence of keywords in Web of Science documents
is depicted in Figure 18. In total, 669 keywords are extracted from the documents, of which
77 co-occurred in the documents at least three times.

Cluster 1 emphasizes the research importance of DT and its enabling tools and tech-
nologies, such as cloud computing, machine learning, cyber–physical systems, etc., for the
implementation of DT in smart manufacturing. Cluster 2 describes the evolution of re-
search in the domain of digital twins within the industry 4.0 framework, using modeling,
simulations, artificial intelligence, etc. Cluster 3 highlights the research on communica-
tion technologies and digitalization, carried out to realize DT in smart manufacturing.
Cluster 4 shows the research trends in IIoT, IoT, and deep learning for decision-making
in DT. Cluster 5 focuses on virtual reality, big data, and life cycles within the Industry 4.0
framework. Table 7 shows the co-occurrence of author keywords, along with the link and
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link strength for the Web of Science database, which helps in identifying the future research
trends and topics within the research theme.
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Table 7. Results of co-occurrence of author keywords for WoS database.

Cluster Co-Occurrences Links Total Link Strength Author—Keywords

1 Red
(10 Items)

3 7 14 Cloud Manufacturing

3 6 12 Cloud Services

3 7 13 Cyber Physical Production
systems

4 6 8 Cyber Physical Systems

4 11 19 Digital Manufacturing

84 41 178 Digital Twin

3 3 5 Discrete Event Simulation

10 16 29 Industrial Internet of Things

16 28 53 Machine Learning

6 11 15 Simulation

2 Green
(8 Items)

3 10 11 Artificial Intelligence (ai)

3 5 10 Cyber Physical Systems (cps)

3 4 5 Cyber Physical Systems (cps)

5 8 9 Digital Twin (dt)

26 28 64 Industry 4.0

10 18 34 Internet of Things (iot)

3 8 8 Modelling

3 13 16 sensors
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Table 7. Cont.

Cluster Co-Occurrences Links Total Link Strength Author—Keywords

3 Blue
(6 Items)

3 6 7 Cyber Physical Production
systems

5 8 12 Cyber Physical Systems

4 12 15 Digitalization

18 32 68 internet of things

3 8 9 iot

9 14 25 smart factory

4 Yellow
(6 Items)

3 10 13 Cloud computing

11 12 22 deep learning

3 10 12 Digital Twins

3 8 9 Industrial Internet of Things (iiot)

3 4 5 internet of things

8 14 24 Manufacturing

5 Purple
(5 Items)

12 19 42 Industry 4.0

7 17 30 Big data

13 20 44 Industry 4

3 8 10 Life cycle

5 10 13 Virtual Reality

The network graphs of the co-occurrence of keywords for both databases reveal that
the correlation of digital twins with other domains is different between the Web of Science
and Scopus databases. As such, to gain insights and understand the prominent application
domains of digital twins, the authors have considered both the databases.

4.2.2. Network Analysis of Author and Co-Author

The author and co-author co-appearances in Scopus and Web of Science are assessed
in Figures 19 and 20. This network helps to identify the collaborations among authors
using the links, while the total number of co-authorship links shows an author’s connection
with other authors.

For Scopus, the threshold for the minimum number of documents by an author was
set manually to 3, which resulted in 968 authors from Scopus, out of which 38 reached the
threshold. The vital link of co-authorship with other authors is evaluated and portrayed in
Figure 19. Eight clusters of co-authorship were found and have been represented in the
network visualization shown in Figure 19 below, with 38 items derived from the network.
The number of links generated among the authors was 29. The clusters found can be
interpreted as active research collaboration among researchers, particularly in the clusters
containing such authors as Chen X., Leng J., Liu Q., Zhang D., and Yan D.

For Web of Science, the threshold value for the minimum number of documents by
an author was set manually to 3, which resulted in 628 authors from Scopus, out of which
14 reached the threshold. The vital link of co-authorship with other authors is evaluated
and portrayed in Figure 20. A single cluster of co-authorship was identified in the network
visualization shown in Figure 20 below, with 14 items derived from the network. The
number of links generated among the authors was 5. The clusters found show active
research collaboration among researchers, especially in the clusters containing such authors
as Chen X., Leng J., Liu Q., Zhang D., and Yan D.
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4.3. Interpretation from Phases 1 and 2 of the Proknow-C Technique

As explained in Section 2.3, the Proknow-C method is employed for article selection
and filtration, and carries out the critical analysis of the obtained bibliographic portfolio.
Figure 21 shows an in-detail flowchart for the selection and filtration of articles in the
bibliographic portfolio based on the procedure mentioned above. The method initially



Sustainability 2021, 13, 10139 27 of 49

considers the selection of scientific databases. In this work, the author has selected the
Web of Science and Scopus databases. Since the prominent application domains of digital
twins are varied between the databases, to get a broad view of the digital twin and
its application domains, the author has considered both databases. From the selected
databases, initially using keyword search queries, a total of 509 articles were obtained, out
of which 168 are from Web of Science and 341 are from Scopus. The subsequent stage of the
Proknow-C method is to remove duplicate articles (i.e., articles that are common in both the
databases). In total, 138 duplicate articles were found and removed from the bibliographic
portfolio, and 341 articles remained. In the next stage of article filtration in Proknow-C,
the remaining articles were filtered and selected by reading the title of each article and
removing the articles whose titles were misaligned with the selected research theme. In this
context, 222 articles were found with misaligned titles, and these were removed from the
bibliographic portfolio; 128 articles remained. The next step was to consider the scientific
recognition of the remaining articles, and based on this, articles were removed from the
bibliographic portfolio. Proceeding with this step, all articles with less than ten citations,
except those from the last three years, were removed. The articles from the last three years
were filtered by reading their abstracts in successive steps. Based on this step, 8 articles
were removed that did not meet the scientific recognition criteria, leaving 120 articles in
the bibliographic portfolio. Later, the remaining 120 articles were filtered based on abstract
adherence to the research theme. After reading the abstracts of 120 articles, only 39 articles
were found to be in line with the research theme, and so the remaining were removed
from the portfolio. In the second last stage, the articles were scrutinized based on complete
accessibility, and nine articles were found to be not completely accessible; these were
removed from the portfolio. In the last stage, the 33 articles were read completely, and
we found 24 articles in complete agreement with the research theme. These remaining 24
articles were considered for the critical analysis, and comprise the bibliographic portfolio,
as shown in Table A1.

4.4. Statistical Analysis of Bibliographic Portfolio

The statistical analysis analyzes the application area of the concept and scientifically
recognized documents, and the most prominent journals/conferences comprise the biblio-
metric portfolio. The following paragraphs describe the statistical analysis of the portfolio
documents regarding the attributes mentioned above.

The articles that constitute a bibliographic portfolio were classified into five categories
based on the application area of digital twins, viz., smart manufacturing, smart components,
robotics, specialized machining process, and shop floor and assembly line, as shown
in Figure 22. Shop floors and assembly lines use the concept of the digital twin more
prominently, followed by smart components, robotics, and specialized machining processes.
From this evaluation, it can be observed that the least research work has been carried out
in the domain of smart manufacturing in the application of digital twins.
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Additionally, the five articles with the highest scientific recognition within the biblio-
graphic portfolio are shown in Figure 24. The article named “Digital Twin of a cutting tool”
has acquires the highest scientific acknowledgment (cited 25 times), followed by the other
articles depicted in Figure 24. Scientific recognition illustrates the future research potential
and the need for digital twins in smart and specialized machining processes.
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4.5. Interpretation from the Phase 3 of the Proknow-C Technique

Phase 3 involves the systematic analysis of the articles in the bibliographic portfolio,
which involves studying methodologies, techniques employed, and research outcomes
in the articles discussed in 2.3 and emphasized in detail in Table A2. This will also help
to identify the recent trends, application areas, methodologies, optimization tools and
methods, machine learning algorithms, and communication technologies aligned with the
research theme, which then helps identify potential research areas and research gaps in the
application areas of digital twins.

From the above systematic analysis of portfolio documents, as depicted in Table A2, it
is found that the studies that comprise the bibliographic portfolio use different machine
learning algorithms, communication protocols and modules, and sensors for the successful
implementation of digital twins. The tables and figures below discuss the various sensors,
communication protocols and machine learning algorithms employed in the studies that
comprise the portfolio. Table A3 elaborates the different sensors employed and their
respective applications in the studies in the bibliographic portfolio.

The data obtained from the various sensors and simulation models, as well as historical
and behavioral data, are transferred from one device to another, or to the cloud, for further
processing and for taking appropriate and efficient control actions. As such, effective
communication between various devices, machines, shop floors, and virtual spaces is
vital for achieving efficient control actions and feedback. Thus, different communication
protocols and modules have been identified in the studies discussed in Table A2. Figure 25
summarizes the various communication protocols [106] and modules used in articles in
the bibliographic portfolio in detail.
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To facilitate effective control action and feedback, efficient and accurate machine
learning algorithms possess equal importance to that acquired by communication protocols
and modules. The machine learning algorithms take the raw input data from the process,
simulation models, mathematical models, and the historical and behavioural data, and
process them. Afterwards, the processed data are inserted into the model or algorithm for
training purposes. The trained model is then used for prediction or classification purposes
in various applications, as discussed by the articles in the bibliographic portfolio. Table A4
depicts the different machine learning algorithms employed in the studies of composing
the portfolio.

4.6. Observations Made Using the Extracted Documents via the Proknow-C

The following observations are made, and offer information about the recent applica-
tion areas, sensors, and machine learning algorithms using in the documents extracted by
the Proknow-C method. These observations are beneficial to developing the digital twin
model, and assist in the formulation of future research objectives, tools and methodologies.
The observations made following the above analysis are as follows:

I. Application area—Recent studies show that the shop floor and assembly line
implement digital twins in multiple scenarios. Shop floors and assembly lines use
DT to optimize the process parameters, improve production, and reduce equipment
downtime.

II. Most prominent journal—The journals that comprise the bibliographic portfolio
carry relatively more articles aligned with the research theme. Most of the articles
are from the Journal of Computer Integrated Manufacturing and the Journal of Manu-
facturing Systems. This reveals the applications and requirements of a digital twin
in the domain of smart manufacturing.

III. Scientifically recognized article—From Figure 24, the article “Digital Twin of a
Cutting Tool” from the portfolio is frequently cited. This emphasizes the hidden
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potential of a DT for assessing critical assets of the machine, which favorably affects
the outcome of the process.

IV. Sensors—The systematic analysis of documents reveals the wide range of appli-
cations of different sensors, such as vibration and acoustics sensors, dynamome-
ters, cameras, and encoders, when building a DT model. It is observed that the
multi-sensor fusion was utilized in smart manufacturing applications for real-time
process monitoring and building a live DT model. In smart manufacturing, ac-
celerometers and acoustic emission sensors are a highly reliable source for process
monitoring and deriving operational data.

V. Communication protocol—The analysis outlines the various communication pro-
tocols used for transmitting data between multiple devices and machines. Among
all the communication protocols, Open Platform Communication—Unified Ar-
chitecture (OPC-UA) is the most prominent, and is used by many researchers for
building a live DT framework.

VI. Machine learning techniques—The primary application of machine learning al-
gorithms is in predicting system behavior, anomalies, and maintenance. Deep
learning algorithms are implemented to detect and classify the data in the various
application domains of smart manufacturing.

Phases 4 and 5 of Proknow-C technique are explained in the later sections of this
article. A few case studies are discussed in the following section to identify the research
gap and questions more precisely, which will also help define accurate research objectives.

4.7. Case Studies

To better understand the research theme and its real-world implementation, the
following are examples that elaborate on the use of digital twins in smart manufacturing.
The case studies below contain details about the implementation of digital twins, as well
as the required tools, techniques, and methodology. Due to its diverse applicability in
smart manufacturing, it is indispensable to observe, analyze, and establish a holistic
understanding of this research theme.

4.7.1. Reconfigurable Additive Manufacturing Systems Using Robotic Arms

This study used augmented reality with robotic arms in additive manufacturing for
rapidly reconfigurable additive manufacturing systems [107]. The developed methodology
helps to apply changes in layout and toolpath quickly. For the successful implementation
of the proposed methodology, the researcher built a prototype of additive manufacturing
robotic arms. A full HD 1080p camera was used for live video streaming and to give
location identification. The prototype was designed using four degrees of freedom Dobot
Magician robotic arms. End-effectors of the robotic arm were changed for FDM-style
extruders, which feed polylactic acid fiber through singular feeders. Three AR markers
were utilized, one of which is used to show the area of the part substrate, while the other
two show the positions of both mechanical arms individually. The two markers were
incorporated into two positioning cards, which were utilized to find the two arms. The part
substrate and the two arms could be moved uninhibitedly for different formats, making
the framework reconfigurable. The open-source NyAR Toolkit library was utilized to
collect the AR markers, create simulated objects such as format pointers, and to facilitate
frameworks.

The spatial interactions between the components, viz., the robotic arms, the part
substrate and the camera, are essential to facilitate the association between the physical
and cyber domains. This was achieved by computing the coordinate transformations for
each combination. The coordinate transformations help derive the relationship between
markers and camera, markers and robotic arms, and part substrate and robotic arms, using
the four × four transformation matrices. Later, the proposed methodology was verified
by two experimental case studies, viz., layout reading and layout deploying. The former
was used to verify the readability of the augmented reality for the reconfiguration of the
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digital twin, while the latter verified the potential of augmented reality for implementing
the layout using the simulated results and a digital twin.

These two case studies show that the developed technique enables the quick recovery
of position data from the actual framework format into the digital twin and facilitates
successful deployment and optimization. However, it was observed that there is innate
incorrectness in the marker following augmented reality, because of different reasons,
such as camera picture contortion, marker misdetection, horrible lighting conditions, and
so forth. Accordingly, the AR strategy may not be suitable for use as a technique for
associating the digital and the actual spaces, yet it will be suitable for quickly organizing
an unpleasant format from the advanced twin, and for reproducing the design.

4.7.2. Hybrid Predictive Maintenance of CNC Tool Using Digital Twin

As the CNC machine is the mother of all computerized machines, the machine tool
is its most vital component, impacting the product quality, machining quality, time, and
cost. Hence, performing timely maintenance is the most crucial task. The traditional main-
tenance method permits some human error, leading to significant equipment downtime,
and increasing the cost. Therefore, the researcher here proposed a hybrid predictive main-
tenance method for the CNC machine tool using digital twin, and verified the proposed
methodology for use in estimating the remaining life of the cutting tool [108]. In the hybrid
approach, the model-based and data-driven methods are combined to derive more precise
projections/forecasts.

To create the digital twin, a multi-space model of the CNC machine tool is constructed
considering the degradation mechanism, which acts according to operating conditions
and the material attributes. Through multi-physical simulation with the limit condition
derived from the actual CNC machine tool, the condition inside can be configured, which
resembles virtual detecting. The framework state space model is an adaptation of the DT
actual degradation model, and is used to calculate framework states through hypothetical
examination of the framework inside via re-enactment. Different sorts of sensors are
introduced into the physical CNC machine tool, and give information supporting the
data-driven technique to estimate the RUL of the parts. In the data-driven strategy, precise
data must go through a few stages, such as feature extraction, noise filtration, data pre-
processing, and state acknowledgment; lastly, the become useful for forecasting. The RUL
anticipated by the data-driven technique is utilized as the framework perception of the
CNC machine tool. Hybrid algorithms combine the state space value, simulated value,
and observational value, which are used to predict the reaming useful life and verify it, as
depicted in Figure 26 below.

The proposed methodology was implemented for the prediction of the RUL of the
CNC milling machine tool. The data-driven models were built using the run-time values
derived from accelerometer, dynamometer, and acoustic emission sensors. Simultaneously,
the simulation model was developed using the data from the tool wear equation, and
mathematical models for drive and working conditions gave data such as feed, spindle
speed, depth of cut, and surrounding temperature. In the hybrid approach, data from
both the models are fused to train the particle filtering algorithm, which overcomes the
limitations of each model in predicting the remaining useful life of the tool. Additionally,
using the data from both the models, a digital twin for a tool is developed, and using
communication protocols, the developed DT is updated continuously in the run-time
environment.

Thus, the proposed hybrid predictive maintenance algorithm enables the better inte-
gration of system data and the precise prediction of the RUL of a milling tool through its
digital twin.
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4.7.3. Digital Twin for Weld Joint Growth and Penetration Control

The study focused on the latent calibre of deep learning algorithms in the context of
smart manufacturing. The author developed a digital twin-based graphical user interface
for the purpose of monitoring, controlling, and visualizing a gas tungsten arc welding
process [109]. In the welding process, the quality of the joint goes through three states,
viz., incomplete fusion, reasonable fusion, and burn through, depending on the size of the
weld pool. Additionally, the joining material, heat input, and surface tension affect the
quality of the joint. Therefore, it becomes necessary to monitor the process consistently. The
required backside bead width ensures that the weld joint quality is less than the backside
bead width (BSBW). To monitor this comparison in the traditional way is laborious; hence,
the digital twin is implemented to ease the process.
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The system consisted of a computer-controlled automatic welding machine with a
motor-driven conveyor for workpiece movement. The arc sensors are used to monitor arc
voltage and arc current, while the industrial camera is used to capture weld images. A GUI-
based digital twin model was developed in subsequent stages, which first pre-processes the
raw data obtained from the sensors. A DT module was built in the Open CV environment,
with the C++, C# Unity engine platforms. Figure 27 demonstrates the proposed framework
for the welding process. The top side bead width (TSBW) and backside bead width (BSBW)
are the two indirect information parameters obtained from the sensors.
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The raw data obtained from the sensors are processed to acquire the exact feature,
which strongly correlates with process output. In the welding process, the two weld
quality parameters TSBW and BSBW are computed indirectly from the machine learning
algorithm, which is a mathematical computation. From this, the TSBW width of the weld
pool is calculated from the image obtained from an industrial camera, using a watershed
segmentation-based algorithm to identify the weld pool boundary. The identified boundary
and algorithm help detect the peak of the weld pool, which later computes the weld
pool width. The BSBW is calculated from the deep learning-based convolutional neural
networks, since BSBW is not seen directly, but can be evaluated from the obtained data.
The data obtained from the camera are pre-processed for the removal of noise and to find
the region of interest; later, the filtered image data are used to train the CNN algorithm
to find the BSBW. In the last phase, a GUI-based digital twin model is built through the
unity engine, which shows the welding process information in four aspects, viz., weld
joint geometry, weld images, weld joint growth dynamics, and arc information. The weld
images and arc information are obtained from the sensors used for data capturing. In
contrast, welding joint geometry data and growth dynamics data are obtained from the
TSBW and BSBW computations.

Thus, a developed digital twin model facilitates the monitoring, control, and visual-
ization of the gas tungsten arc welding process, and helps monitor and control the quality
of the weld joint and the depth of penetration.
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4.7.4. Monitoring Part Geometry for Fused Filament Fabrication: Sing Computer Vision
and Digital Twin

The study demonstrated part geometry monitoring and process quality control
through the optical imaging and digital twin for FFF (fused filament fabrication) tech-
nique [30]. The traditional approaches to part geometry monitoring involve some diffi-
culties and human errors. As such, the present study used the hidden potential of optical
imaging and digital twin technology. The digital twin in a fused filament fabrication
process monitors the product quality, and identifies edges, contours, stacked counters,
etc. In this process, the digital twin models are developed through images obtained from
real-time data from the deployed sensors and machine parameters, which help predict the
part geometry and process parameters, and in the identification of anomalies between the
measured and expected contours, edges, and other parts’ features.

The data required to estimate part features and the development of digital twin models
are obtained from the camera mounted on the FFF machine, the inbuilt sensors, and the
G-Code of the machines. The data capture and communication through different modules
and feedback systems are achieved through an NI data acquisition system, an Ethernet
cable, and an interfacing computer.

The real-time monitoring of the process facilitates path planning, contour edge detec-
tion, contour quality inspection and contour stacking through the digital twin. To achieve
this, the MATLAB and mathematical computation models are used to generate accurate
results. The digital twin-enabled microscope automatically plans an inspection process for
each contour and edge for each layer. As discussed above, fusing the simulated data and
the process data in the DT helps identify the anomalies in part geometry in the last stage.
Thus, the DT helps to modify the part program through the feedback generated from the
inspection of part geometry. Figure 28 shows the proposed framework of the DT-enabled
examination.

Sustainability 2021, 13, x FOR PEER REVIEW 36 of 55 
 

Thus, a developed digital twin model facilitates the monitoring, control, and visual-
ization of the gas tungsten arc welding process, and helps monitor and control the quality 
of the weld joint and the depth of penetration. 

4.7.4. Monitoring Part Geometry for Fused Filament Fabrication: Sing Computer Vision 
and Digital Twin  

The study demonstrated part geometry monitoring and process quality control 
through the optical imaging and digital twin for FFF (fused filament fabrication) tech-
nique [30]. The traditional approaches to part geometry monitoring involve some difficul-
ties and human errors. As such, the present study used the hidden potential of optical 
imaging and digital twin technology. The digital twin in a fused filament fabrication pro-
cess monitors the product quality, and identifies edges, contours, stacked counters, etc. In 
this process, the digital twin models are developed through images obtained from real-
time data from the deployed sensors and machine parameters, which help predict the part 
geometry and process parameters, and in the identification of anomalies between the 
measured and expected contours, edges, and other parts’ features. 

The data required to estimate part features and the development of digital twin mod-
els are obtained from the camera mounted on the FFF machine, the inbuilt sensors, and 
the G-Code of the machines. The data capture and communication through different mod-
ules and feedback systems are achieved through an NI data acquisition system, an Ether-
net cable, and an interfacing computer. 

The real-time monitoring of the process facilitates path planning, contour edge de-
tection, contour quality inspection and contour stacking through the digital twin. To 
achieve this, the MATLAB and mathematical computation models are used to generate 
accurate results. The digital twin-enabled microscope automatically plans an inspection 
process for each contour and edge for each layer. As discussed above, fusing the simulated 
data and the process data in the DT helps identify the anomalies in part geometry in the 
last stage. Thus, the DT helps to modify the part program through the feedback generated 
from the inspection of part geometry. Figure 28 shows the proposed framework of the DT-
enabled examination. 

 

Figure 28. Digital twin for part geometry monitoring during fused filament fabrication.

4.8. Future Directions of Digital Twin

Based on the above discussion, DTs involve the blending of various technologies,
such as IoT, IIoT, artificial intelligence, machine learning, deep learning, Big Data, cloud
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computing, simulations, and many others. These technologies have been on a path of
constant evolution; hence it is assumed that DT will evolve continuously in parallel with
these technologies. This is verified from the estimation of the DT market globally. The
global market for DTs is expected to grow up to 58% by 2026; this means that it will
reach USD 48.2 billion [110]. The COVID-19 pandemic has proven one of the key factors
driving the growth of the DT market, since industries are pushing themselves to be more
digitalized. As humans are a vital part of any industry, and one cannot simply avoid them
during the development of DT, the Institute of Electrical and Electronics Engineers (IEEE)
believes that via the development of machines and human–machine relationship, DT will
become a crucial part of future industries [111]. Many of the researchers see “digital triplet”
as the next phase of DT [112–114]. A digital triplet addresses the “intelligent activity world”
along with the physical world and cyber–physical world. In the “intelligent activity world”,
humans solve problems with the help of DT. The digital triplet considers human interaction
with the process and systems, thus creating value from data using human intelligence and
knowledge. The goal of the digital triplet is to assist in engineering activities throughout
the product’s lifecycle, involving design, manufacturing, application, maintenance, and
resource circulations, by integrating the physical world, the cyber–physical world, and
the intelligent activity world [112,113]. In the future, DT can be combined with various
other technologies, such as augmented reality, virtual reality, etc., and can be implemented
in various fields, such as aerospace, agriculture, automobiles, biomedicine, education,
manufacturing, and healthcare.

The scope of this bibliometric analysis is limited to very few research journals and
keywords. The study was limited to scientific documents for assessing the application of
the digital twin in smart manufacturing from Scopus and Web of Science databases. From
the systematic bibliometric analysis, some research gaps have been identified (phase 4 of
Proknow-C), which are discussed below:

• The existing literature illustrates the use of digital twins for the whole process or plant.
Additionally, there is little trace of its application in miniature components. Hence,
digital twin development for the micro-milling process for aerospace or biomedical
applications will give a zero-defect output with optimized cost.

• The developed digital models only use sensor fusion technology and predict system
behavior. However, there is no significant literature available on the fusion of multi-
domain models that considers numerical simulation, mathematical modeling and
data-driven models for system monitoring and optimization.

• Hence, a multi-domain model can be developed for the stated micro-milling process,
which will combine data from all the models and replicate real-time behavior in the
virtual domain, enabling better process understanding and defect identification.

• The existing literature utilizes machine learning algorithms for decision-making,
assisted by multi-sensor fusion data, but most of the studies do not validate them
through simulation models and mathematical models. This practice reduces the
efficiency of the developed digital twin model. Therefore, a hybrid approach must
be developed using multiple machine learning algorithms, and the results will be
validated through developed simulation and mathematical models.

From this analysis, it is identified that there is little research on building a cost-effective
digital model for a micro-milling machine, for monitoring, simulating, controlling, and
optimizing the machining process using multi-domain modeling, which will address the
challenges and issues involved in implementing the digital twin. Since micro-milling devel-
ops, the attention of the world is now moving towards miniaturization and manufacturing
parts in micrometre sizes, with high material removal rates, higher cutting forces, and
time-effective production. This has vast application in aerospace, biomedicine, health,
automobile manufacturing, etc.
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5. Conclusions

Implementing the Proknow-C strategy, it was feasible to choose a bibliographic portfo-
lio that addressed the needs of the research theme, identifying 24 articles strongly correlated
to the research theme. By way of the bibliometric investigation and organized examination,
it was feasible to derive vital data. The analysis deductively recognized more relevant
articles via journals in which the articles were distributed, and focusing on writers with
more prominent acknowledgments. It permitted the design of a rich portfolio for the
research domain. There are very limited studies on employing digital twins to address
numerous issues in smart manufacturing, especially in micro-milling. There is additionally
a requirement for speculation of the AI model for flaw-finding and process anomaly identi-
fication. Similar issues should be addressed in the industrial environment to confirm the
innovation. Additionally, a newly arising field that must be addressed is the use of digital
twins for in-process monitoring, simulation, control, and optimization. This finding can be
considered as a hole in the logical exploration, representing an area of interest for enter-
prises. By this approach, it is feasible to affirm that the exploration point is progressing,
which offers new strategies and methods to conduct determinations utilizing multi-domain
information combinations during the Fourth Industrial Revolution.
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Appendix A

Table A1. Consolidated bibliographic portfolio.

Sr. No Research Theme Source Title Year Scientific
Recognition Database

01
DT-enabled cutting tool modeling,

simulation, and analysis.
[115]

51st CIRP conference on
manufacturing systems 2018 25 Web of Science

02
DT-driven reconfigurable automated

industrial systems.
[3]

Robotics &
computer-integrated

manufacturing
2020 19 Web of Science

03

A six-layer DT architecture for
effective data and information

exchange.
[44]

Journal of intelligent
manufacturing 2020 11 Web of Science

04

Application of an IoT-enabled
manufacturing systems in
cyber-physical domains.

[116]

Machines 2019 11 Web of Science

05
Prediction of tool condition through

DT model.
[35]

52nd CIRP conference on
manufacturing systems

(CMS)
2019 10 Web of Science

https://www.scopus.com/
https://www.scopus.com/
http://apps.webofscience.com
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Table A1. Cont.

Sr. No Research Theme Source Title Year Scientific
Recognition Database

06

Data management of metal additive
manufacturing system with the aid of DT

framework.
[117]

Journal of Manufacturing
Systems 2020 10 Scopus

07
DT-enabled smart manufacturing

assembly systems.
[31]

Sustainability 2020 9 Web of Science

08
Application of machine vision in

industrial robots.
[118]

Proceedings of the ASME
international mechanical
engineering congress and

exposition, 2018, vol 2

2019 4 Web of Science

09
Applications of artificial intelligence and

machine learning in DT-based
manufacturing. [119]

International journal of
computer integrated

manufacturing
2020 4 Web of Science

10
DT architectures and machine vision in

manufacturing systems.
[120]

Annals of DAAAM and
Proceedings of the

International DAAAM
Symposium

2017 4 Scopus

11
DT framework for smart product

manufacturing.
[121]

International journal of
advanced robotic systems 2019 2 Web of Science

12

Simulation and machine learning
fusion-based DT for the manufacturing of

composites.
[122]

Journal of manufacturing and
materials processing 2020 2 Web of Science

13
DT approach for reducing the energy
consumption in smart manufacturing.

[123]

International journal of
computer integrated

manufacturing
2020 1 Web of Science

14 DT for the material removal process.
[106]

International journal of
advanced manufacturing

technology
2020 1 Web of Science

15
Design and development of DT

framework for die cutting machine.
[124]

International Journal of
Production Research 2020 1 Scopus

16
DT-driven predictive maintenance
approach for an automotive brake.

[125]

2nd international conference
on recent trends in advanced
computing icrtac—disruptive

innovation, 2019

2019 1 Web of Science

17
Cloud-based DT framework for smart

manufacturing.
[126]

International journal of
computer integrated

manufacturing
2020 0 Web of Science

18

DT-competent deep reinforcement
learning framework for smart

manufacturing plants.
[127]

Journal of manufacturing
systems 2021 0 Web of Science

19
DT enabled cutting tool modeling,

application, and service framework.
[128]

Journal of manufacturing
systems 2021 0 Web of Science

20 DT concept for systems in manufacturing.
[129]

Proceedings of the ASME
international mechanical
engineering congress and

exposition, 2018, vol 2

2019 0 Web of Science

21 DT for serial and parallel manipulators.
[130]

2019 IEEE international
conference on systems, man,

and cybernetics (SMC)
2019 0 Web of Science

22
Smart spindle concept for Industry 4.0

machine tools.
[131]

2020 IEEE International
Workshop on Metrology for
Industry 4.0 and iot, Metroid
4.0 and iot 2020—Proceedings

2020 0 Scopus

23

Real-time evaluation of additive
manufacturing through MiCLAD

platform.
[132]

Procedia CIRP 2020 0 Scopus

24
The cognitive DT framework for

manufacturing systems.
[133]

CEUR workshop proceedings 2020 0 Scopus
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Table A2. Systematic analysis of bibliographic portfolio.

Sr. No Research Theme Research Objective

Sensors/Data
Acquisition/

Communication
Protocols

Decision Making
Algorithms Research Outcome

01

DT-enabled cutting
tool modeling,

simulation, and
analysis.

[115]

To examine the
concept of digital

twin for cutting tool
and production

systems

NC Controller Data,
Force Sensor. O

The proposed model enables
the replication of the cutting

tool and aids in process control,
simulation, and analysis

02

DT-driven
reconfigurable

automated industrial
systems.

[3]

Development of
digital twin-driven

framework for
rapidly reconfigure
the manufacturing

system

Physical Simulation
Model,

Acoustic,
Temperature, NC

Code, IIoT

Complex
Manufacturing

Network (CMN)

The proposed approach realizes
the rapid reconfiguration of
manufacturing systems and

retrofitting the multiple
processes into them. Enables

the immediate launch of a new
product and reduces the cost.

03

A six-layer DT
architecture for

effective data and
information

exchange.
[44]

To incorporate the
six-layer architecture
in a cyber-physical

system.

Pressure Sensor,
Airflow Sensor,

Tecnomatix Process
Simulator, OPC-UA

O

It draws attention to the
capabilities of digital twin in
information exchange. It also

reduces the expert requirement.

04

An IoT-enabled
manufacturing

system in
cyber–physical

domains.
[116]

Study the concept of
DT and essential
issues during the

development of DT.

Light Sensor, Color
Sensor, Arduino

Probability
Distributions

The proposed framework is
used for diagnosis, failure

prediction and remote process
monitoring, verified with

factory prototype.

05

Prediction of tool
condition through

DT model.
[35]

To address the
challenges in DT
implementation

through systematic
development of

cyber–physical tool
system

Dynamometer,
Accelerometer,

Acoustic Emission
Sensor, NI DAQ

Deep Stacked Gated
Recurrent Unit (Deep

Stacked GRU)

DT integrates the physical data
and data-driven computation

for the fault diagnosis and
performance evaluation.

06

Data management of
Metal Additive
Manufacturing

system with the aid
of DT framework.

[117]

To employ a DT
framework for

bridging the research
gaps in data

management in AM.

Temperature Sensor
and Pressure Sensor,

Cloud.

Deep Learning and
Data Analytics

The proposed framework
shows the future potential of

DT for additive manufacturing
to control, simulate, and

predict.

07

DT-enabled smart
manufacturing

assembly systems.
[31]

Complete
digitalization of fault

detection and
inspection in an

experimental smart
manufacturing

assembly system

Optical, Laser,
Proximity. Camera,

OPC-UA, Mind
Connect

Convolutional
Neural Networks

(CNN)

Study and experimental
verification for contactless data

capturing, processing, and
analysis for the realization of

complete digitalization of
assembly system

08

Application of
machine vision in
industrial robots.

[118]

To reduce the human
effort of

reprogramming and
self-learning in

industrial robots.

LIDAR Sensor,
Camera

Markov Decision
Process (MDP)

The approach reduces the
human efforts in roots

decision-making and makes
robots intelligent through the
perception from the machine

learning algorithm

09

Applications of
artificial intelligence
and machine learning

in DT-based
manufacturing. [119]

Developed a DT
based framework for
building a machine

learning-based
application in smart

manufacturing

Optical Camera
Sensor

Convolutional
Neural Network

(CNN)
Artificial Neural
Network (ANN),

The developed framework
reduces the human effort for

handling the parts which
require specialized treatment

and realizes the potential of the
proposed framework

10

DT architectures and
machine vision in

manufacturing
systems.

[120]

Application of vision
system for the

production line to
identify objects and
real-time inspection

LIDAR Sensor You Look Only Once
(YOLO), Word Tree

Allows the use of a single
computer to monitor, control,

inspect, and count objects on a
distributed production line.
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Table A2. Cont.

Sr. No Research Theme Research Objective

Sensors/Data
Acquisition/

Communication
Protocols

Decision Making
Algorithms Research Outcome

11

DT framework for
smart product
manufacturing.

[121]

Discussion on DT
drove application
framework and

implement in the
blade manufacturing

industry to reduce
the machine

deformation and
machining time

Force, Acoustic and
Accelerometer.

OPC-UA

Machine learning
algorithms

Framework improved the
production efficiency and

successful interconnection and
communication between
physical and cyberspace.

12

Simulation and
machine learning

fusion-based DT for
the manufacturing of

composites.
[122]

Development of DT
model using the
fusion of FEM

simulations and
machine learning to
support the quality

control in composites
manufacturing

FEM Simulation
Data, Geometrical

Modeling and
Simulation Data

XG Boost, Random
Forest, Decision Tree,

ADA Boost

The developed surrogate model
predicts the structural

properties, physical
distribution, and local

properties of composites.

13

DT approach for
reducing the energy

consumption in
smart manufacturing.

[123]

Design and
development of an

operational
framework of DT in

smart manufacturing

DH Parameters, CAD
Design Data O

The model enables
communication between a
physical and virtual model,

which aids in systematic
integration, analysis, and

optimization of the system and
improves the energy

consumption in manufacturing.

14
DT for the material

removal process.
[106]

Investigation of laser
material removal
process through

molecular dynamics
simulation and DT

for decision-making

Hyper Spectral
Camera

Hidden Markov
Model (HMM)

The proposed framework is
verified by two case studies viz.

calibration by detecting
variation in boundary
conditions and quality

assessment for defect detection
in laser material removal
process, which minimizes

evaluation time and reduces the
error rate.

15

Design and
development of DT
framework for die
cutting machine.

[124]

Building a DT
framework for the

die cutting machine
for the real-time

monitoring and to
function the
predictive

maintenance

Speed, position,
accelerometer and

acoustic.

OPC-UA

Reliability and
Failure Rate
Estimation
Algorithm

The GUI-based DT approach is
used for real-time monitoring of

the die-cutting machine (case
study) and predicting machine

health.

16

DT-driven predictive
maintenance

approach for an
automotive brake.

[125]

Study the role of DT
in the automotive

industry.

Pressure Sensor,
ThingWorx Cloud

Filter and Wrapped
Based Algorithms

The predictive maintenance and
wear rate computation of

vehicle brake through a DT
framework

17

Cloud-based DT
framework for smart

manufacturing.
[126]

Design and
development of

interoperable data
scheme for smart
manufacturing

-

Factory design and
improvement

extensible markup
language (FDIXML)

The developed system assists in
space optimization, real-time
monitoring and performance
optimization and removes the
barrier of lack of experience,

improves user accessibility for
the flexible manufacturing

systems

18

DT-competent deep
reinforcement

learning framework
for smart

manufacturing plants.
[127]

Application of
data-driven digital
transformation for

smart manufacturing
to automate the

systems

Proximity, Camera,
Encoders.
OPC-UA

Deep Q Learning

Developed Deep Reinforcement
Learning (DRL)-based artificial
intelligence industrial control

process called digital engine to
gain process knowledge,

scheduling manufacturing
tasks, and performing optimal

actions
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Table A2. Cont.

Sr. No Research Theme Research Objective

Sensors/Data
Acquisition/

Communication
Protocols

Decision Making
Algorithms Research Outcome

19

DT-enabled cutting
tool modeling,

application, and
service framework.

[128]

Construction of a DT
model for the cutting

tool to simulate,
monitor, and

evaluate a tool’s
performance.

Current, force,
acoustic, and

Accelerometer, CNC
Controller.

ANN, SVM, HMM,
CNN

Develop a DT model to realize
the real-time monitoring,
simulation, optimization,

failure analysis, forecasting,
implementation of maintenance

approach and
computer-generated

maintenance of the cutting tool.

20

DT concept for
systems in

manufacturing.
[129]

Development of DT
based framework for
manufacturing using

virtual reality for
physical processes

Proximity Sensor O

The digital twin model gives
real-time insights into the

ongoing processes and stages,
which is further used for

decision-making and
performance optimization

21
DT for serial and

parallel manipulators.
[130]

Design and
development of DT

for serial and parallel
manipulators of

robot

Encoders.
OPC-UA, MQTT O

DT model helps to monitor the
joint movement of a robot,

which is helpful in maintenance
operations due to its capacity

for faster problem identification

22

Smart spindle
concept for Industry

4.0 machine tools.
[131]

Study and analysis of
critical enablers for

an intelligent
component and

experiment
validation through

smart spindle

Accelerometers,
Gyroscopes,

temperature, acoustic
emissions, and
current sensors

OPC-UA, MQTT, MT
Connect

O

Proposed DT is used to predict
the performance, real-time

control, and health estimation
of the spindle.

23

Real-time evaluation
of additive

manufacturing
through MiCLAD

platform.
[132]

Development of a
framework for

real-time monitoring
of additive

manufacturing
systems.

Camera
Ethernet

ANN,
Self-Organizing

Pareto based
Evolutionary

Algorithm (SOPEA)

The proposed framework
accurately maps the process in

virtual space and facilitates
real-time monitoring and

control of it.

24

The cognitive DT
framework for
manufacturing

systems.
[133]

Study and
implementation of
cognitive twin for

decision making in
Industry 4.0

- Knowledge Graphs

The proposed cognitive
framework was implemented
for the shop floor to facilitate
intelligent decision-making

with the help of machine
learning algorithms, which

consist of four components, viz.,
ontology, knowledge graphs,
data (current and historical),
machine learning algorithms

and decisions
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Table A3. Sensors and their applications in portfolio documents.

Sr. No Sensor Used to Measure Benefits Limitations

1 Proximity Sensor

Presence of nearby objects
without any physical

contact
[29,106]

Detects the presence of metallic and
non-metallic objects without any

physical contact
Low cost, good resolution, high speed,

low power usage.

Limited detection range.
Not able to detect objects with

textures.

2 Pressure Sensor
Pressure measurement for
the gripper, cutting tool.

[30,77,117]

High flexibility, high sensitivity, light
weight, and linear output

resistance to shock, vibration, and
dynamic pressure change.

Needs external power supply,
temperature-dependent output.

3 Airflow Sensor Mass flow rate of air.
[30]

Fast response time, less airflow
restrictions, absence of moving parts,

and high durability.

Foreign particle contamination
affects the accuracy.

Requires frequent calibrations.
High velocity limits the accuracy.

4 Encoder Motion or position.
[118]

Fuses with modern control systems due
to integrated electronics.

Reliable and accurate.
High resolutions

The presence of Magnetic or
radio interference affects the

accuracy.
Problem with dirt, oil, and dust.

5 Accelerometer Vibration.
[117]

High-temperature stability, simple
interfacing, less noise, and robustness.

Integrated electronics.
More significant response to sudden

changes in vibrations due to the
variation in machining parameters.

Fixed range of measurement.
Error in measurement due to

hysteresis and permeant
deformation in sensing elements.

6 Temperature Sensor Temperature [117]

Wide range of temperature
measurements, durable, fast response

time for temperature measurement
during the ongoing process.

Small and integrated electronics.

Difficult calibrations.
Environmental factors affect the

measurement.

7 Dynamometer
Cutting force or simple

force
[128]

Excellent response to cutting force.
Free from hysteresis and eddy current

losses.

The low sensitivity and size of
the workpiece limits the usage of

it.
Installation is a challenging task.

8 Acoustic Sensor Sound, Noise
[124,128,131]

The capability of defect identification is
based on the frequency or intensity of the

sound wave.
High processing speed.

Measurement is affected by
improper sensor calibration, lack

of hardware amd software,
nature of the signal, and

operating conditions.

9 Gyroscope
Angular rotational

velocity
[131]

It provides a faster response to the
change in the angular position of the

robotic arm or the end effector.
Excellent tool for measurement of the

orientation of an object in a coordinated
system

Higher cost.
The effect of earth’s gravitational
force may hamper the accuracy

of the gyroscope.

10 Current Sensor
Current draws by the
equipment or device

[128,131]

Better accuracy in prediction and health
monitoring of equipment or device.

Sensor may not withstand high
current ranges.

Temperature and other
environmental factors affect the

accuracy.

11
LIDAR

(Light detection and
ranging)

Variable distances
[118,120]

It offers simultaneous location and
mapping of the robots’ path.

It offers rapid response to the obstacle in
the path of robot.

Reflectivity of the objects may
affect the object detection.

Limited range.
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Table A4. Decision-making algorithms and their application in studies.

Use Case Decision-Making
Algorithms

Sensors Used Simulation/
Mathematical

Model
Accelerometer Acoustic

Emission Dynamometer Current
Sensor Temperature LIDAR Camera Proximity

Sensor Encoder

Cutting tool
[128]

Convolutional Neural
Network (CNN) 3 3 3 3

Thermoplastics composites
[122] Random Forests 3

Thermoplastics composites
[122] Decision Trees 3

Cutting Tool [128], Robot
[118]

Material Removal [106]
Hidden Markov Models 3 3 3 3 3

Thermoplastic Composites
[122] XG Boost 3

Cutting Tool
[128]

Support Vector Machines
(SVM) 3 3 3 3

Smart Manufacturing Plants
Control Process [128] Deep Q-Learning 3 3 3

Object Detection (Robotic
Vision) [120]

YOLO (You Look Only
Once) 3 3

Automatic Manufacturing
Reconfiguration [3]

Complex Manufacturing
Network (CMN) 3 3 3

Simulation of Manufacturing
System [116] Probability Distributions 3

Cutting tool [128]
Laser Material Deposition

[132]

Artificial Neural
Network 3 3 3 3 3
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