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Abstract: The use of mineral fertilizers has long been associated with the improved growth of crop
plants as well as increased yield potential per unit area. However, the incessant practice of imbalanced
fertilizers application has increased the economic and environmental costs for the agricultural sector.
The deficiency of potassium (K) has been identified as a primary crop production challenge in certain
semi-arid regions where soil-K reserves are increasingly being depleted. This study aimed to isolate
and characterize K-solubilizing bacterial strains from the rhizosphere and root nodules of chickpea.
Initially, 50 rhizobacterial strains and 50 rhizobial strains were isolated using Aleksandrov’s medium.
Each of these collections was narrowed down to 25 strains, following a rigorous qualitative screening
based on different physiological, morphological and biochemical tests. From these, five strains each of
rhizosphere and nodule origins were selected based on qualitative as well quantitative determination
of various growth promoting traits. In addition to efficient potassium and phosphate solubilization,
the selected strains displayed better growth conditions, as evident by glucose substrate use at 25 ◦C
and pH 7. In this study, we found that strains SKB3 (rhizosphere) and JKR7 (rhizobia) were the most
efficient K-solubilizers. Additionally, they possessed diverse plant growth promoting traits such as
root colonization, the synthesis of siderophores, exopolysaccharides, chitinase activity, indole-acetic
acid production and 1-aminocyclopropane-1-carboxylic acid deaminase activity. Overall, our results
suggest that the application of bacterial K-solubilizers could be employed as a useful K-supplement
in K-limited agroecosystems. Moreover, the use of these K-solubilizers may help lead in alleviating
the negative environmental impacts associated with chemical fertilizer.

Keywords: bacterial co-inoculants; K-solubilizing activity; screening; characterization; legume

1. Introduction

Pakistan is the second largest chickpea producer in the world. In 2017–2018, chickpea
production increased by 3% due to increase in cultivated area and favorable weather
conditions prevalent at the time of sowing [1]. Moreover, chickpea has a higher nutritional
value and financial significance but its production in Pakistan is very low, at 583 kg per
hectare [2]. Many factors are responsible for poor performance but among them, the use of
traditional or low yielding varieties and poor adaptation of management practices are of
utmost importance [3].
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Biological nitrogen fixation (BNF) has a number of benefits compared to N fertilizers
such as (a) higher N use efficiency, (b) minimal N leaching and (c) minimal contamination
of soil and water bodies [4]. The amount of N fixed by a legume varies depending on the
crop type, soil and the growth stage of the crop, as well as management practices [5]. Crop
yield is limited due to unavailability of nutrients especially phosphorus (P). Therefore, the
studies on the response of legumes and rhizobia to P fertilization have received substantial
attention [6]. While to a lesser extent, research has focused on the response of legume-
rhizobia to K, which is also scarce in many Pakistani soils.

Potassium is the fourth most abundant nutrient in the Earth’s lithosphere, and its
concentration is varied in soil, ranging from 0.04 to 3.0 percent [7]. It plays a vital role in
the production of amino acids and protein from NH4

+ ions, which are absorbed by plant
roots from the soil. In addition, K also contributes to better root growth and has been
proven to increase the size and the number of nodules in legumes. The use of K in soil can
promote both the numbers and size of nodules in legumes [6]. This means that higher K
allocation in nodules is very essential to sustain BNF potential, as K deficiency can inhibit
or reduce the nitrogenase activity and thus disrupt the symbiotic potential of the plant [8].
As a result, legumes that gain N through BNF, generally have a higher need for K than
those that only release N and P from the soil. As the total quantity of N2 fixed by bacteria
increases, so does their need for energy sources to reduce or change N into NH4

+ ions. The
imperative role of K in photosynthetic activity makes it an important benefactor to efficient
N2 fixation by leguminous crop plants [9]. The process of N2 fixation is influenced by K for
very distinctive reasons and is dependent on it. Moreover, K is the predominant cation in
the plant body as calcium is in the soil [9]. In Pakistan, the current evaluation of the level
of soil K in Punjab has revealed an average decrease in soil K up to 3 mg kg−1 per year.
It means a reduction of about 60 mg K kg−1 in Punjab soils over the past two decades,
and as a result, soil K level that was once considered adequate for plant growth, is now
approaching the deficiency threshold level [6,10]. Moreover, the plant growth promoting
rhizobacteria have been reported to be the key elements for better plant growth under
nutrient-deficient conditions. Their application in the sector of agriculture can be in favor
of the reduction of agro-chemicals use and give help to eco-friendly crop production [11].
Plant uptakes of K from the soil and its availability from soil depends on the dynamics of
K, as well as the total K content in soil [3].

However, the second form of non-exchangeable K, about 10 percent of K in the soil, is
primarily the intermediate layer of K such as in lattice and feldspar minerals [12]. Moreover,
the release of non-exchangeable K to the exchangeable form takes place when the concentra-
tion of exchangeable K and K in solution reduced by plant uptake, erosion, leaching and/or
runoff [13]. Multifarious microbes in the soil are capable of solubilizing unavailable forms
of K containing minerals, such as micas, illite and orthoclases by excreting organic acids
that directly dissolve the K rock or bounded silicon ions to change the K in soil solution.
Moreover, silicate bacteria were also observed to dissolve Si, K and Al from insolvable
minerals [14]. Most of the K in soil is believed to exist as silicate minerals. Potassium
becomes available to crop plants when silicate minerals slowly disintegrated in smaller
fragments or dissolved [15]. It has been reported that a wide range of soil bacteria release K
in available form from minerals containing K in soils [16]. The application of K-solubilizing
co-inoculants could be more efficient due to their manifold effects on plant health by many
growth-promoting mechanisms [17]. In addition, the benefits of co-inoculation can be
enhanced by retaining a high population of effective K-solubilizing bacteria in the rhizo-
sphere soil. The application of root-associated bacteria having K-solubilizing activity could
be helpful to reduce the effects of biotic and abiotic stresses on plant health throughout
its lifecycle [8]. Therefore, the integrated use of plant growth promoting rhizobacteria
(PGPR) and rhizobia could be very effective for improving the nodulation and yield of
chickpea. It restores the prerequisite to focus on a balanced K fertilization strategy to
promote the efficacy of legume symbiosis under nutrient-deficient soil conditions. The
successful identification of an efficient microbial strain capable of solubilizing K that can
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conserve present resources and reduce the risks of environmental contamination caused by
the intensive application chemical fertilizers.

Therefore, in light of the above discussion, this study was planned with the following
objectives: (a) the isolation, screening and selection of the most effective rhizobacteria and
rhizobial strains having K-solubilizing activity on a qualitative as well as quantitative basis,
(b) the optimization of growth conditions for selected bacterial strains to solubilize K from
waste mica (WM) and (c) the characterization of the most effective bacterial strains having
K-solubilization activity.

2. Materials and Methods

A series of laboratory studies were carried out for isolation, purification and character-
ization of K-solubilizing rhizobacteria (KSR) and rhizobial strains from rhizosphereic soil
and root nodule samples of chickpea (Cicer arietinum L.), respectively, in the Department of
Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha,
Pakistan, and Soil and Water Sciences Department, Institute of Food and Agricultural
Sciences, University of Florida, USA.

2.1. Collection of Soil and Plant Samples

Soil and plant (chickpea) samples were collected from different sites (irrigated and rain-
fed) of Punjab (Sargodha (32.0740◦ N, 72.6861◦ E), Noorpur Thal (31.8449◦ N, 71.8571◦ E),
Jhang (31.2781◦ N, 72.3317◦ E)). The chickpea plants were uprooted along with soil adher-
ent to the plant roots. The uprooted chickpea plants were packaged in polythene bags and
brought to the laboratory for isolation of rhizobia and rhizobacterial strains having trait of
K solubilization. The physicochemical properties of soil sampling sites are mentioned in
Table 1.

Table 1. Physicochemical properties of soil sampling sites.

Sampling Sites Soil Texture Soil pH EC (µS cm−1) Available K (mg kg−1)

TSB-JNG Sandy loam 7.84 ± 0.12 2134.39 ± 46.12 174.24 ± 6.32
TSB-JNG Sandy loam 7.72 ± 0.06 1975.65 ± 39.78 165.03 ± 7.02
TSB-JNG Sandy loam 7.90 ± 0.04 2034.52 ± 41.46 169.28 ± 8.11
GW-JNG Sandy clay loam 8.02 ± 0.07 1864.90 ± 44.21 179.39 ± 6.87
GW-JNG Sandy clay loam 8.11 ± 0.09 1643.78 ± 35.49 156.71 ± 4.53
SW-JNG Sandy loam 7.94 ± 0.03 2314.39 ± 56.65 148.63 ± 6.34
RA-JNG Sandy loam 7.56 ± 0.06 2056.14 ± 51.39 153.90 ± 5.19
RD-NPT Sandy clay loam 7.80 ± 0.04 1758.64 ± 42.83 175.22 ± 7.42
RD-NPT Sandy clay loam 8.13 ± 0.05 1759.27 ± 40.28 166.42 ± 8.03
SH-NPT Sandy loam 7.82 ± 0.07 2431.08 ± 60.43 170.84 ± 7.94
SH-NPT Loam 7.73 ± 0.03 1867.90 ± 44.90 175.44 ± 8.16
JK-NPT Sandy loam 7.97 ± 0.09 2089.45 ± 48.66 157.24 ± 5.88
JK-NPT Sandy loam 8.09 ± 0.08 2413.09 ± 62.39 139.54 ± 5.09
AK-NPT Sandy clay loam 8.23 ± 0.09 2319.72 ± 54.28 146.78 ± 6.10
AK-NPT Sandy clay loam 7.95 ± 0.07 2531.11 ± 67.13 168.34 ± 8.02

96NB-SGD Sandy clay loam 7.98 ± 0.06 2131.62 ± 59.07 157.54 ± 6.48
96NB-SGD Sandy clay loam 7.76 ± 0.03 1759.43 ± 46.55 169.38 ± 7.90
99NB-SGD Sandy loam 7.82 ± 0.08 1866.70 ± 45.87 164.08 ± 6.17
99NB-SGD Sandy loam 7.93 ± 0.04 2016.29 ± 53.64 170.90 ± 7.12
99NB-SGD Sandy loam 7.90 ± 0.05 1509.48 ± 34.79 160.78 ± 5.54
MGR-SGD Sandy clay loam 7.70 ± 0.07 1734.46 ± 40.29 152.90 ± 5.60
MGR-SGD Sandy clay loam 7.81 ± 0.06 1873.41 ± 43.87 189.63 ± 9.03
SWA-SGD Loamy sand 7.74 ± 0.04 1487.32 ± 32.94 178.16 ± 8.22
MHP-SGD Sandy clay 7.49 ± 0.02 1564.12 ± 34.65 159.43 ± 5.37
MHP-SGD Sandy clay 7.62 ± 0.05 1358.69 ± 31.92 164.23 ± 6.08

Values are means of three replicates. ±: Standard error of mean values; JNG: Jhang; SGD: Sargodha; NPT:
Noorpur thal; TSB: Thall Sattan Bharai; GW: Gulab Wala; SW: Shero Wala; RA: Rehmatabad; RD: Rakh Dhamak;
SH: Shah-Hussain; JK: Joura Kalan, AK: Adhi Kot; 96NB: Chak No. 96 NB; 99NB: 99 Chak No. 99; MGR: Mangoor;
SWA: Shwala; MHP: Muhibpur.
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2.2. Isolation of Potassium-Solubilizing Rhizobacteria

Isolation of K-solubilizing bacteria was completed using dilution plate technique on
Aleksandrov’s medium [18] from soil samples. First of all, bulk soil from the roots of
chickpea was detached by mild agitation, and then the soil strongly adhering (rhizosphere
soil) to the roots was also removed. After this, 10 g of rhizosphere soil from every sample
was weighed and mixed with 95 mL sterile solution of NaCl (0.85 percent) in 250-mL
conical flasks. Flasks were shaken energetically for 10 min to form uniform suspensions
of soil. The soil suspensions were then incubated under agitation for 45 min followed by
filtration through sterile filter paper. Using 1.0 mL of filtered supernatant of soil suspension,
samples were consecutively diluted up to 10−6, and 0.1 mL of aliquot from each of the
dilution was shifted and equally straightened out on Aleksandrov’s agar medium [14].
After this, media plates were incubated for 72 h at 28 ± 2 ◦C. Morphologically well grown
and prominent colonies (color, shape, size and growth rate) of 50 rhizobacterial strains
were selected and purified by additional streaking on freshly prepared Aleksandrov’s
agar medium using a four-way streak plate technique. The diameter of the halo zone was
measured and articulated in millimeters, and for further studies, the pure cultures on agar
slants were stored in the refrigerator at −40 ◦C.

2.3. Isolation of Potassium-Solubilizing Mesorhizobial Strains

Mesorhizobial strains from nodules of chickpea were isolated using standard protocol.
For this, healthy plant of chickpea (45–60 days old) were selected from field and then
uprooted and shifted to the lab using polythene bags. For isolation of rhizobia, the roots
of chickpea plants were washed gently with tap water, and then nodules were detached
from roots with the help of scissors. The collected nodules were surface disinfected for a
moment (<10 s) by immersion in 95 percent solution of ethanol, followed by immersion in
0.2 percent mercuric chloride solution for 3 min [19]. Nodules were then washed several
times with sterilized water to remove surface disinfectant. To obtain a milky suspension, the
surface sterile/or disinfected nodules were crushed with a glass rod in 5 mL sterile distilled
water. A loop of milky suspension was striped on the Yeast Extract Mannitol (YEM) agar
medium plates [20] and then incubated for 72 h at 28 ± 2 ◦C. The isolated single colonies
of rhizobial strains were selected and picked with streaking needle and then restreaked
on freshly prepared YEM agar medium plates. This process was repeated 3 to 4 times on
freshly prepared YEM agar plates to obtain pure cultures. In this way, 50 rhizobial strains
were isolated and designated with sampling sites. These strains were stored in glycerol
(20%) at −40 ◦C for further use.

2.4. Screening of Potassium-Solubilizing Rhizobacteria and Mesorhizobial Strains

Potassium-solubilizing ability of both bacterial strains was tested on qualitative and
quantitative basis from insoluble K bearing minerals.

Qualitative Assessment of Potassium Released from Insoluble K Bearing Mineral

For qualitative estimation of K, bacterial strains were initially selected for screening of
K-solubilization based on halo zone formation on agar medium having modified Aleksan-
drov’s medium via spot test method [21]. Bacterial strains showing solubilization zone on
Aleksandrov’s agar medium were further tested to evaluate their potential to release K in
broth medium containing 1.0 percent mica mineral. For this, 1.0 mL culture (overnight) of
each bacterial strain was inoculated to Aleksandrov’s broth, having a volume 25 mL [14].
All inoculated flasks were incubated for 3 weeks at 28 ± 2 ◦C. After this, the quantity of
K was determined at 7, 14 and 21 days of incubation compared to uninoculated control.
Finally, the available K content was estimated by Flame Photometry method [22].

2.5. General Characterization of Bacterial Strains Having the Trait of Potassium Solubilization

The bacterial strains were tested for general characterization using the following
procedures. These strains were tested to determine the color, motility, shape, gram reaction,



Sustainability 2021, 13, 10240 5 of 18

halo tolerance, as well as their ability to produce spores using the method described by [23].
The selected bacterial strains were also tested for their ability to use divergent sources of
carbon (C), namely sucrose, glycerol, maltose and citrate. The sources of C were used at
the rate of 2% in agar medium. After this, 24-h old cultures were streaked on the medium
and incubated for 24 h at 28 ± 2 ◦C. The degree of growth on media comprising various
sources of C was generally observed and the growth was noted without growth (−) or
growth (+). MR-VP Medium (Glucose phosphate broth) was used to perform Methyl Red
test as described by Seeley and Vandemark [24]. The pre-sterilized tubes comprising broth
test cultures of MR-VP were inoculated for Voger–Proskauer test as studied by Seeley and
Vandemark [24]. The method of Alariya et al. [25] was used to detect amylase activity of
strains. Freshly prepared cultures were streaked on Modified Czapek Mineral salt medium
for the detection of cellulose enzyme activity [26]. Catalase activity of strains was tested
by adding 3% H2O2 on developed growth colonies of selected strains using method of
Blazevic and Ederer [27].

Tribibutyrene agar medium (TAM) was used for lipase activity. Lipolytic activity
of selected strains was verified by halo zone formation around the inoculation line, and
then inoculated plates were incubated for 72 h at 25 ◦C [28]. Protease activity of strains
was checked using SMA (Skimmed Milk Agar) media [29]. The urease activity in selected
strains were determined as described by James and Sherman [30]. Qualitative N-fixing
ability of bacterial cultures was determined using standard procedure as described by
Gothwal et al. [31]. Selected strains were evaluated for P-solubilizing activity using pro-
tocol described by Pikovskaya [32]. Eckford’s [33] method was used to test the potential
of selected strains to hydrolyse starch. In order to test for indole production assay, pre-
sterilized sulfide-indole motility (SIM) agar tubes were inoculated with selected strains.
After this, SIM agar tubes were incubated for 48 h at 28 ± 2 ◦C. After inoculation, Kovac’s
reagent (10 drops) was added into each tube. Cherry Red production was considered
positive for indole production [34]. The gelatin liquefaction of the bacterial strains were
determined as described by Blazevic and Ederer [25]. The hydrogen sulfide production
assay was performed using sterilized test tubes containing SIM (sulfide, indole, motility)
agar medium [35]. Casein hydrolysis was determined as described by Seeley and Van-
demark [24]. The production of HCN (hydrogen cyanide) was estimated using modified
King’s B agar medium [36].

2.6. Quantitative Characterization of Plant Growth Promoting Traits in Selected Strains
of Bacteria

For this, selected strains were characterized for various plant growth promoting traits
using the following protocols. Gordon and Weber [37] method was used for estimation
of indole-acetic acid (IAA) in selected strains. The exopolysaccharides production was
measured through inoculation of strains on RCV (Rhodobacter-Capsulatus V) mineral
medium after enrichment with Mannitol, glucose or sucrose, with and without NaCl [38].
The total carbohydrate content in the precipitated EPS was measured by standard procedure
described by Dubois et al. [39]. The Penrose and Glick [13] protocol was used to determine
the activity of ACC-deaminase in the cells of selected bacterial strains in the form of
α-ketobutyrate that resulted from the cleavage of ACC.

For K-solubilization assay, 48-h-old bacterial cultures were used for inoculation of
25 mL AMB spiked with WM in 50-mL capacity Erlenmeyer flask and then incubated
in shaking incubator for 6 days at 28 ± 2 ◦C. The growth suspension of cultures was
centrifuged at 7000× g for 10 min to separate the supernatant from cell growth, and the
insoluble K and then filtered. After this, filtered supernatant (1 mL) was taken in to a
50-mL flask and made 50 mL volume using distilled water and then mixed well. Finally,
the sample was analyzed for water-soluble K content using flame photometer [22].

For chitinase activity, the amount of N-Acetyl glucosamine (GlcNAc) produced from
the colloidal chitin substrate was measured using procedure described by Reissig et al. [40].
The quantitative measurement of siderophores of K-solubilizing bacteria was conducted
using CAS Shuttle Assay [41]. For root colonization test, surface sterilized chickpea seeds
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inoculated for 48-h-old bacterial cultures and were sown in a glass jars filled with sterilized
sand modified by Simon et al. [42].

2.7. Optimization of Bacterial Growth Conditions for Potassium Solubilization

Growth conditions (i.e., carbon sources, pH and temperature) were optimized for final
selection of the most efficient K solubilizing strains. Efficiency of bacterial strains for K
solubilization from mica powder in Aleksandrov’s broth medium (ABM) was assessed
using different combinations of the above-mentioned growth conditions. The effect of
glucose, galactose and cellulose as C sources at different temperatures (15, 25, 35 and 45 ◦C)
and pH levels (6.5, 7.0, 7.5 and 8.5) was measured in terms of K solubilization potential of
bacterial strains. Each selected bacterial strain was injected in 25 mL of amended ABM [14],
while glucose was exchanged by either of the two C sources (cellulose and galactose).
After this, all flasks were incubated for 10 days at 28 ± 2 ◦C. The quantity of K released
into the broth was measured compared to uninoculated control though flame photometric
method [22].

2.8. Statistical Analysis

By using ANOVA, following Statistix 10.0 statistical package, the data were ana-
lyzed [43] (Anonymous, 1986), and differences within KSB inoculation were tested by using
Tukey’s post-hoc test at 0.05 P [44] (Steel et al., 1997). All figures and tables represent means
of four replicates followed by standard error of means. For preparation of the graphs, the
Excel Graphics in computer package was used.

3. Results
3.1. Isolation and Purification of Effective K-Solubilizing Rhizobacteria and Mesorhizobial Strains

For this, samples of the rhizosphere soil and the plant were collected from the chickpea
cultivated areas of Punjab, Pakistan. Preliminarily, 50 well-grown and morphologically
distinct colonies of each rhizobacteria and rhizobial strain having the K-solubilization trait
were selected for purification. The selection of KSR strains was based on the growth of
colonies on a specific medium (i.e., Aleksandrov’s medium).

3.2. Qualitative Screening of Selected K-Solubilizing Rhizobacterial Strains

After purification, bacterial strains were tested for their K-solubilization on a qualita-
tive basis using WM as the K source. For this, strains were selected based on halo zone
formation on Aleksandrov’s medium agar plates in 72 h. The results of this qualitative test
showed that strains with +, ++ and +++ signs produced halo zones of <2, >2 and >3 mm,
respectively (Table 2).

Table 2. Qualitative screening of potassium solubilizing rhizobacterial strains.

Bacterial Strain Rating Bacterial Strain Rating

JKB1 ++ NKB6 ++
JKB2 + NKB7 ++
JKB3 + NKB8 ++
JKB4 ++ NKB9 ++
JKB5 – NKB10 –
JKB6 + NKB11 +
JKB7 – NKB12 –
JKB8 + SKB1 ++
JKB9 + SKB2 ++

JKB10 +++ SKB3 +++
JKB11 ++ SKB4 ++
JKB12 + SKB5 +
JKB13 + SKB6 ++
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Table 2. Cont.

Bacterial Strain Rating Bacterial Strain Rating

JKB14 ++ SKB7 ++
JKB15 – SKB8 ++
JKB16 + SKB9 +
JKB17 – SKB10 –
JKB18 + SKB11 +++
JKB19 ++ SKB12 +
JKB20 +++ SKB13 +++
NKB1 + SKB14 ++
NKB2 ++ SKB15 ++
NKB3 – SKB16 +
NKB4 ++ SKB17 ++
NKB5 – SKB18 –

+: Halo size < 2 mm; ++: Halo size > 2 mm; +++: Halo size > 3 mm; –: No K-solubilizing activity.

Meanwhile, strains having negative signs were found unable to form any halo zone
on medium during the incubation period. Out of 50 strains, 25 gave maximum growth on
medium spiked with WM as an insoluble K source. Twenty strains produced a halo zone
of >2 mm, while five strains produced halo zones of >3 mm. These 25 strains were selected
for further quantitative screening, which produced halo zones efficiently.

3.3. Qualitative Screening of K-Solubilizing Mesorhizobial Strains

After purification, rhizobial strains were tested for their K-solubilization from WM on
qualitative basis. In this screening, the strains were selected based on halo zone formation
on Aleksandrov’s medium agar plates in 72 h. The results showed that strains with +, ++
and +++ signs produced halo zones of <2, >2 and >3 mm, respectively (Table 3).

Table 3. Qualitative screening of potassium solubilizing Mesorhizobial strains.

Rhizobial Strains Rating Mesorhizobial Strains Rating

JKR1 ++ NKR4 ++
JKR2 ++ NKR5 +
JKR3 – NKR6 +
JKR4 +++ NKR7 ++
JKR5 – NKR8 –
JKR6 ++ NKR9 +
JKR7 +++ NKR10 –
JKR8 ++ NKR11 +
JKR9 ++ NKR12 +
JKR10 ++ NKR13 ++
JKR11 + SKR1 ++
JKR12 ++ SKR2 +
JKR13 ++ SKR3 +
JKR14 ++ SKR4 ++
JKR15 + SKR5 –
JKR16 +++ SKR6 +
JKR17 – SKR7 –
JKR18 + SKR8 +
JKR19 ++ SKR9 +
JKR20 ++ SKR10 +++
JKR21 + SKR11 +
JKR22 ++ SKR12 ++
NKR1 ++ SKR13 +++
NKR2 + SKR14 ++
NKR3 – SKR15 –

+: Halo size < 2 mm; ++: Halo size > 2 mm; +++: Halo size > 3 mm; –: No K-solubilizing activity.
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Meanwhile, K-solubilizing strains with negative signs were unable to develop any
halo zone on Aleksandrov’s medium during the incubation period. Twenty-five out of
fifty strains showed maximum growth on the medium spiked with WM as an insoluble K
source. Twenty-one strains produced halo zones of >2 mm size, while five strains produced
halo zones of >3 mm. These 25 strains were selected for further quantitative screening,
which produced halo zones efficiently.

3.4. Quantitative Screening of Selected K-Solubilizing Rhizobacterial Strains

For the quantitative test, 25 strains were selected for K-solubilization potential from
WM in Aleksandrov’s broth within 72 h of incubation (Table 4).

Table 4. Quantitative screening of K-solubilizing bacterial strains.

Rhizobacterial Strains Soluble K (mg L−1) Mesorhizobial Strains Soluble K (mg L−1)

JKB1 214 ± 11.3 e JKR1 104 ± 2.96 fg

JKB4 197 ± 10.9 f JKR2 117 ± 3.32 ef

JKB10 265 ± 13.6 c JKR4 155 ± 4.85 c

JKB11 188 ± 10.6 fg JKR6 98 ± 2.79 gh

JKB14 227 ± 12.4 d JKR7 173 ± 5.82 b

JKB19 174 ± 9.8 g JKR8 83 ± 2.60 i

JKB20 316 ± 19.6 a JKR9 117 ± 3.24 ef

NKB2 198 ± 10.3 f JKR10 138 ± 3.89 d

NKB4 203 ± 11.3 ef JKR12 123 ± 3.79 e

NKB6 174 ± 9.2 g JKR13 74 ± 2.37 j

NKB7 169 ± 8.9 h JKR14 109 ± 3.19 f

NKB8 225 ± 12.7 d JKR16 158 ± 5.06 c

NKB9 203 ± 10.3 ef JKR19 63 ± 1.72 k

NKB11 179 ± 09.1 g JKR20 129 ± 3.40 de

NKB12 194 ± 10.1 f JKR22 94 ± 2.73 h

SKB1 132 ± 8.3 i NKR1 102 ± 3.04 g

SKB2 171 ± 9.5 gh NKR4 61 ± 1.54 k

SKB3 293 ± 18.2 b NKR7 123 ± 3.69 e

SKB4 217 ± 12.0 de NKR13 97 ± 2.70 g

SKB6 168 ± 8.6 h SKR1 118 ± 3.26 e

SKB7 107 ± 6.7 k SKR4 91 ± 2.60 h

SKB8 206 ± 11.5 e SKR10 186 ± 6.23 a

SKB11 274 ± 18.7 c SKR12 105 ± 3.11 g

SKB13 268 ± 17.9 c SKR13 171 ± 5.60 b

SKB14 199 ± 11.2 f SKR14 89 ± 2.75 h

Values are means of four replicates. For each parameter, under each column, values sharing different letters
differ significantly from each other at p < 0.05. K-solubilization in Aleksandrov’s broth from waste mica in
48 h = mg L−1 = (ppm).

Out of 25 strains, 5 strains had shown a maximum solubilization of K that was
more than 26 mg L−1 from WM. The maximum K-solubilization was 31.6 mg L−1 due
to inoculation with the JKB20 isolate while the minimum concentration was 10.7 mg L−1

compared to the uninoculated control. Most of the strains had shown a solubilization of K in
the range of 16–22 mg L−1, while the other most effective strains (i.e., SKB3, SKB11, SKB13
and JKB10) had shown K-solubilization of 29.3, 27.4, 26.8 and 26.5 mg L−1, respectively,
from WM in Aleksandrov’s broth after 48 h of incubation.

3.5. Quantitative Screening of Selected K-Solubilizing Mesorhizobial Strains

For this, 25 strains of rhizobia were selected to evaluate their K-solubilization potential
from WM in Aleksandrov’s broth within 72 h (Table 4). Out of 25 strains, 5 had shown an
effective solubilization of K that was more than 15 mg L−1 from WM, while the maximum
K-solubilization concentration was recorded up to 18.6 mg L−1 due to inoculation with
the SKR10 strain, and the minimum concentration was found to be 6.1 mg L−1 over the
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uninoculated control. Most of the strains showed solubilization of K in the range of 9.0 to
17.0 mg L−1. The other most effective strains of rhizobia (JKR7, SKR13, JKR16 and JKR4)
had also shown K-solubilization of 17.3, 17.1, 15.8 and 15.5 mg L−1, respectively, from WM
in Aleksandrov’s broth after 72 of incubation.

3.6. General Characterization of Rhizobacteria and Mesorhizobial Strains Having the Trait
of K-Solubilization

For this, the five most efficient strains of each test were subjected to general characteri-
zation (morphological and biochemical traits) and further experimentation (Table 5).

Table 5. General characterization of rhizobacteria and Mesorhizobial strains having the trait of K-solubilization.

Parameters
Rhizobacterial Strains Mesorhizobial Strains

JKB10 JKB20 SKB3 SKB11 SKB13 JKR4 JKR7 JRK16 SKR10 SKR13

Morphological traits
Shape Rod Coccus Rod Rod Coccus Rod Rod Rod Rod Rod
Color Y CW Y MW Y CW C W CW MW

Motility + + + + + + + + + +
Sporulation – – – – – – – – – –

Gram staining – – – – – – – – – –
Halotolerance + – + + + + + + – –

Biochemical traits
Methyl red + – + – – – – – – –

Voger–Proskauer test + – + + + + – + – –
Indole production + + ++ + + + + + + +

H2S production – – – – – – – – – –
HCN production – – – – – – – – – –
Amylase activity ++ – + – + – + – – +
Cellulase activity + – ++ – + – + – – –
Catalase activity + – + – – – + – – –
Lipase activity – + ++ – – – + – – +
Urease activity + + + + + + + + – +

Oxidase activity + + + + + + + + + –
Starch hydrolysis + + + + + + + + + –
Casein hydrolysis + – + – – – – + + –
N2-fixing activity + + + + + + ++ + + +
Protease activity – + + – – – + – – –

Gelatin liquefaction + + ++ + + + + + + +

Single positive sign means halo size <2 mm, while double positive means halo size >2 mm; Y: Yellowish; CW: Cream white; MW: Milky
white; C: Creamy; –: Character is not present.

Out of five rhizobacterial strains, three (JKB10, SKB3, SKB11) were rod-shaped and two
(JKB20 and SKB13) were coccus shaped, while all strains of rhizobia (JKR4, JKR7, JKR16
and SKR13 and SKR10) were rod-shaped. Regarding color, all strains of rhizobacteria
were yellowish and three rhizobial strains were creamy (JKR4, JKR7 and SKR10) and two
(JKR16 and SKR13) were white in color. All bacterial strains were positive in motility.
Regarding, sporulation and gram staining, all strains of rhizobacteria and rhizobia were
found to be negative in sporulation and gram staining. For halo-tolerance, bacterial strains
(JKB10, SKB3, SKB11 and SKB13) were positive, while JKB20 was negative, and three
strains of rhizobia (JKR4, JKR7 and JKR16) were positive, while SKR10 and SKR13 were
found negative.

In case of biochemical characteristics, two strains of rhizobacteria (JKB10 and SKB3)
were positive for methyl red, while three strains (JKB20, SKB11 and SKB13) were negative,
and all strains of rhizobia were negative for methyl red. Regarding the Voger–Proskaur
test, four strains rhizobacteria (JKB10, SKB3, SKB11 and SKB13) were positive and one
(JKB20) was negative while, three strains (JKR7, SKR10 and SKR13) were negative and two
(JKR4 and JKR16) were positive in the case of rhizobia. Indole production was observed in
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all strains of rhizobacteria and rhizobia, and it was found to be double in the SKB3 isolate
of rhizobacteria. However, the production of H2S and HCN were negative in all bacterial
strains. Three rhizobacterial strains (JKB10, SKB3 and SKB13) were found positive for
amylase activity and two (JKB20 and SKB11) were negative, while three strains of rhizobia
(JKR4, JKR16 and SKR10) were negative for amylase activity and two strains (JKR7 and
SKR13) were positive. In the case of cellulase activity, three strains of rhizobacteria (JKB10,
SKB3 and SKB13) were observed positive and it was absent in two strains (JKB20 and
SKB11), while this activity was absent in four strains of rhizobia (JKR4, JKR16, SKR10
and SKR13) and present in only one isolate (JKR7). Catalase activity was observed in two
strains of rhizobacteria (JKB10 and SKB3) and absent in the other three (JKB20, SKB11 and
SKB13), while this activity was found absent in four rhizobial strains (JKR4, JKR16, SKR10
and SKR13) and present in the JKR7 isolate. In the case of lipase activity, three strains of
rhizobacteria (JKB10, SKB11 and SKB13) were negative and two (JKB20 and SKB3) were
positive, while, in the case of rhizobia, it was present in two strains (JKR7 and SKR13)
and absent in three strains (JKR4, JKR16 and SKR10). Urease activity was positive in all
strains of rhizobacteria and rhizobia except for one isolate (SKR10). Similarly, in the case
of oxidase activity and starch hydrolysis, all bacterial strains were found positive, except
isolate SKR13 in both cases. The rhizobacterial strains (JKB20, SKB3 and SKB13) were
negative and JKB10 and SKB3 were positive for casein hydrolysis, and three strains of
rhizobia (JKR4, JKR7 and SKR13) were negative and two (JKR16 and SKR10) were positive.
N2-fixing activity was observed in all bacterial strains, and it was highly prominent in
the JKR7 isolate of rhizobia. Protease activity was observed positive in two strains of
rhizobacteria (JKB29 and SKB3) and absent in three strains (JKB10, SKB11 and SKB13). This
activity was also absent in four strains of rhizobia (JKR4, JKR16, SKR10 and SKR13), and it
was present in the JKR7 rhizobial isolate. It was also observed that gelatin liquefaction was
present in all strains, while it was highest in the SKB3 rhizobacterial isolate.

3.7. Utilization of Different Carbon Sources by Bacterial Strains Having K-Solubilization Activity

All bacterial strains had shown the ability to utilize a variety of C sources, which is an
excellent trait to perform in actual soil conditions. The growth and activity of microbial
strains can be correlated with the ease of utilization of C sources, which are not easily
degradable. Selected strains of both rhizobacteria and rhizobia having the trait of K-
solubilization were tested for their efficacy in utilizing different C sources by growing on
Aleksandrov’s media where glucose was replaced by arabinose, cellulose, citrate, galactose,
sucrose and xylose (Table 6).

Table 6. Utilization of different carbon sources by rhizobacteria and Mesorhizobial strains having
K-solubilization activity.

Bacterial Strains
Different Carbon Sources

Arabinose Cellulose Citrate Galactose Sucrose Xylose

Rhizobacterialstrains
JKB10 + – + + + +
JKB20 – + + + + +
SKB3 + + + + + +

SKB11 – – + – + +
SKB13 – – + – + +

Mesorhizobialstrains
JKR4 + – + + + –
JKR7 + – + + + +
JKR16 – – + + + +
SKR10 – – + – + +
SKR13 – – + – + –

+: has the ability to utilize respective carbon source; –: does not have ability to utilize respective carbon source.
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All strains were able to utilize all types of the selected C sources efficiently except the
cellulose source, which was utilized by only two strains of rhizobacteria (JKB20 and SKB3).
All rhizobial strains have no potential to utilize the cellulose.

3.8. Quantitative Screening of Effective Combination of Rhizobacteria × Mesorhizobium

For this, we evaluated all 25 combinations of the 5 most efficient rhizobacteria with
the 5 most efficient rhizobia and evaluated the most effective combination based on the
K-solubilization potential from WM in Aleksandrov’s broth within 72 h of incubation
(Table 7).

Table 7. Quantitative screening of effective combination of rhizobacteria and Mesorhizobial strains.

Rhizobacteria ×
Mesorhizobium Soluble K (mg L−1) Rhizobacteria ×

Mesorhizobium Soluble K (mg L−1)

JKB10 × JKR4 227 ± 13.4 g SKB3 × SKR10 289 ± 21.4 c

JKB10 × JKR7 243 ± 17.2 efg SKB3 × SKR13 265 ± 18.4 de

JKB10 × JKR16 172 ± 10.8 i SKB11 × JKR4 217 ± 14.7 g

JKB10 × SKR10 262 ± 19.0 de SKB11 × JKR7 265 ± 18.8 de

JKB10 × SKR13 258 ± 173 e SKB11 × JKR16 154 ± 10.2 j

JKB20 × JKR4 274 ± 20.4 d SKB11 × SKR10 277 ± 20.7 d

JKB20 × JKR7 257 ± 17.0 e SKB11 × SKR13 419 ± 23.9 b

JKB20 × JKR16 282 ± 21.0 cd SKB13 × JKR4 194 ± 8.7 h

JKB20 × SKR10 293 ± 21.3 c SKB13 × JKR7 236 ± 16.9 fg

JKB20 × SKR13 262 ± 19.2 de SKB13 ×JKR16 139 ± 9.4 k

SKB3 × JKR4 254 ± 17.7 e SKB13 × SKR10 281 ± 21.1 cd

SKB3 × JKR7 474 ± 27.8 a SKB13 × SKR13 259 ± 17.9 e

SKB3 × JKR16 239 ± 16.7 fg

Values are means of four replicates. For each parameter, under each column, values sharing different letters
differ significantly from each other at p < 0.05. K-solubilization in Aleksandrov’s broth from waste mica in
48 h = mg L−1 = (ppm).

Out of 25, only 2 combinations (SKB3 × JKR7 and SKB11 × SKR13) had shown the
highest K-solubilization, which were 47.4 and 41.9 mg L−1, respectively, from WM. The
next most effective combinations (i.e., JKB20 × SKR10, SKB3 × SKR10 and SKB13 × SKR10)
had also exhibited K-solubilization of 29.3, 28.9 and 28.1 mg L−1, respectively, from WM
after 72 h of incubation. The minimum K was recorded up to 13.9 mg L−1 from the SKB13
× JKR16 combination. It was observed that most of the bacterial combinations had shown
solubilization of K in the range of 15 to 26 mg L−1 in broth culture.

3.9. Characterization of Selected K-Solubilizing Bacterial Strains for Plant-Growth-
Promoting Activities

The selected bacterial strains were tested for some plant-growth-promoting activities
under lab conditions. Overall, SKB3 and JKR7 performed better compared to the other
remaining strains. Results concerning the plant-growth-promoting activities are mentioned
in Table 8.



Sustainability 2021, 13, 10240 12 of 18

Table 8. Characterization of selected K-solubilizing rhizobacteria and Mesorhizobial strains for plant-growth-promoting activities.

Bacterial
Strains

Quantitative Estimation of Plant-Growth-Promoting Activities

ACC-Deaminase
(α-KB µmol

g−1 Protein h−1)

Indole-Acetic Acid Production
(mg L−1)

Chitinase
(µmol of Glc
NAc min−1

mg−1 Protein)

EPSs
Production
(µg mL−1)

K-Solubilization
(mg L−1)

[0.5% WM-EM]

Phosphate
Solubilization
[0.5% RP-EM]

Siderophores
Production

(SU %)

Root Colonization
(CFU g−1 FRB)

-L-TRP +L-TRP

Rhizobacterial strains
JKB10 304.4 ± 23.2 a 27.8 ± 3.19 ef 44.5 ± 4.3 c 22.6 ± 2.82 b 63.6 ± 4.7 b 74.4 ± 4.32 b 67.2 ± 9.6 ab 31.4 ± 2.7 b 3.73 × 107 ± 4.87 × 106 b

JKB20 192.5 ± 22.3 d 30.6 ± 2.67 e 65.8 ± 5.3 b 17.8 ± 1.94 c 51.3 ± 3.6 c 51.8 ± 4.15 d 47.3 ± 8. 9 c 24.8 ± 3.9 c 2.89 × 106 ± 5.23 × 105 d

SKB3 284.7 ± 19.4 ab 34.3 ± 3.79 d 73.6 ± 7.4 a 37.8 ± 2.26 a 78.5 ± 5.6 a 113.7 ± 6.31 a 72.5 ± 5.5 a 43.7 ± 4.9 a 4.78 × 107 ± 4.67 × 106 a

SKB11 177.8 ± 27.9 e 26.4 ± 2.87 f 62.7 ± 6.4 b 12.5 ± 2.78 d 42.8 ± 3.2 d 60.9 ± 4.39 c 37.3 ± 6.93 d 18.9 ± 3.6 e 5.46 × 106 ± 5.13 × 105 c

SKB13 232.7 ± 17.2 c 19.4 ± 1.03 g 34.3 ± 5.3 d 21.5 ± 3.54 b 52.8 ± 4.8 c 56.6 ± 4.69 cd 52.3 ± 7.43 c 21.9 ± 1.8 de 7.68 × 105 ± 3.59 × 104 e

Mesorhizobial strains
JKR4 24.6 ± 3.3 b 32.6 ± 2.34 f 64.2 ± 4.33 b 2.4 ± 0.82 b 243.6 ± 34.6 b 38.4 ± 3.56 bc 12.8 ± 1.06 b 24.3 ± 2.44 cd 4.84 × 106 ± 5.60 × 105 b

JKR7 21.8 ± 2.6 c 46.7 ± 3.10 d 91.3 ± 6.53 a 3.6 ± 0.94 a 321.2 ± 31.6 a 41.6 ± 3.89 ab 17.3 ± 1.29 a 36.8 ± 3.23 a 3.94 × 107 ± 6.23 × 106 a

JKR16 30.4 ± 4.6 a 29.8 ± 2.10 g 57.2 ± 5.24 c 2.3 ± 0.62 b 154.2 ± 31.5 c 45.3 ± 4.31 a 7.5 ± 1.35 d 31.6 ± 4.52 ab 5.12 × 106 ± 4.43 × 105 b

SKR10 17.4 ± 2.9 d 20.1 ± 1.78 h 42.4 ± 7.32 d 2.5 ± 0.78 b 162.8 ± 23.7 c 36.1 ± 4.18 c 11.3 ± 1.93 b 26.9 ± 2.88 c 3.59 × 106 ± 5.34 × 105 bc

SKR13 22.7 ± 3.9 bc 16.9 ± 1.39 i 37.9 ± 5.47 de 2.1 ± 0.54 b 122.8 ± 13.3 d 30.7 ± 3.34 d 9.3 ± 0.43 c 17.9 ± 3.18 e 6.34 × 105 ± 5.68 × 104 d

Values are means of four replicates. For each parameter, under each column, values sharing different letters differ significantly from each other at p < 0.05. ACC: 1-aminocyclopropane-1-carboxylate;
α-KB: α-ketobutyrate; L-TRP: L-tryptophan; Glc NAc: N-acetyl D-glucosamine; EPSs: Exopolysaccharides; WM-EM: Waste mica enriched medium; RP-EM: Rock phosphate enriched medium.
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3.9.1. ACC-Deaminase Activity

The maximum ACC-deaminase activity (up to 304.4 α-KB µmol g−1 protein h−1) was
recorded in the JKB10 rhizobacterial isolate followed by the SKB3, SKB13, JKB20 and SKB11
strains that ranged from 177 to 284.7 α-KB µmol g−1 protein h−1 (Table 8). In the case of rhizo-
bial strains, the highest ACC-deaminase activity (up to 30.4 α-KB µmol g−1 protein h−1) was
recorded in the JKR16 isolate of rhizobia. The rest of the strains (JKR4, SKR13, JKR7 and SKR10)
also showed ACC-deaminase activity in the range of 17.4 to 24.6 α-KB µmol g−1 protein h−1

more over the control.

3.9.2. Indole Acetic Acid Production

The production of IAA in the selected bacterial strains was observed without and
with L-TRP under lab conditions (Table 8). In the case of rhizobacteria, the maximum IAA
production was recorded up to 34.3 and 73 mg L−1 without and with L-TRP, respectively,
over the control. The rest of the strains had also shown a promising increase in IAA
ranging from 19.4 to 30.6 mg L−1 (-L-TRP) and 34.3 to 65.8 mg L−1 (+L-TRP). While, in
the case of the rhizobial strains, the maximum IAA production was observed to be up to
46.7 and 91.3 mg L−1 without and with L-TRP, respectively, the other strains of rhizobia
also exhibited a better production of IAA in the range of 16.9 to 32.6 mg L−1 (-L-TRP) and
37.9 to 64.2 mg L−1 (+L-TRP) compared to the control.

3.9.3. Chitinase Activity Assay

All bacterial strains showed chitinase activity under lab conditions. Highest chitinase
activity was observed in SKB3 isolate of rhizobacteria (37.8 µmol of Glc NAc min−1 mg−1

protein) and lowest chitinase activity was recorded in JKB20 isolate. While in rhizobial
strains, this activity was poor as compared to rhizobacterial strains. But maximum chitinase
activity in rhizobial isolate was recorded in JKR7 isolate of rhizobia that was up to 3.6 µmol
of Glc NAc min−1 mg−1 protein and lowest chitinase activity was recorded in SKR3
(2.1 µmol of Glc NAc min−1 mg−1 protein).

3.9.4. Exopolysaccharides Production

All selected strains showed production of exopolysaccharides (EPSs). Maximum
EPSs production was observed up to 78.5 µg mL−1 due to inoculation of SKB3 isolate of
rhizobacteria and minimum EPSs was 42.8 µg mL−1 in case of SKB11 isolate. While, in
rhizobial strains, highest EPSs (321.2 µg mL−1) was noted in JKR7 and lowest EPSs was
produced by SKR13 isolate that was 122.8 µg mL−1.

3.9.5. Potassium Solubilization Activity

All strains had shown K-solubilizing activity in Aleksandrov’s medium spiked with
0.5% WM. The maximum K-solubilization was observed in the SKB3 isolate, which was
up to 113.7 mg L−1, followed by the JKB10 isolate (74.4 mg L−1). However, in the rhi-
zobial strains, the maximum K-solubilization was observed in JKR16, which was up to
45.3 mg L−1, followed by the JKR7 isolate (up to 41.6 mg L−1).

3.9.6. Phosphate-Solubilization Activity

Both the rhizobacteria and rhizobial strains had shown potential to solubilize phos-
phate in liquid medium. The maximum P-solubilization activity was found to be associated
with the SKB3 isolate of rhizobacteria (72.5 mg L−1), followed by the JKB10 isolate of
rhizobacteria. In the rhizobial strains, the highest P-solubilization activity was observed in
the JKR7 strains (17.3 mg L−1) and the minimum in the JKR16 isolate.

3.9.7. Siderophores Production

The maximum siderophores production was recorded (up to 43.7%) because of SKB3
isolate of rhizobacteria followed by JKB10 isolate. The rest of the strains had also shown
siderophores production that ranged from 18.9 to 24.8% compared to control. While the
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rhizobial isolate JKR7 showed the maximum production of siderophores of up to 36.8%,
followed by the isolate JKR16, the other remaining strains also exhibited a promising
activity of siderophores that ranged from 17.9 to 26.9% over the control.

3.9.8. Root Colonization

The highest root colonization was observed by the SKB13 isolate of rhizobacte-
ria, which was 4.78 × 107 CFU g−1 FRB), and the minimum was by the JKB20 isolate
(7.68 × 105 CFU g−1 FRB). In the case of rhizobial strains, the maximum root colonization
was found to be associated with isolate SKR7 (3.94 × 107 CFU g−1 FRB) and the minimum
was by rhizobial isolate SKR13 (6.34 × 105 CFU g−1 FRB).

3.10. Optimization of Growth Conditions for K-Solubilizing Bacterial Strains from Mica in
Broth Medium

Results concerning K-solubilization showed that the bacterial strains SKB3 and JKR7
efficiently performed in all C sources (i.e., glucose, galactose and cellulose). The maximum
and minimum K-solubilization was observed in media having glucose and cellulose as a C
source, respectively. This trend was found consistent with all temperature and pH values.
It was observed that the increase in temperature negatively affected the K-solubilizing
activity at any pH values and C source. The maximum K-solubilization was observed at
25–30 ◦C with all C sources and pH values, and subsequent decreases in K-solubilization
were recorded with an increase in temperature. Similarly, the maximum amount of K-
solubilization was recorded at pH 7.0 at all temperatures and with all C sources. Optimum
conditions of growth medium for the maximum K-solubilization and K-solubilizing activity
were found as follows: glucose was the best source of C at 25–30 ◦C and pH of 6.8–7.2.
Graphical descriptions of the results are shown in Figures S1–S9.

4. Discussion

The current study was executed to carry out the isolation, screening and characteriza-
tion of K-solubilizing bacteria based on qualitative as well as quantitative traits of plant
growth promotion under axenic conditions.

4.1. K-Solubilizing Rhizobacteria and Rhizobial Strains

Beneficial plant–microbe interactions in the rhizosphere are a very important compo-
nent of eco-friendly agricultural systems. In this study, the rhizosphere as well as nodule
bacteria were preliminary isolated from chickpea-dominated areas. Although 25 strains
showed prolific growth in the presence of WM-spiked Aleksandrov’s media, only 5 strains
each from the rhizosphere and nodules of chickpea were able to form halo zones of >3 mm
(Tables 2 and 3). The apparent affinity of bacteria to solubilize K is often reflected by halo
zone formation [45]. All KSB strains were re-evaluated for another test of K solubility by
screening based on amount of K solubilized in vitro after 72 h of incubation. Our results
confirmed the efficacy of the KSB isolation approach as both strains with highest halo
zone formation were able to solubilize the highest amount of K among rest of the strains
(Table 4). Numerous reports have shown the tendency of some microbes to solubilize the
insoluble K caused by bacterial metabolic activity, resulting in the dissolution of K [16,46].

The KSB strains displayed a variety of morphological characteristics such as motility
sporulation, gram staining and halotolerance (Table 5). The results had shown that the
SKB3 isolate was able to utilize all carbon substrates, while none of the rhizobial isolate
was able to use cellulose (Table 6). Different bioactive compounds and growth metabolites
produced by plant-beneficial bacteria could greatly be influenced both by the availability
of different C substrates and the extent of their utilization [47].

In this study, quantitative screening for effective co-inoculants was carried out based
on their cumulative K-solubilization activity in a K-enriched medium. The combined
K-releasing ability of the co-inoculants ranged from 13.9 to 47.4 mg L−1 (Table 7). The
largest amount of soluble K was recovered with co-inoculation of SKB3 × JKR7 followed by
SKB11 × SKR13, whereas the lowest release of soluble K was obtained with SKB13 × JKR16
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(Table 7). Low-grade K originating from feldspars and mica minerals can be mobilized
and/or solubilized by some bacteria, and for this very reason, their application in K-
deficient soil could increase K availability for crop plants [48].

The ACC-deaminase activity is one of the main growth-promoting attributes and plays
a vital role in plant growth regulation, both in normal as well as in stressed conditions [49].
Ethylene, a phytohormone often produced in abundance under stress, could negatively
affect plant growth and development. However, plant inoculation with bacteria having
ACC-deaminase can regulate the level of ethylene by converting ACC (ethylene precursor)
into ammonia and α-ketobutyrate [13]. In the present research, rhizobacteria have relatively
higher ACC-deaminase activity than rhizobial strains. Some plant-beneficial bacteria can
modify the level of indigenous phytohormone production in plants, such as IAA, which
promotes root elongation, lateral root development and root hair formation. The improve-
ment in the root system often leads to a higher water and nutrient uptake efficiency of the
plant. The coupling of roots as well as the bacterial release IAA can facilitate a potential
energy resource for the introduced bacterium for higher growth, survival and root coloniza-
tion [49]. In this study, rhizobial strains showed more IAA production than rhizobacterial
strains both with and without L-tryptophan (Table 8). In some previous studies, strong
IAA activity was reported in several rhizobial strains [50]. An elevated chitinase activity
was displayed by rhizobacteria ranging 12.5 to 37.8 µmol Glc NAc min−1 mg−1 protein,
whereas rhizobial strains had relatively lower chitinase activity between 2.1 to 3.6 µmol
Glc NAc min−1 mg−1 protein (Table 8). Chitinase activity usually reflects the availability
as well as the accessibility of substrate because of its key role in the degradation of organic
matter [49]. These findings elicit that rhizobacteria are more inclined towards the available
C substrate resource than rhizobia. In addition, various rhizobacteria have been reported
to establish plant growth by releasing fungal cell wall degrading chitinase enzyme to
safeguard plants against pathogens [16].

In the present study, strains of rhizobia participate more in secreting biopolymer
compounds such as exopolysaccharide (EPS), which was in higher amounts between
122.8 to 321.2 µg mL−1 than rhizobacteria (Table 8). A number of recent reports described
that rhizobial EPS production is generally linked to the formation of an adaptive mechanism
at the cell surface scale under stressful conditions [16,51]. The EPS would thus be released
by the bacteria to shield the plants against exposed stressors, indirectly benefiting from its
growth and development under stress [52].

Microbially mediated nutrient solubilization is another crucial trait that can improve
nutrient availability for plant uptake in limited nutrient environments. In the current
study, we identified that both rhizobia and rhizobacteria were able to solubilize K and
P in the culture medium (Table 8). Selected strains were more efficient K solubilizers
whereas rhizobacteria had shown stronger capacity to solubilize K and P than rhizobial
strains (Table 8). These findings further corroborate the previous reports that organic acids
produced as a result of bacterial metabolic activities contribute to the increased solubility
of nutrients such as P [11] and K [51]. In addition to nutrient solubility, selected strains
had varied in siderophores production (Table 8). Microbial siderophores are low molecular
weight, iron-scavenging ligands produced mainly under iron-deficient conditions [11,53,54].
The establishment of successful root colonization by microbial inoculants is an essential
criterion to confer associated plant growth and development benefits [48]. The results of this
study showed that the rhizosphere as well as rhizobial strains were efficient root colonizers
(Table 8). The failure of microbial inoculants to colonize plant roots often caused the
diffusion of their metabolic substances into the root zone and were eventually consumed by
variety of root inhabiting microbes. In the absence of root persistence, introduced bacteria
can evade away from the rhizosphere, thus making the root interface more vulnerable to
deleterious root microflora [10].
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4.2. Optimization of Growth Conditions for K-Solubilizing Rhizobacteria and
Mesorhizobial Strains

The optimization of conditions for the maximum growth of SKB3 and JKR7 strains
and their K-solubilization activity resulted in glucose being the best source of C when main-
tained at 25 ◦C by regulating pH 7.0 of growth medium. Parmar and Sindhu [53] conducted
a study to investigate the effect of various growth conditions on the K-solubilization poten-
tial of K-solubilizing bacteria, resulting in a neutral pH range at 25 ◦C, while using glucose
as a source of C. The findings of this study are similar to Sheng et al. [6] in that some strains
of K-solubilizing bacteria were also documented with remarkable K-solubilization activity
at relatively higher temperatures, up to 42 ◦C, but the maximum activity was detected
in the range of 25 to 30 ◦C. All researchers also agreed that glucose is the best source of
C for the maximal activity of almost all K-solubilizing bacterial strains studied in many
experiments [16,45]. The bacterial strains SKB3 and JKR7 could have a low K-solubility
potential at a temperature of 25 ◦C and a pH of 7.0 using cellulose as a C source. However,
the minute use of cellulose as a C source could be an outstanding feature of any strain of
PGPR to improve better performance under natural soil environments.

5. Conclusions

It is concluded that the application of rhizobacteria and rhizobial K-solubilizers could be
employed as a useful K supplement in potassium-limited agroecosystems. Furthermore, the
use of these K inoculants may help alleviate the negative impacts associated with chemical
fertilizer use on the environment. This technique can also be used alone and as a nutritional
partner of K fertilizers for different crops, depending upon the extent of crops K requirements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su131810240/s1, Figures S1–S9: Results of Optimization of Growth Conditions for K-
Solubilizing Bacterial Strains from Mica in Broth Medium.
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