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Abstract: In the past few years, the application and research community has expressed a lot of interest
in managing energy and power while using distributed generation systems. Electricity generation
and its usage coordination are vital aspects of energy efficiency that can help in saving energy,
decreasing energy costs, and fulfilling global emission objectives. Owing to the relevance of the topic,
here, the researchers have presented a comparative and critical review of recent developments in the
fields of energy management systems (EMSs) and power management systems (PMSs). Furthermore,
the researchers also reviewed the various EMS and PMS methods that could be used for reviewing
microgrid (MG) and nanogrid (NG) systems. The EMS for MG and NG systems helps in addressing
important economic objectives like minimisation of operational costs after optimising the fuel costs,
emission costs, and battery degradation costs, while also improving the life of the MG devices.
Alternatively, the PMS helps in addressing technical objectives like improving the stability, flexibility,
reliability, and quality of MG and NG systems. The researchers have also discussed the drawbacks
and challenges affecting the widespread application of EMSs and PMSs.

Keywords: energy management system; power management; microgrid; nanogrid; renewable
energy sources

1. Introduction

The microgrid (MG) and nanogrid (NG) systems make use of various renewable
energy sources (RESs) such as solar photovoltaic systems (PVs), wind systems, and small-
hydro systems. Due to the erratic nature of the solar PV and wind RES, many energy
storage devices (ESDs) such as ultracapacitors, batteries, and flywheel ESDs can be used
for supporting the output power emitted from the RES. The energy storage system (ESS) is
configured using either an individual or multiple ESD in a hybrid ESS. The ESS is designed
to be used for peak load shaving, load following, intermittent RES output power levelling,
and energy arbitrage. Furthermore, many of the smart invertors that are used in the RES
and ESS provide ancillary services such as a fault ride-through (FRT) capability and better
power quality [1]. For achieving all the above functions, a high-level control is required
for managing the energy and power in the RES and the ESS. RESs in microgrids have
been actively used in several applications, including residential uses [2], industries [3],
university districts [4], and logistics facilities [5].

The energy management system (EMS) and the power management system (PMS) are
quite different with regard to their control objectives and compensation duration. In the
course of strategy development for energy management, researchers need to consider key
parameters such as maintenance costs, fuel costs, capital cost, and system life. The EMSs
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used in both the grid-connected and off-grid NGs and MGs help in optimising the power
flow, energy generation, and its usage amongst the distributed energy sources [6]. In the
past few years, the optimisation of EMSs for NGs and MGs has come to be regarded as an
important research topic and many researchers have presented a variety of options which
could be used for energy management in different distribution systems. EMSs are used in
distribution systems for controlling increasing demand for electric power, decreasing future
emissions, and achieving a gain in socio-economic benefits for sustainable growth. On the
other hand, power, current, and voltage are the major parameters which are considered
in PMSs as they can affect the instantaneous operational conditioning. Additionally, the
PMS can be used in distribution systems for improving the dynamic response of the MGs
and NGs under differing load conditions. A PMS helps in solving various issues such
as maintaining transient stability while connecting and disconnecting a particular device
to the system, allowing a smooth transition from grid-connected to islanded modes and
vice versa, as well as optimal utilisation of RESs [7]. Considering the description above, it
can be said that the EMS is associated with energy economic objectives, while the PMS is
associated with technical aims.

To date, very few researchers have discussed EMSs from differing perspectives. For
example, some researchers have proposed different control techniques, such as centralised,
decentralised, distributed, and hierarchical, for MG and NG applications, while others
have proposed a few prediction techniques for the load and generation in MGs and
NGs [8]. None of the researchers reviewed the state-of-the-art operating methods, solution
algorithms, objective functions of optimisation, or challenges and drawbacks of the existing
research on EMSs and PMSs. Here, this review paper focuses on the differences between
EMSs and PMSs based on different optimisation and planning methodologies that are used
for strategic, economic, and tactical purposes in MG and NG applications using RESs and
ESDs to provide basic information to other researchers who may choose to delve more
deeply into this topic. Many research papers focus on EMS and PMS techniques separately.
This review paper consolidates and compares the differences between EMSs and PMSs for
NG and MG applications.

In this study, the researchers have reviewed and highlighted the published papers that
have either implemented or studied EMS and PMS strategies. Furthermore, this review
can be used as a basis for designing an in-depth technical study of existing EMS and
PMS techniques. In the past few years, both EMS and PMS studies have garnered a lot of
research attention. Hence, an updated and comparative review of these studies is necessary.
In this review, the researchers have summarised and classified several vital criteria affecting
the implementation of EMS and PMS techniques in different MG and NG applications.

Four digital databases were searched to identify targeted articles: (1) the Scopus
database which includes the largest number of abstracts as well as reviewed literature,
(2) the Science Direct database which offers access to technical, scientific, and journalistic
articles, (3) the IEEE Xplore Library of Technical Literature in Engineering and Technology,
and (4) Web of Science (WOS), which is known for indexing various research works in both
social science and science fields. The chosen databases are known to be rich in terms of
different high-impact scientific journals, showcasing their scientific integrity and academic
resilience, and are thus regarded as apt for this review.

The search was started in October 2020 by utilising the advanced search boxes available
in the four chosen scientific databases (Science Direct, IEEE Xplore, Scopus, and WOS).
The article search process employed Boolean operators (i.e., OR, AND) as well as two
groups of keywords (i.e., queries). During the searching and filtering processes, the article
content was chosen on the basis of research and review articles. This option was regarded
to be optimum for gaining access to the most related and latest contents pertaining to this
review’s assigned topic.

This review is organised into eight sections. Section 1 provides an overview of both
EMSs and PMSs. Section 2 discusses the different MG and NG configurations used in
RESs and ESDs. Section 3 describes the MG reconfiguration. Sections 4 and 5 describe
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the existing EMSs and PMSs based on optimisation and planning methodologies that are
used for strategic, economic, and tactical purposes in MG and NG systems, respectively.
Furthermore, Section 6 presents the comparison between the PMS and EMS strategies
which are based on architecture and control techniques. In Section 7, the challenges and
limitations associated with the application of the EMS and PMS are discussed. Finally,
conclusions of this review are presented in Section 8.

2. Microgrids (MGs) and Nanogrids (NGs)

A microgrid (MG) is regarded as a power distribution system, which can integrate
different distributed generations such as non-renewable or renewable energy sources
and ESSs [9]. An MG can augment these sources to cater to the load demand of small
communities such as university campuses, factories, and hospitals. This then turns into a
flexible, controllable power subsystem that has the ability to disconnect from or connect to
the main power grid.

MGs are found in low-voltage as well as medium-voltage operating ranges, usually
from 400 V to 69 kV [10]. Furthermore, they are different sizes. They can be large and
intricate networks, up to tens of MW in magnitude, with different storage units and
generation resources attending multiple loads. Conversely, MGs can be small and modest
structures, ranging in hundreds of kW, catering to only a few consumers. When further
scaling down of the MG concept occurs, a new name, ‘NG’, is acquired [11].

A nanogrid (NG), refers to a localised power generation and distribution system that
can be used for a single house or small building. It has an installed capacity of ≤50 kVA [11].
It is used in rural regions, as the construction of the transmission and distribution lines for
supplying the power lines to these regions is costly. However, in the past few years, NGs
have been installed in many urban regions where roof-top solar PV generators have been
combined with ESDs. In these urban regions, the NG systems have been designed in such a
manner that they can operate regardless of whether they are connected to or disconnected
from the utility.

The role of an MG is different to that of an NG in the power pyramid. For instance,
NGs are frequently of lower power and less intricate compared to MGs. Furthermore,
by linking several NGs, an MG can be created as depicted in Figure 1. This presents an
alternative methodology for the conventional MG, which can be discussed based on the
difference between MGs and NGs.
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The possible markets for NGs are not similar to that of MGs. An NG permits acquisi-
tion of a power structure at a relatively lower cost compared to an MG. Consequently, the
interest shifts from large/manifold investors to small/limited business proprietors [11].

Figure 2 presents the block diagram of an NG which is integrated with an RES such
as wind turbines (WTs) and/or photovoltaics (PVs) in different combinations and an ESS
such as ultracapacitors and batteries.
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2.1. Renewable Energy Source (RES) and Energy Storage Devices (ESDs)

In the recent past, many RESs, especially solar PVs and WTs, have been considered
worldwide as both an alternative and competitive energy source for MGs and NGs [12].
Many advantages are displayed by PVs and WTs in providing site-dependent and clean
renewable energy with low maintenance costs.

Many alternative RESs have been used for improving the stability, availability, and
reliability of energy, with regard to supply and demand. In this section, the researchers
have described solar PVs and wind generators as well as batteries and ultracapacitors [13].

2.1.1. Photovoltaic (PV)

Photovoltaic (PV) cells are defined as semiconductor devices which directly convert
solar energy into direct current (DC) electric energy. These are regarded as significant
devices that provide power for different applications such as remote buildings, grid-
connected systems (e.g., at the utility or residential scale), and satellites. Hence, the
efforts of many researchers have focused on maximising the efficiency and minimising
the manufacturing costs of PV cells [14]. The majority of PV cells used in large-scale
applications are made using crystalline silicon as it is inexpensive and readily available in
the PV markets. However, crystalline silicon is regarded as a primary technology and was
first introduced in the 1970s [15].

Figure 3 presents the basic structure of the PV cells. It consists of different electrical
components, such as the current source (Iph) and the diode (D). In addition, other com-
ponents are needed for a more accurate modelling, such as a shunt resistor Rsh, parallel
capacitor Cp, series resistor Rs, and a series inductor Ls.
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The PV array can convert light photons into electrons. This technique generates
the DC current that is stepped up using the DC-DC converters before it is inverted to
supply AC power to the loads. Hence, the power electronic converters play a vital role
in grid-connected PV systems. The DC-AC converter output can be filtered using a low-
pass filter to eliminate any undesirable harmonics before being connected to a grid [13].
Additionally, a maximum power point tracking system (MPPT) is used to allow optimal
energy extraction from the solar rays by altering their incident angle throughout the day.

For increasing the terminal current or voltage of the PV generators, researchers can
connect the PV cells in series, parallel, or their combination. If the PV cells are connected in
series, it is noted that their voltages are summed. On the other hand, if they are connected in
parallel, their currents get summed together. One silicon PV cell displays an output voltage
ranging between 0.5 and 0.7 V, while its output power is 4.5 W. Many of the PV installations
such as satellites and rooftop panels need a higher voltage than the voltage that is produced
using one PV cell. Hence, multiple PV cells are connected in series. A general commercial
solar PV module consists of 72–96 cells that are connected in series. Considering that each
cell generates 0.5 V and 9 A, every PV module is able to generate ≈ 324 W. Thereafter,
several modules can be connected in series to generate 1000Vdc (22 modules) or 1500Vdc
(33 modules). The life span of the PV panels can be more than 25 years, during which they
can display a natural degradation in their output power, which ranges from 0.5–1 percent
every year [16].

2.1.2. Wind

Wind energy can be converted to electric energy using wind turbines (WTs). In this
process, wind moves the blades of the turbines, where mechanical energy is converted to
electrical energy through the WTs and an electrical generator. However, the availability of
wind energy is affected by different local and natural conditions such as power demand
profiles and other factors related to WTs such as air density, wind speed, and blade radius,
or a degradation in their performance because of ageing. On the other hand, wind energy
systems in the MG act as a backup system that can provide an uninterruptible power
supply (using an ESS). It also provides low-voltage support or transfers surplus energy to
the grids for improved economic benefits [17].

For improving the performance of the wind energy systems, the researchers needed
to extensively process the data, analyse the electrical networks, and characterise the effect
of the power quality on the general plant performance. Thus, the data needed for assessing
the real-time performance of the WT are limited to three real-time variables, i.e., turbine
output power (W), rotational speed of the turbines (rad/s), and wind speed (m/s). For
each machine installed in the field, additional data analysis and information are required,
namely, the distribution of each of the following parameters: wind speed, load current,
generator voltage, and wind turbine speed [18].

Recent studies conducted in this field have highlighted the need to develop WTs and
other auxiliary equipment. Extensive and persistent research carried out in WT-RESs has
helped in decreasing the installation costs and size of the WTs. A low wind speed is still
regarded as a challenge during the wind speed prediction. The wind energy potential
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is dependent on accurate wind speed estimation, site selection for farms, the operation
scheme, etc. Hence, the researchers in this field are more focused on developing an
optimal design of the wind farms that includes the design of the WTs and layout of the
farms. However, the major difficulty that was noted in planning the layout and design of
the wind farm was the availability of the wind forecast data compared to solar forecast
data, since the wind forecast data are not widely available. This factor is responsible for
making the solar energy PV system more predictable compared to the wind RES. As a
result, the design and siting of wind farms require a lot of investigation and a thorough
wind analysis of the proposed site. Figure 4 presents the basic design of a wind energy
conversion system (WECS). In the wind RES, the wind force helps in converting the wind
power to a mechanical torque that is rotated to generate an electric current. WECSs are
further classified into a variable or a fixed speed system. Double fed induction generators
(DFIGs) and permanent magnet synchronous generators (PMSGs) are some of the advanced
technologies used in the development of variable speed WTs. The WT is connected to
a generator via the gearbox, while the capacitor bank is connected to a DC link of the
power electronics interface. Thereafter, the output voltage of the DC-AC power electronics
interface can be filtered. A transformer is used to match the voltage to a microgrid load [19].
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2.1.3. Battery Energy Storage System

Batteries are devices used for storing electrical energy through the process of charging
chemical cells, so that they can be reused (i.e., discharged), whenever needed. There
are different types of batteries such as Ni–metal hydride (NiMH), lead–acid, reduction–
oxidation (redox), lithium-ion (Li-ion), and sodium sulphur (NaS). In this section, the
researchers have described the Li-ion and lead–acid types of batteries, since they are
most commonly used for energy storage and preservation for various wind and solar
PV applications [20,21].

Figure 5 presents the equivalent circuit of a battery that consists of three components,
i.e., (1) internal resistance, Rself, that helps in determining the self-discharge energy loss
that takes place during the energy storage operations; (2) battery current, Ibat, that depends
on the charging and discharging activities; and (3) capacitance, C, that accounts for the
complete charge that is stored in a battery as a scaled voltage drop, VSOC, with a per unit
value between 0 and 1.
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• Lead–Acid

The lead–acid battery is the oldest battery technology. It provides a large amount of
power at a low cost. Hence, it can be used for applications that require a large amount of
surge power support with a lower depth of discharge (DOD) such as emergency power, a
backup power supply (e.g., an uninterruptable power supply (UPS)), and power quality
management. On the other hand, this battery technology also has many disadvantages
such as a short life cycle and low energy density. Over-discharging and deep cycling can
negatively affect the life span of these batteries. Recently, many new developments in this
technology have been carried out using advanced materials such as gel cells and absorbed
glass mats. This advanced technology is called valve-regulated lead–acid batteries and
they have displayed a better performance, longer life span, and lower maintenance [21].

• Lithium-Ion

Lithium-ion batteries present many features such as high energy density, high per-
formance, and a long life cycle (~1000 cycles). Due to these features, Li-ion batteries are
considered to be better than lead–acid batteries for energy storage and can be used in
various applications such as mobile products, electric vehicles, customer electronic devices,
RES generation support, and frequency regulation at a utility level [22].

2.1.4. Ultracapacitor

The ultracapacitor helps in the process of charging or discharging a device at a higher
power within seconds. Compared to batteries, the ultracapacitor shows a longer life
span (~105 cycles) [23]. It can be completely discharged without significantly affecting
its life span. Ultracapacitors show a low energy density compared to other ESDs such
as batteries when they have a higher power density. Hence, the ultracapacitors can be
used in applications that require a higher rate of power with a shorter deep cycle, such
as backup power supplies, DC link voltage support in a converter, EV acceleration and
deceleration, and a power quality correction in various utility applications [24,25]. Figure 6
describes the equivalent circuit model of the ultracapacitor that includes a self-discharging
resistor, Rsd, a cell, and a junction resistance, Rs. Rss and Css depict the transient response
of the ultracapacitor.
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Ultracapacitors are categorised into three types. Type 1 includes the electrical double-
layer capacitor (EDLC) which relies on the electrostatic field between two plates. Type 2
presents the pseudocapacitors which use electrochemical reactions to store the electric
charge. Hybrid capacitors are the third type and they combine the EDLC and the pseudoca-
pacitors and provide a higher capacitance compared to pseudocapacitors and EDLCs [26].

3. Microgrid Reconfiguration

To run the MG in an optimum and effective manner, one of the recommended technolo-
gies is MG reconfiguration [27]. Reconfiguration can be regarded as a kind of emergency
control, including load and generation shedding and changes in topology, as well as other
control measures, for redirecting power flow towards the remaining loads. An effectual
and optimum reconfiguration entails smart and swift actions. Therefore, identifying a
precise numerical or heuristic technique is quite necessary [28].

The primarily aim of reconfiguration is to reduce losses and improve load balancing at
the network level by taking into account the maximum possible network and targeting to
maintain an optimum voltage profile in the system. Numerous methodologies have been
recommended for the optimisation techniques to attain optimum reconfiguration [29].

Recent attempts have accounted for the operating costs [30], including the distributed
energy resource (DER) shutdown/start-up costs, as well as the uncertainty costs [31].
Additionally, researchers enhanced the reliability and power quality of the MG [32,33].
The research work mentioned in [34] regards limits placed on the apparent power rather
than the individual reactive and real power limits. Furthermore, for system stability
management, reconfiguration could be regarded as a useful tool, i.e., keeping the microgrid
at a distance from the unstable region [28]. Moreover, researchers minimised the overall
power losses and enhanced the distribution network’s voltage profile [35,36].

4. Energy Management System (EMS)

The first EMS in the world was designed during the 1960s. However, during the 1970s,
it was renamed as an energy control centre (ECC). Following this, it was again renamed
the supervisory control and data acquisition EMS (SCADA-EMS) and was used as a data
tracking and collection system, and was commonly used in industrial facilities. The SCADA
used advanced computational programs during the early 1990s and was converted to a
real-time supervisory controller called the EMS. This system included many activities such
as demand side management (DSM), load control (LC), and a distribution management
system (DMS) [37].

The current EMS refers to a computerised program that is used for monitoring and
controlling the functioning of every element and flow of power to optimise the MG and NG
systems and also obtain optimal productivity [38]. The EMS helps in optimally distributing
multiple energy sources to their customers without conceding the protection, safety, and
efficiency of the system [39]. The EMS monitors, controls, optimises, and regulates the load,
transmission, distribution, and generation-related activities [40]. Hence, the basic function
of the EMS was the creation of an effective balance between demand and supply. This bal-
ance maintenance is cost-effective even under some financial uncertainties and limitations
(uncertainties in an EMS architecture can include fluctuations during the generation of
RESs, electricity costs, and load activities). It can function with dispatch, power, SCADA,
energy scheduling, real-time accounting, and transmission security management. With
the growth in the grid after the integration of plug-in electric vehicles (PEVs), ESSs, RESs,
buildings with a higher power need, and other variables, the design and the function of
the EMS is becoming more complicated. In the past few years, processes based on machine
learning (ML) and the Internet of Things (IoT) have garnered a lot of attention and have
proved to be helpful in the operation of EMSs [41,42].

The two key components of the EMS are DSM and demand response (DR), which aid in
enhancing the MG and NG systems’ load profile, decreasing peak demand, and effectively
employing system assets. Even though DR and DSM are often employed interchangeably,
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it should be noted that that are not the same thing. As per the user’s perspective, the
DSM is aimed at improving flexibility. The application pertaining to DSM programs could
range from increasing energy efficiency with improved insulation materials to energy
systems that are completely self-contained and can automatically respond to changes in
supply/demand [43].

Energy management in the MG and NG systems requires a comprehensive auto-
matic system that helps in obtaining optimal resource scheduling [44]. This system relies
on advanced information technology and control objectives for optimising the manage-
ment of the ESS and distributed energy sources. Many researchers have ensured energy
management by optimising various objective functions that are regarded in the energy
management process such as maximising the generator output power at a specified time,
maximising the ESD life span, minimising the operational costs of the MG and NG systems,
and minimising the greenhouse gas emission costs.

4.1. Energy Management System Techniques

After considering one or multiple control objectives, different techniques can be used
for optimising the EMS in MG and NG systems. These techniques take into consideration
reduced costs during maintenance, emission costs, operational and fuel costs, and ESD
(battery or super capacitor) degradation costs.

Many studies have proposed EMS processes that use different techniques and offer
effective and optimal solutions for the MG and NG operations. These techniques have been
segmented by the researchers by considering the planning and optimisation methodologies
employed for strategic, tactical, and economic purposes. All these processes and techniques
have been outlined below.

4.1.1. Energy Management Based on Mixed Integer Linear and Non-Linear
Programming Methods

Mixed integer linear programming (MILP) and the mixed integer non-linear pro-
gramming (MINLP) processes were regarded as the classical optimisation techniques.
Furthermore, the objective functions and constraints used in the linear programming sys-
tem include linear functions and real values. They include the determination of optimal
value decision variables that help in determining the set of quantities.

In an earlier study [45], researchers presented the EMS for hybrid islanded AC/DC
MG systems. Their proposed algorithm helped in controlling the system and ensuring
the stable operation of the MG, while also providing clean water to customers. This
optimisation algorithm was based on the MINLP system, wherein the objective functions
decreased the daily operational costs.

A different MINLP and global optimisation technique-based EMS was proposed for
an MG system that consisted of solar PVs, diesel generators, wind, fuel cells, microtur-
bines, and battery storage systems. This proposed algorithm helped in minimising the
cost of the distributed generation (DG) and the amount of greenhouse emissions. Further-
more, it also considered the no-load costs of the distributed generators, non-linear losses
within the DG, non-linear losses in a distribution system, and the start-up/shutdown
costs of a DG. The researchers noted that the battery storage system played a vital role in
minimising the generation costs and number of emissions, while also compensating for
generation shortage [46].

A networked NG consisting of an EV-battery swapping station (BSS) could also be
considered as a cyber-physical energy management system (CPEMS) [47]. The researchers
proposed an algorithm for optimising the reliability, economics, and resilience of the energy
supply system. This optimisation problem was based on MILP. Results indicated that the
proposed CPEMS showed many economic benefits, ensured reliability and battery storage,
and prevented the under-utilisation of the capital-intensive PVs.

The present study proposes a MILP model to address challenges concerning energy
management and planning integrated operations for a smart seaport grid (such as a port
MG) comprising PV and battery storage infrastructure. The objective is to minimise
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the overall operational cost due to delays and optimise energy costs considering hourly
tariffs and the choice to sell energy under PV uncertainties. The endeavour concerning
operation planning is to ascertain the yard equipment, including the quay crane count,
requiring assignment to vessels considering one-hour intervals. Planning also requires
optimising ship berthing time, directly affecting cold-ironing energy needs and reefer
container availability. The outcomes indicate that the port MG scenario is superior to
typical settings for cost optimisation [48].

An EMS-based non-linear optimisation framework is formulated to regulate battery
scheduling and facilitate a reduction in operation cost for a PV and battery DC MG
system tethered to the grid. The suggested framework incorporates ageing parameters
and empirical data associated with real-world cost degradation of Li-ion batteries. The
Li-ion battery degradation cost (BDC) expression is formulated considering the impact
of the battery DOD and temperature on performance. Additionally, cold and hot climate
areas are accounted for to ascertain the PV-specific levelised cost of energy. The framework
also models energy losses and nodal voltages to allow the DC MG to operate optimally.
The outcomes indicate that the DC MG operational cost was reduced significantly [49].

4.1.2. Energy Management Based on Dynamic Programming (DP) and
Rule-Based Methods

A dynamic programming technique was used for solving complex problems that could
be sequenced and discretised. This problem could be classified into many sub-problems
that were solved optimally. Thereafter, these solutions were superimposed to develop an
optimal solution for the primary problem [50].

In [51], the researchers developed an effective centralised rule-based EMS for the
islanded and grid-connected MGs. This algorithm was developed such that it kept the
battery’s state of charge (SOC) below 80% in the islanded MG mode. On the other hand,
the battery SOC in the grid-connected MG mode had to be maintained above 60% to ensure
reliability in the islanded mode operations. This technique allowed a smooth transition
between the two modes and ensured voltage and frequency stability of the systems.

Another EMS based on dynamic programming for controlling the MG system was
proposed in [52]. It included wind energy and battery systems. The objective function of
this EMS was to increase the selling benefits of wind energy and minimise the costs of
fulfilling the load demands in the MG. This EMS also regarded the deregulation of the
energy market, where electricity prices were allowed to fluctuate based on the demand
and supply. Furthermore, the battery control action was also determined at differing price
intervals, while the computation time was decreased in the large-scale BESS systems.

In [53], the researchers proposed a new EMS for the islanded NG. It consisted of solar
PVs, fuel cell generation, and battery storage. This EMS algorithm was proposed to achieve
better scheduling of the battery charging and discharging processes and minimising the
operational costs of generation. Furthermore, the researchers used stochastic dynamic
programming (SDP) for optimising the EMS. They also used the Markov model for predict-
ing the solar PV irradiation cycle. Their simulation results indicated that SDP was more
effective than the rule-based technique. Furthermore, the SDP-based approach ensured
minimal operating costs as it minimised the fuel generator operating time during every
cycle. This simultaneously improved the battery availability in the upcoming cycle as the
SOC was elevated at the end of every cycle.

In [54], the authors used a novel algorithm for the PV-NG system that was integrated
with battery storage and diesel generation. This proposed algorithm was DP based and
included the objective function to improve the system’s power flow. The results indicated
that this proposed algorithm could achieve a maximal PV energy utilisation, low diesel
fuel consumption, and less battery life loss, in comparison to the rule-based technique.

A dynamic programming technique was proposed in [55] for the islanded MG that
included solar PVs, diesel generation, and a battery storage system. This technique ensured
optimal energy management, where the researchers aimed to minimise CO2 emission
costs and operational costs by improving the scheduling system for the distributed energy
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resources (DERs). However, some drawbacks of this technique were the DER capacitance
and low power balance between demand and supply.

4.1.3. Energy Management Based on Metaheuristic Techniques

The metaheuristic method is regarded as an alternative process for MG optimisation,
as it combines different processes such as a genetic algorithm (GA), biological evolution,
and statistical mechanisms for deriving the optimal solution for controlling energy sources
in the MG system.

A multi-objective EMS was proposed so that the MG could achieve effective load
dispatch and low battery degradation costs [56]. With the help of the GA and rule-based
techniques, the researchers could obtain real-time control of the energy sources and could
predict them on the previous day. They used a diesel and battery generator to supply energy
and fulfil the load demands in real time. They also suggested load shedding for maintaining
the balance between the load demand and the amount of electrical power generated.

In [57], the researchers proposed a new optimal scheduling control technique for
an EMS that was based on the binary particle swarm optimisation (BPSO) for MGs with
wind energy, solar PV, fuel cells, a diesel generator, and batteries in a virtual power
plant (VPP). This proposed algorithm helped in minimising the overall system costs. The
results indicated that the technique could efficiently minimise the grid energy consumption
to 47%, while the CO2 emission was reduced by 8.46%. The binary PSO showed its
best performance while minimising the CO2 emissions, saving costs, and decreasing
energy consumption.

A different EMS was proposed based on the particle swarm optimisation (PSO) and
Gaussian mutation for a standalone hybrid MG system that included a solar PV module,
wind energy, battery storage, and diesel generation. The simulation results indicated that
this algorithm could minimise fuel costs and system capital costs [58].

Another EMS based on the artificial bee colony (ABC) algorithm was proposed for
improving the economic dispatch for the isolated MG that included WTs, solar PV, energy
storage, and dispatchable generation [59]. However, owing to the intermittent RES and
load demand, the neural network was combined with the Markov chain to predict the
output of the power sources. This led to a 30% decrease in energy costs.

In [60], the researchers proposed an expert system based on fuzzy logic that was
combined with metaheuristic algorithms, called the grey wolf optimisation, for improving
the MG grid. The main objectives of this system included the minimisation of generation
unit costs and a reduction in the emissions of fuel sources. The researchers considered
battery optimal capacity, which helped in minimising fuel consumption. Furthermore, the
results indicated that the proposed system showed a higher efficiency compared to the GA,
PSO, grey wolf optimisation, BAT, and the improved BAT methods with regard to fulfilling
the objectives and minimising the operational costs of the MG.

A novel EMS was proposed based on the load prediction for 24 h for an MG which
includes solar PV modules, WTs, microturbines, and storage units [61]. This EMS used
the artificial fish swarm optimisation technique. The control objectives of this technique
included the minimisation of costs noted in the power generation system. The results of
this technique indicated that it improved the utilisation of renewable and non-renewable
energy generation as well as provided better charge and discharge activities of the batteries.

4.1.4. Energy Management Based on Multi-Agent Systems

A multi-agent optimisation technique helps in the decentralised management of
the MG. This technique includes human behaviour-related components for fulfilling all
specified objectives.

A multi-agent-based algorithm was proposed for grid outage management for two
MG systems in an earlier study [62]. The MGs included solar PV modules, wind energy,
load, and battery storage. The main objective of the control algorithm was to decrease
operational costs from PV intermittency and the stochastic nature of the critical load. The
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researchers also considered the price variations in the grid and critical load. Simulation
results showed that the outage management algorithm effectively maximised the power
generation of the MG system and minimised the system operational costs.

A new multi-agent-based EMS was proposed for a standalone MG system that con-
sisted of fuel cells, RESs (wind and PV), and an ESS [63]. The control objectives of the
algorithm included the maintenance of the balance between the energy demand and supply.
Additionally, the researchers used auto regressive moving average (ARMA) models to
forecast the PV irradiation, wind speed, atmospheric temperature, and the load that is
connected to the system. The results showed that the proposed EMS could adjust to the
variations in temperature, irradiation, wind speed, and load conditions.

A decentralised EMS that used the multi-agent technique was proposed for an MG
which included batteries, an electrolyser, solar PVs, wind, diesel generation, and fuel cells.
The researchers also included fuzzy logic with cognitive maps for optimally managing the
MG activities. Thereafter, the researchers compared the centralised and decentralised ap-
proaches and noted that the decentralised process presented many operational advantages
with regard to system breakdown or failure [64].

Furthermore, a new multi-agent-based EMS was proposed for the MG. It combined
the centralised and decentralised approaches and could optimise the economic operations
of the MG system. The researchers noted that a centralised EMS can communicate with all
DERs in an MG only in the presence of a centralised decision-making entity. The control
commands could be transmitted from the centralised controller to local controllers in the
DERs. However, the decentralised control can assign communication between the DERs
without using any centralised controller [65].

4.1.5. Energy Management Based on Fuzzy Logic (FL) and Neural Network (NN)

In [66], the researchers presented an EMS design based on full-load (FL) control for
smooth power production in an interconnected residential MG. This MG system included
RESs such as wind and PV, while the battery was the storage energy source along with
the load. This proposed algorithm decreased the power fluctuations and peaks when
energy was exchanged between the MG and the main grids. This also improved the life
cycle of the battery as the SOC level was maintained near 75%. The proposed technique
showed a better and more efficient performance compared to other states of charge-based
EMS techniques.

An optimal EMS based on fuzzy logic control (FLC) was proposed in [67] for the
independent DC MG in the ZigBee-based communication network. This algorithm ensured
a better utilisation of the RES and improved the life cycle of battery storage. All experiments
validated the effectiveness of the proposed technique.

In [68], the researchers presented an effective EMS that was based on the multi-
objective strategy for an MG that included solar PVs, WTs, microturbines, fuel cells, and a
battery storage system. This algorithm helped in minimising the CO2 emission and opera-
tional costs of the MG. This included activities such as battery charging and discharging
rates that were determined using the FL system. Furthermore, the researchers introduced
a neural network to predict the RES load demand and power generation. This proposed
technique minimised the operational costs and emission levels of the MG. Additionally,
the fuzzy expert system was introduced to decrease the maintenance costs of the battery,
allowing battery scheduling as it extended the operational life span of the battery via the
lower depth of the battery discharge.

A novel EMS model based on the Lagrange programming neural network (NN)
approach was introduced for optimising the performance of MG systems that included
solar PVs, WTs, microturbines, a battery bank, fuel cells, and a diesel generator [69]. This
model helped in minimising the overall MG costs in addition to the fuel costs, operational
and maintenance costs, and the emission costs of the generator units. The researchers
employed a radial basis neural network that could predict the load demand and the RES
power generation. The loads could be classified into four types, i.e., price-sensitive load,
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controllable load, thermal load, and critical load. This proposed technique was seen to be
more effective than the PSO.

Another EMS based on the NN technique was designed and proposed for a grid-
connected MG that included solar PVs, WTs, batteries, and electrical cars. This model
aimed to maximise the power supplied by PVs and WTs and minimise the power import
from the utility grid. The model helped in improving the life cycle of the batteries when
the discharge depth was set at 60%. The researchers considered two kinds of load demand
(i.e., critical and ordinary). They also developed an extended Kalman filter with a hybrid
wavelet function-based NN technique for predicting the load and power generation in
the RES [70].

4.1.6. Energy Management Based on Other Artificial Intelligent Methods

In [71], the researchers developed an EMS leader–follower algorithm that was based
on the game theory technique used for a grid-connected MG. This technique helped
in maximising the MG profit exclusively with the prosumers while also maintaining
the Stackelberg equilibrium to ensure a reasonable share of the distribution profit. The
operators of the MG made use of different prosumers while the evolution used a non-linear
programming technique to fulfil the Stackelberg equilibrium. This proposed approach
helped in increasing the number of PV prosumers, which improved the MG profits and
enabled a better convergence rate.

Another EMS was developed based on the rolling horizon Markov strategy for grid-
connected MG systems that included WTs, combination of heating and power generation
(CHP), and a battery storage system. This algorithm helped in reducing the gas costs
and minimised the electricity costs after considering the intermittency of the wind power
that was modelled using the Markov decision process (MDP). This proposed approach
indicated that it was more effective with regard to performance and computation time
compared to the scenario tree-based approach [72].

In [73], the researchers developed an optimal EMS for an NG that included battery, PV,
and ultracapacitor devices for a house. This proposed algorithm aimed to improve battery
charging and discharging activity. It was also based on the rolling optimisation process.
MILP was used for resolving the optimisation problem. The researchers also proposed a
technique for alleviating the power fluctuations between the NG and main grid using a
smoothing function.

Another adaptive intelligent-based EMS was proposed for the grid-connected MG
that was integrated with the RESs (wind and PV) and ESSs (battery and supercapacitor).
The main objectives of this model were to obtain a maximal power utilisation of RESs,
reducing the load fluctuations, and managing the system power dispatch. Combining the
battery with the super capacitor can significantly help in managing the smooth load as the
smooth capacitor can handle the sudden load fluctuations and variations. This proposed
algorithm displayed an effective ratio between the real-time energy discharge and available
energy in comparison to the PSO [74].

4.1.7. Energy Management Based on Stochastic and Robust Programming Methods

A novel multi-objective stochastic technique-based EMS was proposed for the hybrid
grid-connected MG that included various RESs such as WTs and solar PVs in [75]. The
objective of this proposed algorithm was aimed at minimising the energy losses in the
MG and operational costs in the RESs. The optimisation problem could be resolved by
using a weighting sum for the feeding loss systems and total operational costs. The
researchers noted that this proposed technique solved the MILP problem when they tested
the algorithm using the IEEE 37 node distribution system.

Another stochastic problem-based algorithm was developed for the grid-connected
MG for minimising the traditional generator operational costs, decreasing the commercial
costs matching the grid energy, and increasing the battery life span. This algorithm included
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two steps, in which step one carried out MG optimisation and step 2 analysed the output
power for computing real-time energy loss in the MG [76].

An optimal EMS was proposed for the grid-connected MG that included battery
storage, PEVs, and solar PVs. The researchers also considered the load and RES uncertain-
ties. This proposed algorithm could be classified into two sub-problems, wherein the first
problem included scheduling within the energy boundaries that were defined to protect
the system. The second problem assessed the real-time ability of the energy deviation
limit to regulate the frequencies. This algorithm was more cost-effective compared to
other techniques [77].

In [78], the researchers proposed a decentralised EMS for the grid-connected MG that
consisted of wind power, solar PVs, train stations, and batteries. This algorithm included
an agent-based model and robust optimisation technique. The researchers also assessed
the performance of the MG with regard to the cost of the power differences associated with
RES generation and power load uncertainties.

The study proposed a two-level EMS for an isolated MG network segment comprising
physical connectivity to ensure energy and data exchange. The EMS comprised an outer
layer that catered to information exchange and power support pertaining to the intercon-
nects; simultaneously, the inner EMS layer provides power scheduling for every on-fault
MG in the case of MG interconnection disruption. A stepped demand response program
(DRP) is formulated and integrated with the energy management framework to optimise
MG operation. Furthermore, the MILP notation was used to express the issue in the form of
a stochastic optimisation expression to facilitate swift responses and a globally optimal out-
come. The implementation comprised a five-MG-based distribution setup implementing
the optimisation function. Simulation outcomes suggested that the suggested technique
enhances MG performance and facilitates operational cost reduction [79].

4.1.8. Energy Management Based on Model Predictive Control (MPC) Methods

A robust model predictive control (RMPC)-based EMS algorithm was proposed in [80]
for MG systems that included WTs, solar PVs, loads, and battery banks to manage the
energy output from RESs and energy loads. The proposed EMS helped in minimising the
integrated economic operational costs. It was combined with mixed integer programming.
It was noted that the proposed RMPC technique made the MG management operations
more reliable and also minimised the system operational costs.

In [81], the researchers developed a novel stochastic MPC-based EMS algorithm for
controlling the MG that was composed of diesel and fuel cell generation, RESs, and an ESS.
The main objective function of the novel model was to minimise the cost of energy demand
and unit generation. The researchers also used the Monte Carlo simulation technique for
predicting the PV, wind, load, and electricity costs. The simulation results indicated that
their proposed stochastic technique displayed minimal operational costs.

Another EMS was proposed that was based on a two-stage predictive technique for a
hybrid interconnected MG system composed of PVs and wind as RESs, along with ESSs
(battery and ultracapacitor). The researchers also considered the costs of the battery and the
ultracapacitor in addition to the discharge depth. They modelled the long-term costs and
converted them to short-term costs related to real-time operations. The results indicated
that the upper-stage EMS minimised the operational costs while the lower-stage EMS
decreased the fluctuations between the MG and main grid [82].

In [83], the researchers developed and proposed a multi-step predictive optimal
control model that was operated over 3 h, with 15 min steps for the islanded MG that
included traditional and renewable energy sources, loads, and an ESS. The researchers
included a cost function that considered the costs associated with the fuel consumption,
battery SOC, RES reduction, and load-shedding quantity. The simulation results of the
model indicated that their proposed algorithm displayed an optimal performance when
allocated with the forecasting uncertainties.
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4.1.9. Energy Management Based on Other Techniques

In [84], the researchers presented a novel optimisation system for the independent MG
that included a battery bank and solar PV for determining the optimal economic system.
They considered different control strategies for the EMS. Furthermore, they also determined
the lifetime and longevity of the batteries by implementing an electrochemistry-based
advanced model. The results indicated that this proposed optimisation technique helped in
minimising the energy cost levels by 9.7% and also increased the battery service period by
48.6%. Thus, this model was seen to be more efficient compared to the baseline techniques.

In another study, the authors used two different techniques for optimising and de-
signing an MG system which included turbine generation, PVs, and a battery bank for
minimising the emission and energy costs for the MG. Technique one included the MILP
that could optimise the energy management whereas technique two was the probabilistic
Markov model that was used for predicting the PV. The researchers presented a linear
model in their design for assessing the life span of the batteries [85].

Another EMS was designed for hybrid MG systems which included the RES (PV and
wind), battery bank, and a non-RES such as diesel generation. This MG system operated in
two different modes, i.e., on-grid and off-grid. Hence, it contained a control mechanism in
the inverter for transmitting between the main grid and the MG. The results indicated that
this proposed algorithm offered efficient energy that was transferred to the battery along
with the loads and grids. This design allowed the model to work at rates of up to 10% [86].

This study proposes using the DSM scheme for a smart grid, comprising active (pro-
sumers) and conventional consumers. The scheme considers wind energy prediction
uncertainty for calculations. The rolling horizon scheme is employed to have prosumers
implementing the DSM system to optimise cost considering wind power uncertainties;
game theory is used to implement the scheme. Real-world datasets used for mathemati-
cal simulations indicate that the proposed stochastic scheme is superior to the typically
expected value scheme for better individual cost optimisation [87].

The present work presents a game-theory based approach for a distributed, optimal,
and autonomous demand-side EMS for smart grid systems. The objective is to reduce
energy costs and regulate overall residential power requirements for several consumers
sharing a common source system. Simulation outcomes confirm that the suggested scheme
reduces individual electricity cost, overall energy cost, and overall peak-to-average en-
ergy demand [88].

Figure 7 presents a summary of different EMS methods that were used for the MG
and NG systems based on the abovementioned literature review.

Based on the literature review described above, by changing non-linear functions
into linear functions in models, power optimisation can be transferred via the MILP
technique into mixed integer programming. For the optimisation model, MILP considers
integer variables. Through the integration of integer variables, MILP could be used for
the optimisation of the minimum operational cost pertaining to large power generators,
including its stop–start cost related to the power system. Moreover, expression of the
minimum operation power output pertaining to power generators can be done, which
contributes to the lifespan of the generator. FLC possesses a quicker computational time
versus MILP, but is associated with a relatively high cost. When the electricity pricing
is dynamic, DP could be used to solve the EMS model. An NN’s key functionality is its
useability for controlling and predicting the EMS. An NN can also learn complex models
that are deemed difficult to be determined. An NN is employed for forecasting wind
generation and solar generation as well as the load demand for MGs. However, the
problem with using an NN algorithm is the requirement for training. MPC can be defined
as a rolling process to repetitively solve the EMS optimisation model based on the updated
forecasted data. MPC has been verified as a feasible method for numerous control issues
with regard to uncertainty. Thus, applying the MILP algorithm in an EMS allows for
reaping greater economic benefits.



Sustainability 2021, 13, 10331 16 of 30

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 30 
 

The present work presents a game-theory based approach for a distributed, optimal, 
and autonomous demand-side EMS for smart grid systems. The objective is to reduce en-
ergy costs and regulate overall residential power requirements for several consumers 
sharing a common source system. Simulation outcomes confirm that the suggested 
scheme reduces individual electricity cost, overall energy cost, and overall peak-to-aver-
age energy demand [88]. 

Figure 7 presents a summary of different EMS methods that were used for the MG 
and NG systems based on the abovementioned literature review. 

 
Figure 7. Energy management system techniques for MG and NG. 

Based on the literature review described above, by changing non-linear functions 
into linear functions in models, power optimisation can be transferred via the MILP tech-
nique into mixed integer programming. For the optimisation model, MILP considers in-
teger variables. Through the integration of integer variables, MILP could be used for the 
optimisation of the minimum operational cost pertaining to large power generators, in-
cluding its stop–start cost related to the power system. Moreover, expression of the mini-
mum operation power output pertaining to power generators can be done, which contrib-
utes to the lifespan of the generator. FLC possesses a quicker computational time versus 
MILP, but is associated with a relatively high cost. When the electricity pricing is dynamic, 
DP could be used to solve the EMS model. An NN’s key functionality is its useability for 
controlling and predicting the EMS. An NN can also learn complex models that are 
deemed difficult to be determined. An NN is employed for forecasting wind generation 
and solar generation as well as the load demand for MGs. However, the problem with 
using an NN algorithm is the requirement for training. MPC can be defined as a rolling 
process to repetitively solve the EMS optimisation model based on the updated forecasted 
data. MPC has been verified as a feasible method for numerous control issues with regard 
to uncertainty. Thus, applying the MILP algorithm in an EMS allows for reaping greater 
economic benefits. 

Globally, large and small research groups have started taking an interest in EMSs for 
MG and NG systems. In the IEEE and Elsevier database, this can be observed via the key-
word search (“microgrid” OR “nanogrid”) and (“energy management system”) as shown 

Figure 7. Energy management system techniques for MG and NG.

Globally, large and small research groups have started taking an interest in EMSs
for MG and NG systems. In the IEEE and Elsevier database, this can be observed via
the keyword search (“microgrid” OR “nanogrid”) and (“energy management system”) as
shown in Figure 8. Table 1 shows the summary of planning and optimisation practices
used for strategic, tactical, and economic reasons with regard to EMSs.
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Table 1. Planning and optimisation practices with regard to energy management system.

References Composition Techniques Objectives Year

[45] PV and diesel generator MINLP To decrease the daily operational
costs 2019

[46] PV, diesel generators, wind, fuel cells,
microturbines, and battery MINLP To minimise the generation costs

and amount of emissions 2021

[47] PV and battery MILP
To maximise the life span of the

battery and minimise the
operational costs

2019

[48] PV and battery MILP To minimise the overall
operational cost 2021

[49] PV and battery Non-linear Programming To minimise the overall
operational cost 2019

[51] PV, fuel cell, and battery Rule-Based To maximise the life span of the
battery 2016

[52] Wind and batteries Dynamic Programming

To increase the selling benefits of
wind energy and minimise the

costs of fulfilling the load
demands in the MG

2018

[53] PV, fuel cell, and battery Stochastic Dynamic
Programming

To minimise the overall
operational cost 2020

[54] PV, battery, and diesel generation Dynamic Programming
To increase the PV energy

utilisation and decrease fuel
consumption

2015

[55] PV, battery, and diesel generation Dynamic Programming To minimise CO2 emission costs
and operational costs 2015

[56] PV, battery, and diesel generation Genetic Algorithm
To maximise the life span of the

battery and minimise the
operational costs

2016

[57] PV, wind, fuel cell, battery, and diesel
generation BPSO

To minimise the grid energy
consumption, minimise CO2

emission amount, and minimise
the overall operational cost

2019

[58] PV, wind, battery, and diesel generation PSO To minimise fuel costs and
system capital costs 2016

[59] PV, wind, diesel generator, and battery Artificial Bee Colony To decrease the energy costs 2017

[60] PV, wind, microturbine, fuel cell, and
battery Grey Wolf

To minimise the emission of fuel
sources and the operational costs

of MG
2018

[61] PV, wind, microturbine, and battery Artificial Fish Swarm

To maximise the utilisation of
renewable and non-renewable
energy generation as well as
better charge and discharge

activities of the battery

2018

[62] PV, wind, and battery Multi-agent

To decrease operational costs
from PV intermittency and the
stochastic nature of the critical

load

2017

[63] PV, wind, fuel cell, and battery Multi-agent To maintain the balance between
the energy demand and supply 2016

[64] PV, wind, diesel generator, electrolyser,
batteries, and fuel cells Multi-agent

To maximise the utilisation of
renewable and non-renewable

energy generation and minimise
the overall operational cost

2015

[65] PV, wind, microturbine, fuel cell, and
battery. Multi-agent To minimise the overall

operational cost 2014

[66] PV, wind, and battery Fuzzy logic

To decrease the power
fluctuations between the MG

and main grids and increase the
lifespan of the battery

2017
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Table 1. Cont.

References Composition Techniques Objectives Year

[67] PV, wind, fuel cell, and battery Fuzzy logic

To maximise the utilisation of
renewable energy generation

and maximise the lifespan of the
battery

2018

[68] PV, wind, fuel cell, microturbine,
and battery Fuzzy logic To minimise the CO2 emission

and operational costs of the MG 2013

[69]
PV, wind, microturbine, diesel
generator, fuel cell, and battery

bank
Neural Network

To minimise the overall MG
costs in addition to the fuel costs,

operational and maintenance
costs, and the emission costs of

the generator units

2019

[70] PV, wind, batteries, and
electrical cars Neural Network

To maximise the power supplied
by PV and wind and minimise

the power import from the
utility grid

2015

[71] PV and microturbine Game Theory To maximise the MG profit
exclusively with the prosumers 2016

[72] Heating and power generation,
wind, and battery

Rolling Horizon
Markov

To reduce the gas costs and
minimise the electricity costs 2016

[73] PV, battery, and ultracapacitor Rolling Optimisation

To decrease the power
fluctuations between the NG and

main grids and to improve
battery charging and
discharging activity

2019

[74] PV, wind, battery, and
ultracapacitor Adaptive Intelligence

To maximise the utilisation of
renewable energy generation,
reducing the load fluctuations,

and managing the system power
dispatch

2017

[75] PV and wind Stochastic Method
To minimise the energy losses in
MG and operational costs in the

RES
2017

[76] PV, wind, diesel generator, PEV,
and batteries Stochastic Method

To minimise the traditional
generator operational costs,

decreasing the commercial costs
matching the grid energy and
increasing the battery lifespan

2014

[77] PV, battery, and PEV Stochastic Method To minimise the overall
operational cost 2017

[78] PV, wind, train station, and
battery Robust Optimisation To minimise the overall

operational cost 2014

[79] PV, wind, and battery Stochastic Method To minimise the overall
operational cost 2019

[80] PV, wind, and battery bank RMPC To minimise the integrated
economic operational costs 2018

[81] PV, wind, diesel generator, fuel
cell, and battery MPC To minimise the cost of energy

demand and unit generation 2018
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Table 1. Cont.

References Composition Techniques Objectives Year

[82] PV, wind, battery, and
ultracapacitor MPC

To minimise the operational costs
and decrease the fluctuations

between the MG and main grid
2018

[83] PV, wind, diesel generator,
and battery MPC

To minimise the overall MG costs in
addition to the fuel costs,

operational and maintenance costs,
and the emission costs of the

generator units

2017

[84] PV, and battery bank Hierarchical Method To minimise the energy cost and
maximise the lifespan of the battery 2018

[85] PV, turbine generation, and
battery bank Hierarchical Method To minimise the emission and

energy costs for the MG 2017

[86] PV, wind, diesel generator,
and batteries Hierarchical Method To minimise the energy cost and

maximise the lifespan of the battery 2016

[87] Wind Game Theory To optimise cost considering wind
power uncertainties 2021

[88] Smart grid Game Theory

To reduce energy costs and regulate
overall residential power

requirements for several consumers
sharing a common source system

2010

5. Power Management Systems (PMSs)

Power management systems are used in MG and NG applications to constantly modify
the DC bus voltage by balancing the demand and supply units through implementation of
the ESS in the utility grids (in the case of grid-connected systems) [7].

For improving the MG operations, the PMS helps in controlling the real and reactive
power flow. The primary objective of the PMS is to ensure output power from distributed
generators is balanced with the demand for load power [89].

The PMS can be used to fulfil different objectives such as power factor correction,
voltage support, and transient power support. The major electrical parameters used in the
PMS are current, voltage, and power, which directly affect the operational conditions of
the MG system.

5.1. Power Management System Techniques

PMS techniques are classified into two types, i.e., optimisation techniques and artificial
intelligence (AI) techniques. The PMS-based optimisation techniques generally involve a
multi-objective function for maximising the efficiency of the MG, minimising fossil fuel
consumption, and fulfilling the conditions of a successful operation [90]. On the other
hand, the PMS-based AI techniques are used for real-time MG control. Furthermore, when
the AI technique is used, the researchers do not understand the exact mathematical model
for every DG in the MG.

Different algorithms based on the PMS optimisation and AI techniques were discussed
to determine the optimal operation for assessing the reliability of the MG supply system
and offering stability and resilience to it [91]. The following subsections categorise and
describe the various solutions and planning methodologies that are used for strategic and
tactical purposes in the PMS.

5.1.1. Power Management Systems Based on Optimisation Techniques

In [92], the researchers proposed a two-stage real-time demand-side management
solution for the MG system that consisted of a combined WT and PV potential (1.2 MW)
with a load ≤1 MW. A novel MPC optimisation scheme was proposed for reducing the
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operational costs and ensuring the power balance under some unpredictable scenarios.
For a short-time resolution that was based on the complicated optimisation process, the
researchers calculated the real-time power allocation in line with the real-time errors
associated with some unknown factors. The role played by the grid support was based on
the stationary and mobile (EV) ESS, which could result in a storage space of up to 3 MWh.
This could be managed using an internal pricing scheme for a permanent power balance
and simultaneous cost minimisation. The researchers tested the adequacy of their proposed
technique using detailed simulations in various MG case studies.

A real-time MPC-based PMS technique was also proposed for the grid-connected MG
system that included WTs, solar PVs, and battery storage [93]. In this study, the researchers
aimed to minimise the energy costs and maximise the life span of the batteries. The results
of the study indicated that the proposed PMS scheme helped in decreasing the energy
system costs and maximising the battery life span by 1.5 years.

Another optimal MPC-based PMS technique was proposed in [94] for the grid-
connected MG systems that included PVs, fuel cells, an electrolyser, and batteries. The
objective function of this technique was minimising the use of traditional energy sources,
saving energy after using RESs, and quality and economic factors using HESSs. The results
indicated that the algorithm allowed the smooth operation of the MG system, however, the
life span of the ESDs was increased.

In [95], the researchers developed a real-time stochastic linear programming-based
PMS technique for the hybrid MG system that included combined heat power (CHP)
generation, 80 kW wind turbines, 180 kW microturbines, 200 kW boilers, and 100 kW solar
PV generators. The algorithm proposed in this study helped in minimising the emissions,
overall costs, and demand payments. The total MG costs were highlighted as the function
of maintenance, operating, and constant costs on the generation side, while on the demand
side, they were the function of critical, thermal, and normal load costs. For maintaining the
load balance and discouraging any curtailment, the researchers followed the load-related
restrictions for every time interval. They could achieve an 11% cost saving when they
implemented a deterministic strategy, whereas the emissions were decreased by 1.5%;
however, no variations were noted in the demand prices.

In [96], the researchers proposed a Lyapunov optimisation-based PMS technique for
the grid-connected MG system that included RESs and an ESS. This algorithm enabled
the minimisation of operational costs of the MG and maintained the outage possibility for
quality usage. Furthermore, quality of service (QoS) and energy storage were regarded
as prime factors for resolving the optimisation issue. The results of the study indicated
that this algorithm could minimise the energy storage costs by 60% and further improved
the QoS.

Another simultaneous perturbation stochastic approximation (SPSA)-based PMS
technique was presented for the residential MG system that included solar PVs and an
HESS (mechanical flywheel and battery storage). The algorithm proposed in this study
aimed to acquire a smooth battery power profile and decrease the grid energy exchange.
The researchers used actual power records that were related to the demand and PV output
to verify the proposed SPSA algorithm. They compared this algorithm to the deterministic
power management scheme and noted that their SPSA approach showed a higher success
rate (99% of the time) and could preserve the instantaneous current variance that was
allocated to the battery at values below 1 A. It also improved the independence of the MG
resources by enhancing the utilisation of the hybrid ESS [97].

In [98], the researchers developed a dynamic PMS technique for the independent
hybrid AC/DC MG system that consisted of fuel cells, battery banks, PVs, and an ultraca-
pacitor. It was seen that this PMS generated a real-time reference to the converter current
controller that was associated with battery banks, fuel cells, and an ultracapacitor with the
help of the moving average filter. The efficiency of the moving average filter was noted in
the experimental results and simulations. The mean current reference was divided into
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the fuel cells and battery banks when it efficiently transmitted the oscillatory and transient
demand devices to an ultracapacitor.

5.1.2. Power Management Systems Based on Artificial Intelligence Techniques

A novel fuzzy logic-based PMS technique was presented for the remote MG system
that included wind, PV, and diesel generators. The main objective of this technique was
to improve the reliability of the system, increase the RES integration, and enhance the
reactive and active power performance of the MG system with the help of AI algorithms.
The researchers assessed the performance of their proposed PMS technique with regard to
the regulation of the active and reactive powers. For sharing a diesel generator based on
the fuzzy logic for the active and reactive powers, the researchers proposed two simulation
scenarios. The first scenario was based on the stepped solar irradiation and wind speed
profiles, while scenario 2 was based on the solar irradiation and wind speed continuous
profile. Results showed that this algorithm achieved better stability and reliability of the
MG system. Furthermore, the active and reactive power control algorithm showed a faster
response to various activities related to the remote MG, such as frequency and rapid voltage
fluctuations related to the AC link system [99].

A novel multi-agent-based PMS was presented for the AC-MG system that included
PV, wind, fuel cells, microturbines, and battery storage for ensuring a safe, efficient,
economical, and reliable operation of the MG system. For stabilising the distributed devices,
the researchers obtained the system information regarding the average frequency and
voltage using an iterative consensus algorithm. They could acquire an optimal controller
using a three-level control, where level one was responsible for tracking of the associated
reference components. Level two helped in optimising the voltage and frequency references
of droop control and further shared the reactive and active power based on the demand.
Level three aimed for optimal scheduling. In this study, the researchers considered all
factors such as emission pollution, fuel consumption, and operational maintenance [100].

In [101], the researchers proposed and implemented an artificial neural network
(ANN)-based PMS technique for the standalone DC MG system that included a battery,
supercapacitors, and PVs. The researchers aimed to control the DC bus voltage and manage
the amount of power shared between the load and MG. They noted that this algorithm
showed a better DC bus voltage regulation (2.83 V, it satisfied the general 5% allowed range),
and improved power-sharing. Furthermore, all results could be experimentally verified
using the hardware-in-loop (HIL) on the real-time simulator from OPAL-RT Technologies.

Another ANN-based PMS was proposed in [102] for the standalone MG that included
batteries, PVs, and supercapacitors. The objective function of the study was to minimise
stress on the battery storage and maximise its lifespan. A PV model can be used for
validating and assessing the performance of the algorithm. The researchers noted that this
technique improved the life span of the battery as it could decrease the dynamic stress and
peak current. Additionally, it maximised the supercapacitor utilisation.

Another ANN-based PMS was proposed for an on-grid/off-grid MG that included
wind, PV, fuel cells, an electrolyser, and battery storage. It was developed to manage the
output of the fuel cell and an electrolyser was used for maintaining the charge of a battery
within a constant range. The simulation results indicated that this algorithm displayed a
fast response ability compared to the traditional techniques [103].

Globally, large and small research groups have started to take an interest in PMS
for MG and NG systems. In the IEEE and Elsevier database, this can be observed via
the keyword search (“microgrid” OR “nanogrid”) and (“power management system”) as
shown in Figure 9. Table 2 shows the summary of planning and optimisation practices
used for strategic, tactical, and economic reasons with regard to PMS.
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References Composition Techniques Objectives Year

[92] PV and wind MPC To reduce the operational costs
and ensure the power balance 2019

[93] PV, wind, and battery MPC
To minimise the energy costs

and maximise the life span of the
battery

2013

[94] PV, fuel cells, electrolyser, and
batteries MPC

To minimise the use of
traditional energy sources,

saving energy after using RES,
quality and economic factors

using HESS

2012

[95]
PV, wind, combined heat power
generation, microturbines, and

boilers
Linear Programming

To minimise the emissions,
overall costs, and demand

payments
2019

[96] PV, wind, and battery Lyapunov
Optimisation

To minimise the operational
costs of the MG and maintain the

outage possibility for quality
usage

2013

[97] PV, mechanical flywheel, and
battery

Simultaneous
Perturbation Stochastic

Approximation

To acquire a smooth battery
power profile and decrease the

grid energy exchange
2019

[98] PV, fuel cells, battery banks, and
ultracapacitor Dynamic Programming

To control the DC bus voltage
and manage the amount of

power shared between the load
and MG

2018

[99] PV, wind, and diesel generator Fuzzy Logic

To improve the reliability of the
system, and enhance the reactive
and active power performance

of the MG

2016

[100] PV, wind, fuel cells,
microturbines, and battery Multi-agent

To ensure a safe, efficient,
economical, and reliable

operation of the MG system
2017
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Table 2. Cont.

References Composition Techniques Objectives Year

[101] PV, batteries, and supercapacitor Neural Network

To control the DC bus voltage
and manage the amount of

power shared between the load
and MG

2020

[102] PV, batteries, and supercapacitor Neural Network
To minimise stress on the battery

storage and maximise its
lifespan

2019

[103] PV, wind, fuel cells, electrolyser,
and battery Neural Network

To manage the output of the fuel
cell and electrolyser to maintain
the charge of a battery within a

constant range

2013

6. Comparison between Energy Management Systems (EMSs) and Power
Management Systems (PMSs) Based on Architecture and Control Strategies

The EMS and the PMS techniques used for the MG and NG systems have differing
management tasks and time scales. In the case of the EMS, the major factors that need to
be considered are operational costs, fuel costs, maintenance costs, MG device lifetimes,
etc., while the major factors in the PMS include the voltage, current, and power, which can
directly affect the operational conditions [7].

In the case of the islanded MG, the EMS played a vital role as it maintained the DC
bus voltage, power quality, and constant energy feed to the load. On the other hand,
in a grid-connected MG system, the EMS is supported by the main grid that feeds the
load during any interruption that takes place in a DG. Furthermore, the PMS helps in
optimising the dynamic response of the MG under various conditions of load. It can resolve
several issues in the MG such as providing a smooth transition from islanded modes to
grid-connected modes, and vice versa. This allows a maximal utilisation of the RES and
improves the stability in the MG systems when some devices are connected/disconnected
either from or into the system [104]. Figure 10 displays the construction of EMSs and PMSs
for interconnected MGs.
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Many researchers developed control strategies for managing the MG energy in the
grid or island-connected modes. Table 3 presents a comparison between the EMS and PMS
based on control techniques used for operational purposes.

Table 3. A comparison between the EMS and PMS techniques based on control strategies.

References Strategies Power Management Energy Management

[7,105] Centralised Control

Based on PMS a centralised controller,
developed for optimising low-voltage

distribution network. The optimisation
was carried out for the interconnected

operations to maximise power exchange
using the major distribution grid and

optimise the output power for the local
distributed generations (DGs).

A smart EMS (SEMS) for reducing the
operational costs of MGs via optimal

coordination of power production for DGs
and ESSs. The researchers considered all
economic and technical constraints for

system development such as ESS
management, power forecasting, economic

load dispatch, and operational costs.

[106,107] Decentralised Control

A simple decentralised framework for
addressing the issues related to HESSs in

direct current MG, like a violation of
SOC, efficient power break, and
deviation of bus voltage. Power
fluctuations are controlled. The

supercapacitors tackle the high-frequency
power fluctuations, while the batteries

tackle the low-power fluctuations.

A decentralised EMS for electric vehicle
(EV) charging stations to control the flow of
energy between the grid and MG. The DC

bus voltage was a vital parameter for
controlling the system. For maintaining the
bus voltage at its reference value, the MPC
is used for monitoring the SOC battery. The

battery SOC presents the mode of PV
operations, i.e., bus voltage sustaining
mode, maximum power point tracking

mode, or support of grid mode.

[108,109] Distributed Control

A power distributed control process was
proposed for sharing the load power in

proportion to the distributed source
ratings. Based on the instant power of the

DGs, a voltage shift was applied to the
DC bus voltage to compensate the
voltage loss because of the droop

controller and maintain the stability of
the DC bus voltage irrespective of any

changes in the load.

An EMS was developed for managing the
HESS. The researchers proposed a new
architecture based on the multi-agent

system solution for applying important
and sensitive loads.

[110,111] Hierarchical Control

A solid-state transformer (SST)-enabled
hierarchical PMS. The researchers

assigned three-level functions, i.e., DC
bus voltage recovery, local control, and
controlling the SOC of the battery for

each level. The MG operates reliably in
the independent mode by using a

primary control. The SST is seamlessly
transferred via the enabled mode

through a secondary control.

An EMS based on 2 level controls for the
MG system composed of the ESS and PV

was proposed. It aimed to manage the
battery charging and discharging activities
to prevent overcharging and discharging,

and control SOC equalisation.

7. Limitations and Challenges

Though the EMS and the PMS improve the efficiency of any system in a distribution
scheme, they display some limitations such as power fluctuations between the MG and
main grid due to the intermittency of the RES generation and the presence of stochastic
loads that can negatively affect the reliability and stability of the power grids. Hence, a
decrease in these power fluctuations was desirable. In order to achieve this, researchers
needed to consider many things during the development of an EMS, including state of
charge, losses of power in the storage devices, response times, and power prediction of
the DG.

Power management was the main principle involved in the continuous adjustment of
the DC bus voltage. This continuous adjustment can be achieved by controlling the power
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consumption and power generation units using an efficient ESS and the utility grid (when
it is grid connected). However, the stability and flexibility of the MG-PMS are still lacking.
Additionally, the regulation of DC bus voltage, current, and power-sharing amongst the
MG and NG systems require further investigation.

Though a few research studies have developed strategies for regulating CO2 emissions,
a huge gap exists between energy efficiency and energy objectives. Thus, for minimis-
ing CO2 emissions and improving sustainable economic growth, efficient and workable
mitigation strategies must be developed.

The stochastic nature pertaining to the installed RES generators needs to be managed
via optimisation methods by guaranteeing that a reliable supply of power is maintained for
the consumers while also maintaining acceptable operation conditions for the electricity
bill, storage system, and occupants’ comfort. Thus, selecting the EMS and PMS methods is
crucial to maintain stable and reliable operation for NG and MG systems. A PMS and/or
EMS can be chosen based on the properties of the deployed system (e.g., operation modes,
topologies, and structure). However, deploying an approach does not necessarily denote
that the others are deemed to be unreliable. The main issue for the studied constraints as
well as the fixed objective pertaining to the control strategy would be to identify the utility
with regard to the deployed method.

Furthermore, there needs to be an EMS control strategy that accounts for the max-
imisation of the battery life cycle as well as electricity price variation. These two issues
enable maximising the system profitability by reducing the electricity bill and remove the
need to replace the battery storage frequently in the NG and MG systems. The key idea
here is to create a predictive and intelligent control strategy that allows for controlling the
distributed resources optimally in the NG and MG systems by taking into account multiple
constraints and objective functions simultaneously.

8. Conclusions

In general, this review defines the NG and MG configurations along with RESs such
as wind and PV and ESDs such as batteries and ultracapacitors. Moreover, the researchers
have given an elaborate review regarding the recently published studies focused on EMS
and PMS applications in MG and NG systems. Moreover, the review stressed planning and
optimisation methodologies employed for economic, strategic, and tactical purposes. The
selection of these methodologies was carried out by considering their reliability, practicality,
and resource availability with regard to the NG and MG environments. Additionally, they
have presented an overview of recent EMS and PMS techniques based on the control
objectives such as distributed, centralised, decentralised, and hierarchical strategies. They
also highlighted the major differences between the EMS and PMS approaches. The EMS
in the MG and NG system deals with economic objectives such as minimisation of the
system operational costs including emission costs, fuel costs, battery degradation costs,
etc., to increase the life span of MG devices. On the other hand, the PMS tackles technical
objectives such as improving the flexibility, stability, reliability, and quality of MG and NG
applications. Lastly, all limitations, contributions, and challenges affecting this research
topic have been discussed.
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