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Abstract: Plant projects, referred to as Engineering Procurement and Construction (EPC), generate
massive amounts of data throughout their life cycle, from the planning stages to the operation and
maintenance (OM) stages. Many EPC contractors struggle with their projects due to the complexity
of the decision-making processes, owing to the vast amount of project data generated during each
project stage. In line with the fourth industrial revolution, the demand for engineering project
management solutions to apply artificial intelligence (AI) in big data technology is increasing. The
purpose of this study was to predict the risk of contractor and support decision-making at each project
stage using machine-learning (ML) technology based on data generated in the bidding, engineering,
construction, and OM stages of EPC projects. As a result of this study, the Engineering Machine-learning
Automation Platform (EMAP), a cloud-based integrated analysis tool applied with big data and AI/ML
technology, was developed. EMAP is an intelligent decision support system that consists of five
modules: Invitation to Bid (ITB) Analysis, Design Cost Estimation, Design Error Checking, Change
Order Forecasting, and Equipment Predictive Maintenance, using advanced AI/ML algorithms. In
addition, each module was validated through case studies to assure the performance and accuracy of
the module. This study contributes to the strengthening of the risk response for each stage of the EPC
project, especially preventing errors by the project managers, and improving their work accuracy.
Project risk management using AI/ML breaks away from the existing risk management practices
centered on statistical analysis, and further expands the research scalability of related works.

Keywords: digitalized AI tool; engineering big data; EPC contract risk extraction; NLP; machine
learning; design cost estimation; design error check; change order forecast; predictive maintenance;
sustainable project management

1. Introduction

Engineering, Procurement and Construction (EPC) is a form of contract in which
a prime contractor guarantees the obligations of engineering, the procurement of materials
and equipment, construction, and a warranty for a plant project, as a lump-sum turnkey
base in most cases [1]. An EPC contract is a general contract type implemented in large-scale
and complex plant projects [2]. EPC projects are uniquely characterized by their enormous
scale, spanning various industries, including industrial plants, oil and gas mining, power
plants, or extensive infrastructure [3]. Project risk is increasing due to massive and complex
EPC projects [4]. Most EPC companies are experiencing difficulties carrying out their
projects due to a large amount of data and complex decision-making processes. While the
Dow Jones Industrial Average (DJIA) increased by more than 80% over the ten years from
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2008 to 2018, the Dow Jones Construction Index fell by 30% over the same period [5]. Due
to low productivity growth, a low degree of digitalization, and low investment in research
and development, the positive changes that other industries have shown over the past
10 to 20 years have not been seen in the EPC industry [5]. In particular, the insufficient
systematic management of the data generated during project execution causes reworks and
additional costs, which in turn cause a loss of profits [6]. In a plant project, data is generated
at each stage of the entire project cycle, from the project planning stage to operation and
maintenance (OM). The data generated during the project’s execution are classified as big
data according to the volume, variety and speed of the data generation [6]. In the fourth
industrial revolution, the amount and form of such data increases rapidly [7], and humans
will face new technology, analysis systems, platforms, and cultural challenges related to
the fourth industrial revolution.

A prediction-based decision-making approach using big data is currently used in vari-
ous fields, such as establishing future national strategies, solving social issues, improving
the efficiency of public enterprises, and strengthening the competitiveness of the private
sector, e.g., through public service innovation [8]. Along with the fourth industrial revolu-
tion, technologies using big data based on Artificial Intelligence (AI) are also required at
construction sites [9]. Therefore, it is necessary to study a system that analyzes risk factors
by applying AI and big data technology to support the utilization of the engineering data
generated in each stage of the EPC project and decision-making through it.

Machine Learning (ML) is a field that studies algorithms intended to predict and
classify based on properties learned from Training Data [10]. When data analysts input
the collected data into a system with an embedded predictive model, the data is learned
through the predictive model. When a user inputs a new document into the system in which
such an ML model is embedded, the system that reflects all of this automatically analyzes
and outputs the final prediction result. This study was carried out to predict and respond
to potential risks in an EPC project cycle, such as bidding, design, construction, and OM.
The study supports optimal decision-making by applying ML technology based on the data
generated during the project cycle. The research team developed an integrated engineering
ML platform, the Engineering Machine-learning Automation Platform (EMAP), that applies
various ML models and AI algorithms for risk analysis at each stage of the bidding, design,
construction, and OM. The authors analyzed the current level of technology development
for research that applies artificial intelligence and ML technology to each stage of the plant
project, and the development trend of the system to support the plant project. Based on
previous studies, the architecture of EMAP—an ML-based engineering integrated analysis
system—was designed. There are five modules that make up EMAP: (M1) Invitation to Bid
(ITB) Analysis, (M2) Design Cost Estimation, (M3) Design Error Check, (M4) Change Order
Forecast, and (M5) Equipment Predictive Maintenance. These five modules support the
risk analysis for plant projects at each stage of bidding, design, construction, and OM. The
algorithms constituting the five modules were introduced, and the performance of each
model was quantitatively evaluated. The project data collected for this study were used
for the training of the corresponding module of EMAP with embedded machine learning
model. Based on this training, it was designed to generate a final prediction when the user
inputs a new document.

2. Literature Review

The previous studies were divided into two groups: (1) studies that applied AI
and ML technology to each stage of a plant project for risk management, and (2) the
development status of global intelligent decision support systems in the plant engineering
field. Although this study focused on plant projects, previous studies on construction
projects with many similarities were also reviewed.
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2.1. Machine Learning’s Application to Plant Projects

Zhang and El-Gohary [11] proposed a semantic rule-based natural language process-
ing (NLP) approach for automated information extraction (IE) from construction regulatory
documents. Singh [12] introduced various techniques and the latest research on IE and
NLP techniques, and Lee et al. [13] proposed an automatic contract risk extraction model
for construction projects by applying NLP and IE techniques. Their study, which was
analyzed using the Fédération Internationale Des Ingénieurs-Conseils (FIDIC) Redbook,
showed a remarkably low rate (1.2%) of risk sentence extraction from the total number of
sentences. Lee et al. [14] developed an Invitation to Bidder (ITB) risk management model
to analyze risk factors in the bidding stage by applying Watson AI to prevent cost over-
runs of EPC projects. Li et al. [15] proposed an unsupervised Named Entity Recognition
(NER) learning method that trains a model without artificially labeled data targeting the
annotation characters in the encyclopedia.

Chua et al. [16] developed a model that applied an artificial neural network (ANN)
technique to find the project management factors for the achievement of the budget of
a construction project. They suggested that the model can be used as a tool for the
prediction of project budgets after sufficient training. Williams and Gong [17] developed
a model to predict the possibility of cost overrun in the bidding phase of a construction
project using data mining and classification algorithms. Zhang et al. [18] presented a bid
evaluation method based on big data for construction projects by analyzing project cost
data. Matel et al. [19] conducted a study on the cost estimation model of an engineering
project in which the ANN technique was applied. Their study had limited test results
due to the lack of a dataset [19]. Ahn et al. [20] conducted a performance evaluation
of the normalized case-based reasoning (CBR) model to improve the estimation of the
initial design cost of a construction project for multi-family houses. Wong et al. [21]
investigated the role of building information modeling (BIM) to improve design errors
and reworking among construction experts in China, and conducted a study to identify
seven indicators influencing design errors. Kim et al. [22] developed the Detail Engineering
Completion Rating Index System (DECRIS) to minimize reworking in the design stages of
offshore EPC projects, and verified the impact on the schedule and cost for 13 super-mega
offshore projects. Memon et al. [23] conducted a categorization study of design change
causes and influencing factors based on similarity through Principal Component Analysis
(PCA) for construction projects in Jabatan Kerja Raya, Malaysia. Samarghandi et al. [24]
developed a model which applies a regression algorithm to quantify the causative factors of
schedule delay and cost overrun based on a survey on Iranian private construction projects.
Their model showed significant differences in the construction duration and cost between
the early and late stages of the project. Khanzadi et al. [25] proposed a fuzzy cognitive
map (FCM) approach that analyzes the interrelated causes, rather than the individual
causes, of change orders that harm a construction project, while also studying change
order management. Naji et al. [26] studied the causes of change orders and their effects on
increased project costs using the Adda Boost technique for a construction project in Iraq.

Carvalho et al. [27] performed a comprehensive literature review on predictive main-
tenance applying ML techniques. Bukhsh et al. [28] proposed a model for the prediction of
the type of railway maintenance and the status of trains through an ML model that applied
a tree-based classification algorithm for the efficient maintenance of railway switches that
require continuous maintenance. Lastly, Jimenez et al. [29] proposed an ML-based predic-
tive maintenance solution using real-time monitoring data for predictive maintenance in
the shipping industry. As mentioned above, a variety of studies have been carried out that
apply ML techniques to construction and plant projects recently. However, most of the
studies were limited to individual studies on the project phases, and studies integrating
the entire life cycle of the plant project could not be found. Accordingly, this study devel-
oped a module that applied various ML algorithms to each stage of the bidding, design,
construction, and OM. An application system can analyze the entire life cycle of a plant
project through this.
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2.2. The Current Status of Engineering Decision Making Support Systems

As for the decision support system to assist the risk management of a plant project,
various systems were developed and used for each project stage. For example, Watson, de-
veloped by IBM, is an AI platform that answers questions in a natural language format [30]
and uses cognitive systems to effectively explore unstructured information [31].

Digital engineering systems for design and operation include Smart Plant by Hexagon
Intergraph, AVEVA Net, AVEVA Engineering, AVEVA Everthing3DTM by AVEVA, and Digital
Twin (ix3) by Aker Solutions [32–36]. Developed by Hexagon Intergraph, Smart Plant is
a decision support system for fast and accurate design and operation through design-related
information [32]. AVEVA’s AVEVA Engineering is a system that helps reduce design changes
and rework by detecting inconsistencies in design data [33]. AVEVA Net is an engineering
life-cycle management solution that supports the establishment of a DB of engineering
data and drawings of plants, such as processes, machinery, and piping [34]. Aker Solutions
developed a data platform and software application, Digital Twin, to integrate subsea
and topside operations [35]. Aker Solutions’ Digital Twin combines cloud computing, the
Industrial Internet of Things (IoT), ML, and AI [35], and it plays an essential role in the
monitoring and maintenance of subsea facilities when operating in the deep sea [36].

In the intelligent project management (PM) system, intelligent plant information
systems such as Intergraph Smart Cloud/SmartBuild have been developed by Hexagon
PPM [37–39]. Hexagon PPM’s Intergraph Smart Cloud/SmartBuild is a system that manages
construction sites by using ML and BIM functions, and connects them to construction
sites, servers, and mobile devices [37]. In the intelligent maintenance management system,
Siemens’ MindSphere and COMOS MRO were developed and commercialized. MindSphere,
developed by Siemens, is a cloud-based open platform that utilizes the IoT to present
optimal operation and asset management methods through device data analysis [38].
Siemens also developed COMOS MRO, a plant management support platform that applies
a 3D model and a data-based MRO (maintenance, repair, and plant operation), based on the
Web [39]. As a result of the review of the above system development cases, various systems
to support plant project management were developed and commercialized. However, they
were mainly developed for systems for design or equipment. There has been insufficient
research on a system that integrates and manages the entire project cycle, i.e., bidding,
design, construction, and OM. Therefore, this study focused on the development of a system
applying machine learning techniques based on data generated during the entire plant
project cycle. (M1) The ITB Analysis module in the project bidding stage, (M2) Design Cost
Estimation, (M3) Design Error Check, (M4) the Change Order Forecast module in the design
and construction stage, and (M5) the Equipment Predictive Maintenance module for the OM
stage were designed.

3. Framework of EMAP
3.1. EMAP Overview

In this study, EMAP, which is a ML based engineering integrated analysis system, was
developed based on data generated in the entire project cycle to analyze the risks of a plant
project. EMAP was implemented in a cloud server, and it consists of a knowledge base
for engineering data and an intelligent decision support system based on a ML platform.
The decision support system, the core function of EMAP, consists of five modules: (M1)
ITB Analysis, (M2) Design Cost Estimation, (M3) Design Error Check, (M4) Design Change
Prediction, and (M5) Predictive Maintenance of Plant Equipment.

This system also has four main features, as described as below.

• Engineering Machine Learning Platform: The existing machine learning process
required experts due to the manual work by data analysts in all of the processes,
including data input, data preprocessing, predictive model generation, and model
management. On the other hand, this study’s engineering ML platform is an auto-
mated ML platform. If the user inputs the data they want to analyze, they can generate
a predicted value with a few clicks, without a separate ML process. As a result, the
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model’s performance can be improved by quickly building an ML model, and the
model created through the model learning can be applied as an optimal model.

• Big-Data-based Knowledge Base: In this study, the engineering knowledge base
refers to a DB storing expertise accumulated through the entire cycle of the engineer-
ing industry. The various data generated in the bidding, design, construction, and
OM stages of a plant project were collected and formalized into a DB to be used as
a knowledge base. The data were registered and managed in the Project Management
Information System (PMIS) developed for this study.

• Intelligent Decision-Making Support System: This system is an application for the ex-
traction of the risks at each stage of an engineering project by applying ML algorithms
to data generated in the entire project life cycle, and by predicting the degree of risk.
It consists of five main modules: (M1) ITB Analysis, (M2) Design Cost Estimation, (M3)
Design Error Check, (M4) Change Order Forecast, and (M5) Predictive Maintenance.

• Cloud-based Integrated Platform: The cloud service refers to a service that stores data
on the Internet and allows users to use it anytime and anywhere through Internet
access without installing the necessary data on their computer [40]. EMAP provides
cloud-based support for five modules of decision support systems based on an auto-
mated ML platform specializing in the plant engineering industry. In this study, the
cloud infrastructure was prepared through cloud services provided by cloud vendors.

Figure 1 shows the conceptual diagram of EMAP’s system architecture.
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In order to develop an ML-based integrated engineering analysis system, firstly, the
framework of the entire system was established; the concepts, models and five modules
from M1 to M5 were developed; and the overall system architecture was designed based
on this framework. EMAP was developed using this procedure and verified through case
studies. This paper introduces the entire system architecture and development process of
EMAP, and it is valuable as an integrated paper introducing all five developed modules
(M1–M5). Three other papers introducing the details of each module are being prepared,
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and among them, one paper on the submodules of the ITB Analysis module (M1) was
published [41], and two others are under review or in preparation. As Choi et al. [41]
described the details of M1, in this paper, the concept and model of M1 are briefly explained.

This paper presents a proof of concept (PoC) study that was used to develop the entire
system architecture and development process of EMAP. Due to the limitations of the data
availability, the data used for each module of M1–M5 of EMAP were collected, trained,
and tested by selecting a specific object, not the entire discipline from the EPC projects. In
addition, the EMAP system developed through this study was verified through several
case studies aimed at Korean EPC contractors.

3.2. Architecture Details of EMAP

The intelligent decision support system and its five main modules mentioned above
are the core components of EMAP. Table 1 briefly shows the functions and the algorithms of
each module in the decision support system. This study divided the five modules into three
categories: (1) ITB Analysis, (2) the Design Analysis Package, and (3) Predictive Maintenance,
according to the data types and the algorithm’s nature.

Table 1. Summary of the five modules of EMAP.

Category Main Module Project Stage Functions Applied Algorithm

ITB Analysis (M1) ITB Analysis Bidding Extract contractual risks and
technical risks from ITBs

NLP, IE,
PhraseMatcher, NER,
Semantic, Bi-LSTM

Design Analysis
Package

(M2) Design Cost
Estimation

Bidding &
Engineering

Predict Man-Hour Cost for
Engineering

Decision Tree, Elastic
Net, Random Forest,
XGboost, Gradient

Boosting

(M3) Design Error
Check

Engineering &
Construction

Predict Severity of Design
Error and Schedule Delay

(M4) Change Order
Forecast

Engineering &
Construction

Predict Severity of Cost
Overrun and Schedule Delay

Predictive
Maintenance

(M5) Equipment
Predictive

Maintenance

Operation &
Maintenance

Predict Maintenance Cycle
and Parts Demand for

Equipment

The ITB Analysis category applies NLP technology to automatically extract risk clauses
from bid documents and analyze their impact on risks. Technologies such as NLP, IE,
PhraseMatcher, NER, Semantic, and Bi-LSTM are applied here. The Design Cost Estimation
predicts the design costs from the analysis of man-hour (M-H) input costs for engineers by
applying ML algorithms. The Design Error Check module uses ML algorithms to predict the
severity of possible design errors and schedule delays for each type of work by analyzing
the design error data. Using ML algorithms, Change Order Forecast predicts the severity of
cost overrun and schedule delay due to design changes by analyzing the design change
data. Design Cost Estimation, Design Error Check and Change Order Forecast were integrated
into the Design Analysis Package category. For the Predictive Maintenance category, the ML
algorithms were applied to predict the maintenance cycles and part replacement demands
by analyzing the sensor data and the maintenance records of the main facilities of a plant.

3.3. Model Developoment Process

This study was conducted according to the following process. In Section 3, the overall
architecture for EMAP’s design and development is described. Sections 4–6 describe the
main modules of the decision support system, which is the core of EMAP. The purpose
of each module, data collection, data pre-processing, model development and application
algorithms are the core part of this study. These three sections also include the validation
of the developed models through various evaluation indicators. Section 7 describes the
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system development, and Section 8 briefly describes the conclusions and limitations of this
study. Figure 2 shows the procedure of this study.
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This study was conducted in order to respond to potential risks by analyzing and
predicting risks using the data generated during the bidding, design, construction, and OM
period of a plant project to analyze data. The data for this study included the unstructured
text data and the sensor data, but excluded the drawings, tables, images and videos.

4. The ITB Analysis Module (M1)

The early detection of potential risk requirements in bid documents in the project
bidding stage is a prerequisite for successful project execution within a limited period
of time. The ITB Analysis module aims to extract the critical risk clauses of the ITB,
a bidding document, in the bidding stage of the plant project. The ITB Analysis module was
analyzed by dividing it into two groups: (1) Conditions of Contract analysis for contract
risk extraction, and (2) Scope of Works (SoW) analysis for technical risk extraction. Most
bidding documents, such as ITB, consist of unstructured text data. In order for it to be
applied to AI, text data in a natural language form needs to be converted into a form that
a computer can understand and analyze. In this module, NLP technology is applied for
this purpose. NLP is a task that enables computers to understand human language through
ML [42].

The method of extracting information in a document can be divided into a rule-based
approach and an ML approach [13]. The ITB Analysis module of this study applies both the
rule-based approach and the ML approach. Algorithms Phrase Match [43], NER [15], Syn-
tactic analysis [13], Taxonomy-based Ontology [44], Semantic analysis [11], and a Bi-LSTM
algorithm [45] were applied. This module was implemented using Python, a programming
language, and SpaCy—an open-source natural language processing library—was utilized.
Table 2 shows the functions of the ITB Analysis module and its detailed configuration.
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Table 2. The structure of the ITB Analysis module in the intelligent decision support systems.

Module Function Analysis Object Submodule Submenu

ITB Analysis

Contractual risks
extraction from ITB

Conditions of
Contract

(Commercial Part)

Critical Risk Check

Terms Frequency

Semantic Analysis
Syntactic Analysis

Context Analysis

Risk Degree Ranking

Technical risks
extraction from ITB

Scope of Works Design Parameter Comparison

Technical Risk Extraction

4.1. Data Collection of EPC Contracts

The ITB Analysis module extracts the critical risks of ITB; for this purpose, ITB doc-
uments including the contract risks and technical risks of EPC projects were collected.
A total of 19 plant contracts, including 11 onshore and 8 offshore projects, were collected for
the contract risk extraction, and a total of 10 SoW documents, including eight onshore and
two offshore projects, were collected for the technical risk extraction. These projects were
carried out from 2000 to 2018 in the Middle East, South America, North America, West
Africa, the North Sea, and Australia. These documents were pre-processed and converted
into a DB. Table 3 shows the summary of the EPC ITB documents collected for the ITB
Analysis module in consideration of the projects’ confidentiality.

Table 3. List of the collected EPC contracts and technical specification documents.

Category Analysis
Object No.

Onshore Documents
No.

Offshore Documents

Project Type Project Owner Project Type Project Owner

ITB
Analysis
Module

Conditions of
Contract

CN1 Refinery P company (NOC 1) CF1 FLNG 3 P company (NOC)

CN2 Refinery K company (NOC) CF2 Fixed
Platform S company (NOC)

CN3 Petrochemical
S company (NOC)/
E company (IOC 2)

CF3 Semi-
submersible C company (IOC)

CN4 LNG Terminal C company (Energy) CF4 FPSO 4 S company (IOC)

CN5 Combined Cycle Power
Plant K company (Energy) CF5 FPSO I & T company

(IOC)

CN6 Coal-fired Power Plant A company (Energy) CF3 FPSO T company (IOC)

CN7 Solar Power A company (Energy) CF7 FPSO T company (IOC)

CN8 Combined Cycle
Thermal Power Plant G company (Energy) CF8 TLP 5 T company (IOC)

F1 FIDIC Red 2017
Standard form of

ContractF2 FIDIC Silver 2017

F3 FIDIC Yellow 2017

Scope of
Works

TN1 Steel Plant C company (Steel) TF1 FPSO S company (NOC)

TN2 Petrochemical S company (NOC)/
E company (IOC) TF2 FPSO D company (IOC)

TN3 Refinery K company (NOC)

TN3 Refinery Expansion A company (NOC)

TN4 Refinery I company (NOC)

TN5 Oil Storage Facility K company (NOC)

TN6 Combined Cycle Power
Plant K company (Energy)

TN7 Coal-fired Power Plant T company (Energy)
1 NOC: National oil company. 2 IOC: International oil company. 3 FLNG: Floating liquefied natural gas. 4 FPSO: Floating production
storage and offloading. 5 TLP: Tension leg platform.
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Machine learning focuses on the prediction of the future after training from the current
data [10]. That is, the computer cannot automatically determine the data of situations that
have not yet occurred or rarely occur. As a result, the prediction accuracy can be improved
as it is trained with a large amount of data. In general, the training data embedded in
the system for the training of ML models cannot be accessed by general users, and access
is allowed only to related parties, such as developers and data analysts. Access to the
contract and bid documents used for the development of the EMAP system in this study
was granted access only to the system developers and administrators.

4.2. Data Pre-Processing

Most of the data in the ITB of the EPC plant project selected as the target of analysis in
this study are unstructured text data. For a computer to automatically recognize a document
written in text form, it is necessary to pre-process, and thus structure, the data so that
unnecessary information can be excluded [13]. Various computing technologies, such as
stopwords removal and stemming, are used for pre-processing for text data analysis [46].
This pre-processing is to increase the accuracy of the sentence structure analysis. In this
study, Text Tokenization, Lemmatization, POS Tagging and Dependency Parsing were
applied. Tokenization refers to the process of dividing a text into meaningful pieces, and
the divided pieces are called tokens [47]. In the spaCy library, it is divided into meaningful
pieces first through tokenization before NLP analysis using an artificial neural network.

Lemma, in linguistics, refers to the basic form of a specific word, as that is the basic
form of ‘is’ and ‘are’. In this study using spaCy’s NLP model, a method was selected
to determine the part-of-speech (POS) of each word through a statistical model—such
as an artificial neural network—when performing the lemmatization, and to restore the
lemma based on the information [48]. After the tokenization was completed, the POS was
predicted through the spaCy library, and POS tagging was performed, in which one word
is assigned one piece of part-of-speech information [49]. After the tokenization and POS
tagging, dependency parsing was performed to identify the syntactic dependency between
each word in a sentence [50].

4.3. ITB Analysis Modelling
4.3.1. Critical Risk Check (CRC) Submodule

The Critical Risk Check (CRC) module detects risks according to specific rules using
PhraseMatcher. PhraseMatcher is a function of SpaCy, a Python open-source library that
extracts the terms related to user-specified rules [51]. In this study, the PhraseMatcher
technique, which enables the automatic extraction of information through rules, was
applied to check the existence of risk clauses in the contract.

First, pre-processing was performed to separate the sentences of ITB using SpaCy’s
Part of Speech (POS) tagging and dependency parsing techniques prior to the main analysis.
After pre-processing, ITB extracts risk clauses through CRC rules. For example, the rules
were developed in this study to extract liquidated damages (LD). LD is one of the most
critical risks in EPC projects [2], a contract clause that compensates the client for their
losses if the EPC contractor fails to meet the delivery date or performance promised in
the contract. This study shows LD as an example when developing the rules for all of
the submodules under the ITB Analysis module. Choi et al. [41] explained CRC rule
for ‘Liquidated Damages (LD)’ and the related keywords from the contract risk list for
a CRC module. These rules were developed by analyzing the ITBs previously collected.
The 35 CRC rules were configured from those EPC contracts. Among the list for CRC,
Level 1 indicates major risk items in the contract, and Level 2 indicates the keywords’
associated risks. If a user wants to find a Level 1 risk clause called ‘Liquidated Damages’,
the LD-related sentences are extracted when a sentence containing one of the keywords
listed in Level 2. If the relevant risk clause does not exist, ‘No detected message’ is printed
and displayed on the module interface [41]. The CRC module was implemented to EMAP
using Python.
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4.3.2. Terms Frequency (TF) Submodule

The Terms Frequency (TF) module applies NER to tag risk terms in the relevant risk
clauses in the contract, and reports their frequencies. NER is an information extraction
technique that extracts and classifies the syntax of named entity types, such as PERSON,
ORGANIZATION and LOCATION, in the text from the text [15]. The TF module to which
the NER model is applied can present the user with a risk, such as an LD-related clause
that has not been found in a rule-base, such as PhraseMatcher. The training model to which
NER is applied learns the entity label through the training dataset. After that, the training
model can be used to analyze whether keywords belonging to the entity label exist. For the
TF analysis, the critical risk words in the EPC contract were first designated as the NER
level. After collecting the sentences with the corresponding level from the contract, it was
written as a JavaScript Object Notation (JSON) file, which was used as the training data for
the NER for learning entities. In total, 21,683 sentences were collected from 19 contracts
for the TF module in this study. The TF module performed a pre-processing for the NER
training. Furthermore, for the training of the NER model, the given data was divided into
three training datasets—Train, Validation, and Test datasets—and used.

For the training of the NER model, the data for each risk entity were written in the
JavaScript Object Notation (JSON) format and used as the learning data. There were about
20 entities used as NER training data, and at least 50 or more used sentences for each entity.
Choi et al. [41] introduced the detailed module description and development procedures
of the TF modules in this section. This study implemented the TF algorithm applied NER
using the Python programming language.

4.3.3. Semantic Analysis Submodule

Semantic Analysis is a function that extracts the critical risk clauses of EPC contracts
by applying NLP technology. Most of the risks in ITB can be extracted only by a keyword
search through the PhraseMatcher function. However, there are risk clauses that cannot
be extracted by a simple keyword-based risk search, such as fail-safe contract clauses.
Semantic analysis extracts risk clauses that CRC or TF cannot search. Semantic Analysis is
a syntactic analysis method to analyze sentence structure to extract risk by understanding
the contextual meaning. The rule-based approach was chosen due to the practical difficul-
ties of securing thousands of training datasets for the ML. In this study, the semantic rule,
an automatic risk extraction rule, was developed by analyzing the information generation
pattern of risk sentences based on 19 EPC project contracts. Based on these semantic rules
and the EPC contract lexicon, an automatic contract risk extraction model was developed.

The semantic analysis module of this study follows the rule-based general NLP
pipeline. That is, the pre-processing of the contract to be analyzed, syntactic analysis,
lexicon development, semantic rule matching, and then risk extraction were performed in
order. Figure 3 shows the process for the semantic analysis model using the semantic rule.

For Semantic Analysis, separate data pre-processing—such as text tokenization, lemma-
tization, POS tagging, and dependency parsing—was first performed. The pre-processed
data were subjected to syntactic analysis to identify the sentence’s grammatical structure,
and the Subject-Verb-Object (SVO) was extracted from the sentence. By applying the EPC
contract lexicon to the extracted SVO triple, a semantic rule was developed, and then
the risk was extracted according to whether it was matched with the rule. This module
focuses on syntactic analysis, EPC contract lexicon, and semantic rule for risk extraction.
In particular, for the development of the EPC contract lexicon, EPC contract experts and
practitioners participated in the organization of the taxonomy to which the concept of
ontology was applied [44]. This semantic analysis algorithm was systemized in EMAP
using Python.
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4.3.4. Risk Degree Ranking Submodule

Risk Degree Ranking is a submodule that provides visualization results by classifying
EPC contract sentences into five levels. The Risk Degree Ranking module of this study
predicted the risk grade of each sentence in the ITB by applying the bi-directional LSTM
algorithm of deep learning. The powerful ability of LSTM to extract advanced text in-
formation plays an essential role in the text classification [45]. Because unidirectional
LSTM only sees the past input, it has the disadvantage of preserving only the past infor-
mation [52]. Schuster and Paliwal proposed Bi-LSTM to compensate for the shortcomings
of unidirectional LSTM [52]. The Bi-LSTM model has the advantage of exploiting both
past and future information [53] by demonstrating excellent performance in sequential
modeling problems. It is widely used for classification [45]. Text pre-processing, such as
stop-word removal and word embedding, was performed prior to the risk rating of the
contract clauses. The Risk Degree Ranking module uses Bi-LSTM to perform the primary
classification with a binary classification that gives true/false according to the presence of
risk and the multi-level classification of sentences. Multi-class classification was performed
as the secondary classification. Figure 4 shows the algorithm for the classification of the
risk level of contract sentences by applying Bi-LSTM.
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For the training and testing of the Risk Degree Ranking module, 2380 sentences from
a total of five ITBs were collected. In order to determine the risk grade of the ITB sen-
tence, the data—classified into five risk levels—were organized into a dataset through the
consultation of experts in the EPC contract field, such as EPC lawyers and ITB managers.
The Keras framework was applied to implement the Bi-LSTM algorithm. The model was
trained through the training dataset, and the model was implemented using Python.

4.3.5. Design Parameter Comparison Submodule

The Design Parameter Comparison submodule targets SoW documents among the ITBs
to be analyzed. By comparing the design parameter in the document with the standard of
the design parameter inherent in EMAP, the suitability of the parameters for each piece of
equipment can be analyzed. The key to this module is to establish the parameters of the
equipment by the plant work type, and to set its range. First, a DB of the standard design
parameters for each piece of equipment used internationally in the EPC project was built,
and synonyms for these design parameters were collected in order to develop a design
parameter synonym DB. After that, the standard design parameter table was established
by combining the synonym DB with the standard design parameter DB. For the design
parameter extraction, parameters and ranges were set by experts for each plant work type.
The preset design parameters and their ranges were organized into a standard design
parameter table and embedded in EMAP. The design parameter of the SoW to be analyzed
through the comparison algorithm was compared with the design parameter embedded
in the system, and a comparison rule was created for this purpose. This comparison rule
makes it possible to identify which attribute each number represents. When the user
inputs the analysis target ITB, the parameter range value of the analysis target is compared
with the embedded parameter range. The design parameter comparison module was
implemented using Python. Figure 5 shows the overall process for the comparison of
the global standard design parameters of the plant project with the design parameters of
the ITB.
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4.3.6. Technical Risk Extraction Submodule

Technical Risk Extraction is an algorithm for preemptively responding to risks by
extracting technical risk clauses from technical specifications in the ITB. For this purpose,
this study collected the risk clauses in the technical specifications of various EPC projects,
such as offshore plants and chemical plants, and defined the risk keywords for them. The
main risk keywords of the collected technical specification were classified by their severity
criteria and classified into three groups: Strong impact, Moderate impact, and Weak impact.
A score of 3 points for Strong impact, 2 points for Moderate impact, and 1 point for Weak
impact was given, and the risk keyword group to which the impact level was assigned was
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named the technical risk lexicon. Table 4 shows the risk keyword samples classified into
three risk groups in the technical risk lexicon.

Table 4. Technical Risk Lexicon for Technical Risk Extraction.

Strong Impact Moderate Impact Week Impact

without any change order unless otherwise specified shall comply with

no additional cost unless directed otherwise mentioned shall submit

contractor’s responsibility approved by discrepancy

. . . . . . . . .
Note: due to a space limit, only the highest level of contractual risk items are listed in terms of the EPC Contracts.

Technical Risk Extraction is a module that extracts the risk of the scope of works using
the phrase-match technique of NLP. When the user inputs the technical specification to
be analyzed, the severity score of the corresponding keyword is calculated when each
vocabulary of SoW and the keyword on the lexicon are matched. In this process, by
calculating the count vector for each sentence in SoW through the CountVectorizer, it is
possible to extract the frequency of the risk keyword specified in the lexicon. Through
this process, the risk evaluation score for each sentence is calculated. The listed results
can support the ITB person in charge of analyzing the technical specifications by finding
the highest risk clause and responding to the risk. Figure 6 shows the Technical Risk
Extraction process.
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4.4. Validation for the ITB Analysis Module

In order to verify the applicability of the architecture and algorithm of EMAP, as
proposed in this study, actual data from the plant project was applied to EMAP and tested.
For information extraction result verification using NLP, a method that compares human
extraction results with machine extraction results is widely used [54,55]. In order to validate
the performance of the five submodules among the ITB Analysis modules, excluding the
Risk Degree Ranking module, subject matter experts (SMEs) with more than 10 to 20 years of
experience in the plant field were first subjected to the analysis of the ITB risk. Seven SMEs
participated in the validation, consisting of EPC executives, academia, and EPC lawyers.

The most widely used method among the verification methods for studies applying
NLP is the confusion matrix, which uses precision, recall, and the F-measure, as shown in
Table 5 below [54,55]. There are four variables in the confusion matrix: True Positive (TP),
False Positive (FP), False Negative (FN), and True Negative (TN) [54]. Table 5 shows the
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confusion matrix of previous studies for the risk extraction accuracy evaluation of the ITB
Analysis module, which was modified to fit this study.

Table 5. An example of the confusion matrix for the ITB Analysis module.

Risk Clause Extraction Results Relevant Irrelevant

Extracted True Positive (TP) False Positive (FP)
Not Extracted False Negative (FN) True Negative (TN)

Source: Zhang and El-Gohary, 2016; Zou et al., 2017; modified by the authors.

The meaning of ‘Positive’ or ‘Negative’ in the above matrix is the presence or absence
of risk in the extraction clause, respectively. In other words, if the extracted clause is
a risk clause, it is ‘Positive’, and if it is not, it is ‘Negative’. ‘True’ and ‘False’ are whether
the extraction result is consistent with an external judgment, that is, SMEs. Among the
variables shown in the confusion matrix, FP and FN are the meaning of the error in the
result. Precision can be defined as the ratio of the risk clause output through the risk
extraction model of the ITB Analysis module and the clause identified as a risk by the SMEs,
i.e., (Equation (1)).

Precision =
TP

TP + FP
× 100% (1)

Recall means the number of data that the ITB Analysis module detects for which the
actual risk clause of the contract to be analyzed is also true, i.e., (Equation (2)).

Recall =
TP

TP + FN
× 100% (2)

There is a trade-off between precision and recall. The F-measure can be defined as
a ‘harmonic mean’ between precision and recall [54,55], and can be defined as follows
(Equation (3)):

F − Measure = 2 ×
(

Precision × Recall
Precision + Recall

)
× 100% (3)

Of the five submodules, the test set for three submodules for contract risk extraction—
CRC, TF, and Semantic Analysis—was targeted for two offshore contracts: a total of
2886 records. Table 6 shows the information on two datasets to verify the three submodules.

Table 6. Dataset information for the verification of the contract risk extraction module of the ITB
Analysis module.

Dataset No. Project Name Domain Owner No. of Records

1 ‘I’ project Offshore FPSO I & T company Consortium 1864
2 ‘M’ project Offshore TLP T company 1371

Total No. of Records 2886

Among the ITB Analysis modules, five risk extraction submodules, except for the Risk
Degree Ranking submodule, were tested by applying a confusion matrix. As a result of the
performance test, it was found that the CRC submodule showed the highest risk extraction
performance with an F-measure of 87.1% among the three submodules for contract risk
extraction. The submodule that recorded the lowest F-measure shows the F-measure result
of 70.0% as the Terms Frequency. In particular, compared to the recall value of 99.3%, the
meaning of 54.0% precision extracts most of the risk values specified by experts, but 45% of
the extraction results can be interpreted as duplicate clauses. Among the results in Table 7,
‘FP’ and ‘FN’ mean errors in risk clause extraction.
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Table 7. Validation results for the five types of Risk Clause Extraction Model from the ITB Analysis module.

Testing Models Number of Extractions Performance

TP FP FN TN Precision
(Percent)

Recall
(Percent)

F-Measure
(Percent)

Critical Risk Check (CRC) 999 286 11 1590 77.7 t 98.9 87.1
Terms Frequency (TF) 1146 976 8 756 54.0 99.3 70.0

Semantic Analysis 246 32 43 2565 88.5 85.2 86.8
Design Parameter

Comparison 164 23 23 1664 87.7 87.5 87.6

Technical Risk Extraction 317 25 58 1474 92.7 84.6 88.4
Note: TP = true positive; FP = false positive; FN = false negative; and TN = true negative.

In order to verify the performance of the two submodules for technical risk extraction—
Design Parameter Comparison and Technical Risk Extraction—one SoW of a refinery plant
was selected as a test dataset. A separate dataset was applied to verify the performance
of two submodules for the technical risk extraction among the five submodules. This
dataset consists of a total of 1874 records. As a result of the verification for the Design
Parameter Comparison submodule, a relatively balanced risk extraction accuracy can
be seen, with Precision 87.7% and Recall 87.5%. As a result of the verification of the
Technical Risk Extraction submodule, the F-measure of over 80% was analyzed to be
highly consistent with the risk clause extraction result of the model and the risk of the
SMEs. Table 7 summarizes the performance test results for the five submodules of the ITB
Analysis module.

In the ITB Analysis module, the Risk Degree Ranking submodule verified the extraction
accuracy through training and testing by applying the Bi-LSTM model of deep learning.
In this study, the cleaned data used for the Bi-LSTM model training consisted of a total of
2380 sentences, and the ratio of the training data and test data among the total data was
80:20. Table 8 shows the test results for the primary and secondary classification through
the Bi-LSTM model.

Table 8. Analysis results for the primary and secondary classification using Bi-LSTM model.

Performance 1st Classification (Binary) 2nd Classification (Multi-Class)

Train set Loss: 0.132
Accuracy: 0.951

Loss: 0.527
Accuracy: 0.851

Test set Loss: 0.380
Accuracy: 0.867

Loss: 1.820
Accuracy: 0.438

As a result of the validation test of the above five risk extraction submodules and
one risk degree ranking submodule, there is a difference in risk judgment for each expert,
and accordingly, the result cannot be considered perfect. Rule-based risk extraction also
cannot develop all of the rules shown in the contract, and as a result, human judgement-like
performance cannot be expected. The ITB analysis module supports the detection of risk
clauses in the EPC bid documents, which can contribute to the reduction of the workload
when analyzing a large number of bid documents, and has also built a technical system
that can prevent human errors. In addition, it can be said that there are implications in the
fact that the contract analysis study was attempted through artificial intelligence.

5. Design Analysis Package (M2–M4)

In the EPC project, design accounts for only 5% of the total cost, but affects the
entire process, including construction, installation, maintenance, and repair [56]. The
design analysis module applies the ML algorithm to estimate the design cost through data
generated in the design and construction phase of a plant project, and to predict the impact
of cost over-run and schedule delay due to design errors and design changes. The Design
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Analysis Package consists of three modules: Design Cost Estimation, Design Error Check, and
Change Order Forecast modules. Each module performs model training using EMAP’s ML
platform. The engineering ML platform, EMAP, is a system that delivers the integrated
data stored in the knowledge base with the feature engineering, model training, and model
operation. Figure 7 shows an overview of the engineering ML platform developed in
this study. These principles were applied to the Design Analysis Package and Predictive
Maintenance modules among the decision support systems.
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EMAP’s platform chooses a predictive model type for forecasting purposes through
the engineering ML technique. Regression and deep-learning algorithms are chosen for
a supervised learning approach, and clustering algorithms are chosen for an unsupervised
learning approach. EMAP provides Decision Tree, Random Forest, Gradient Boosting, and
XGBoost as reference models for classification or regression algorithms. Table 9 shows the
various types of algorithms supported by the engineering ML platform and their functions.

Table 9. Machine learning algorithms for the Engineering Machine Learning Platform (EMAP).

Model by Purpose Algorithm Learning Method Application for Modules

Regression

Decision Tree
Random Forest Design Cost Estimation module

Gradient Boosting Predictive Maintenance module
XGBoost Supervised Learning

Classification

Decision Tree
Random Forest Design Error Check module

Gradient Boosting Change Order Forecast module
XGBoost

The Design Cost Estimation module applies a regression algorithm for engineering
M/H prediction, and the Equipment Predictive Maintenance module creates a predictive
model using a regression algorithm for the RUL prediction of a turbo fan engine, the
pump maintenance demand prediction of a wastewater treatment facility, and pump parts
demand prediction. On the other hand, the Design Error Check and Change Order Forecast
module, which applied the classification algorithm, developed an ML model using the
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classification algorithm because each target variable is categorical. This study also verified
four modules (M2~M5) by applying Decision Tree, Random Forest, Gradient Boosting, and
XGBoost algorithms that can be used for both regression and classification.

The Design Analysis Package was developed from ML prediction and classification
algorithms such as Decision Tree, Random Forest, Gradient Boosting, and XGBoost as
reference models. The decision tree algorithm has the advantage of showing the decision-
making process visually and explicitly, requiring little data processing and making it easy
to interpret and understand the results [57]. A decision tree has a faster learning and
classification speed than other decision support tools, but has the disadvantage of being
very vulnerable to overfitting problems [57]. A method to solve this problem is a random
forest. The basic goal of the random forest is to obtain the output candidates for the
input data using multiple decision trees, and to derive the best result by combining the
results [57]. ML ensemble techniques include bagging and boosting. Representative models
of bagging include Random Forest and Neural Network Ensembles, and representative
models of boosting series include AdaBoost and Gradient Boost [58]. In ML, boosting is
a sequential ensemble learning technique [59], which refers to a method of creating a more
accurate and strong learner by combining a simple and weak learner [60]. A Gradient
Boosting Machine (GBM) is a predictive model that can perform regression or classification
analysis and has the highest predictive performance among predictive ML algorithms [61].
eXtra Gradient Boost (XGBoost) is an algorithm that achieves dramatic improvements in
speed and performance by improving the disadvantages of gradient boosting, which takes
a very long time to compute because parallel processing is not supported for large data [61].
XGBoost supports both regression and classification problems, and is a popular algorithm
because of its good performance and resource efficiency [62].

Figure 8 shows the composition and function of the Design Analysis Package. The
collected design data is converted into reference data, and is then used for the ML model
training for each module. The data entered by the user is analyzed through the trained
ML model, and then the predicted values are provided. The user can select the model that
provides the best prediction value.
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The algorithms and analysis procedures used in the Design Analysis Package are
applied to the Design Cost Estimation, the Design Error Check, the Change Order Forecast, and
the Equipment Predictive Maintenance modules. The details are described in each module.
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5.1. Design Cost Estimation Module (M2)

This module is to support the bidder’s decision making by predicting the ML-based
design cost in EPC projects. The range of design cost estimation to be predicted in this
study is limited to the number of design man hours (M-H) required from the bidding to
the construction of the EPC project. For this study, design data of about 40 EPC projects in
the past were collected from EPC contractors for onshore and offshore plants, and a model
for the estimation of the design M-H was developed using this information.

5.1.1. Data Collection

For this study, the project information—such as the project type, the contract amount,
the contract period, the design cost, and the number of design hours—were collected, and
a dataset for the application of the ML model was developed based on these data. The
collected project data were converted into a table with the uniform-formatted fields, such
as the project type, amount, scale, period, and ordering party in the DB. The DB data
are divided into the plant type, project type, project field, project code, project name, site
location, scale, period, ordering party, and others. The data were used as the reference data
for the Design Cost Estimation, the Design Error Check and the Change Order Forecast modules.
Figure 9 shows the DB for the design cost estimation.
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5.1.2. Data Pre-Processing

The data pre-processing for the Design Cost Estimation module was divided into the
data transformation and feature scaling. The process of changing the format or structure of
data so that it can be applied to an ML model is called data transformation [63]. String data
was converted to integer data, and continuous variables were standardized, normalized,
and discretized. Feature scaling is a part of data pre-processing, and when the numerical
scale of the values of each feature is different, it refers to the operation of adjusting the
value range to a certain level [63]. That is, it normalizes the size and range of the features.

The Design Cost Estimation module performed the feature scaling of the data to apply
the regression algorithm. The categorical variables were dummy, and numerical variables
were scaled using four scalers: the Standard Scaler, Robust Scaler, MinMax Scaler, and
MaxAbs Scaler. The above four scaling techniques were verified with three methods:
a train-test data split, K-fold Cross-Validation, and Scikit Learn. A scaler with performance
results was selected. The performance of the scaler was verified by applying the ElasticNet
algorithm [64], and the number of cross-validations was applied ten times. When verifying
the four scalers, the performance evaluation indicators were the Mean absolute percentage
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error (MAPE) and R2 (R Square). MAPE shows the error rate for the predicted value, and it
can be interpreted that the lower the value, the smaller the error, and the closer the R2 value
is to 1, the greater the degree of linear correlation. When the selected model does not follow
the data trend, the R2 value appears negative [65]. As a result of comparing the MAPE and
R2 values, the Standard Scaler shows the best results in most verifications. Table 10 shows
the verification results for the four scalers used in the Design Cost Estimation module.

Table 10. Validation results for the four types of scaling for the Design Cost Estimation module.

Scaling Type
Split Train and Test Set K-Fold Cross-Validation

(Fold: 10)
Scikit-Learn with
Cross-Validation

1 MAPE (Percent) 2 R2 MAPE (Percent) R2 MAPE (Percent) R2

Standard Scaler 27.36 0.24 22.57 0.76 23.58 0.77
Robust Scaler 22.10 0.28 31.08 0.65 39.92 0.68

MinMax Scaler 47.57 −0.59 49.17 0.42 50.84 0.40
MaxAbs Scaler 25.74 0.22 53.8 0.34 54.82 0.31

1 MAPE: Mean absolute percentage error, 2 R2: Coefficient of determination in linear regression analysis.

5.1.3. Design Cost Estimation Modelling

The Design Cost Estimation module can generate a predictive model using regression
algorithms for the engineering of the M-H prediction. In this study, a predictive model was
created using Decision Tree, Random Forest, Gradient Boosting, and XGBoost algorithms.
Reference data scaled using Standard Scaler were used for the model training for design
time prediction. The model training aims to optimize the model by improving the model
performance through training, and it enables the optimal model to be applied when
analyzing with actual data in the future. When a user inputs new data, it is applied to the
trained and stored reference model, and after the model testing, the model with the most
optimal performance can be selected and provided to the user.

5.1.4. Validation for the Design Cost Estimation Module

The ML model applied to the design package module and predictive maintenance
module of this study was tested through the EMAP system, and due to the space limitation
of this paper, the application results of all of the models appearing on the system are
presented in a table in the validation for each module.

The evaluation of the predictive model for the design M-H estimation is the same
as the scaling validation, training and test dataset split, K-fold Cross-Validation, Scikit
Learn, and more. Three methods were applied. Twenty percent of the total data was
used for the testing of the M-H estimation module, and the cross-validation fold for the
prediction model evaluation was set as ten percent, and then tested repeatedly. MAPE,
a performance evaluation index, is an index indicating the degree of error occupied by the
prediction value, and is mainly used to verify the reliability of the regression model [66].
MAPE has a percentage value, and it can be interpreted that the closer it is to 0, the better
the performance of the regression model. The MAPE formula for the verification of the
prediction model of the design M-H estimation is given in Equation (4).

MAPE =

∣∣∣∣ (Predicted Cost − Actual Cost)
Actual Cost

∣∣∣∣× 100% (4)

Table 11, below, compares the performance of four prediction algorithms for the Design
Cost Estimation module.

As a result of the Cross-Validation, Decision Tree, a traditional ML algorithm, and
XGBoost, as a result of Scikit-Learn validation, show the lowest prediction error rate. Also,
as a result of split train and test set validation, random forest shows the lowest prediction
error rate. According to Table 8, a random forest with a prediction error rate of less than
15% can be provided to users as an optimal model.
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Table 11. Validation results of the applied ML algorithms for the Design Cost Estimation module.

Applied Algorithm
Split Train and Test Set

with STD Scaler
Cross-Validation

with STD Scaler (Fold: 10)
Cross-Validation &

Scikit-Learn with STD Scaler
1 MAPE (Percent) 2 R2 MAPE (Percent) R2 MAPE (Percent) R2

Decision Tree 16.21 0.39 20.33 0.76 28.24 0.51
Random Forest 15.15 0.52 31.00 0.67 28.50 0.70

Gradient Boosting 15.91 0.70 22.45 0.77 23.58 0.77
XGBoost 27.36 0.24 21.27 0.80 23.32 0.76

1 MAPE: Mean absolute percentage error, 2 R2: Symbol for the coefficient of determination in linear regression analysis.

5.2. Design Error Check Module (M3)

Due to the nature of the plant project, which requires the shortening of the construc-
tion period with a fast track, many design drawings must be prepared quickly, and as
a result, design errors and omissions such as interference between construction types occur
frequently. This design error is one of the major risk factors causing schedule delay and
cost increase in the design stage and the subsequent stage of construction. The Design
Error Check module aims to predict the impact of design errors and schedule delays by
determining the design errors that frequently occur in plant projects in advance. To this
end, it is a module that classifies design errors with a high frequency by applying an ML
algorithm, and it predicts design errors and the impact of unavoidable delays.

5.2.1. Data Collection

For this study, the design error data, such as crash-report-based design drawing
information generated from the 2D drawings and 3D modeling work of the past 32 plant
projects and design error types, error reasons, and project description were collected. The
detailed classification of the design error dataset was derived through consultation with
EPC design experts, and it is divided into the design error type, the design error effect, and
the schedule delay effect (refer to Appendix A, Table A1). The impact of design errors was
classified based on the degree of the cost impact affecting the type of construction, and the
impact of schedule delay was classified differently based on the total construction period
of 26 months.

5.2.2. Data Pre-Processing

The data pre-processing for the Design Error Check module was divided into data
scaling and feature selection. First, feature scaling was performed to control the distribution
of the data values in order to improve the performance of the ML model for design
error analysis. First, data cleansing was performed, such as removing duplicate values,
correcting missing values, removing outliers, linking and integrating data, and changing
data structures to create an optimal dataset. The design error check module scaled the
data through four scalers, i.e., the Standard Scaler, Robust Scaler, MinMax Scaler, and
MaxAbs Scaler, like the Design Cost Estimation module above, and the scaler showing the
best performance was selected.

One of the important considerations when selecting an ML model is feature selection,
that is, the selection of variables. Atypical text data, such as the reason for a design error,
requires the selection of the characteristics for analysis, and in order to select characteristics
from text variables, the formalization and integer vectorization of the text data must be
conducted in advance [67]. The formalization of the text data is to convert text data about
the reason for the design error into data that can be analyzed [42]. For this purpose,
pre-processing—such as tokenization, stopword processing, and headword extraction—
was performed first. In addition, integer vectorization was performed to correct the data
imbalance problem. In this study, integer vectorization generates vectors by arranging
pre-processed English and Korean text data from high to low frequency and then assigning
integers to the words with low frequency. When the number of variables is large, in most
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cases, only a few of them are related to the target variable. In order to improve the analysis
accuracy, the number of design error detections was set as a target variable and analyzed.

5.2.3. Design Error Checking Modelling

In the Design Error Check module, the number of design error detections, or the target
variable of the design error data, is a categorical variable, so classification algorithms such
as Decision Tree, Random Forest, Gradient Boosting, and XGBoost are applied to build
an ML model. The training and testing were performed by dividing the training data and
validation data in a ratio of 80:20. After learning the model, the prediction results were
checked, and as a result, the best-performing model could be provided to the user.

5.2.4. Validation for the Design Error Check Module

The model evaluation for the Design Error Check module was tested using the data
scaled by the standard scalers of four ML models, i.e., as Decision Tree, Random Forest,
Gradient Boosting, and XGBoost. In total, 80% of the data was used for the training models,
and 20% was used for the evaluation of the trained models. Tenfold cross-validation was
also used. The performance of the Design Error Check model was evaluated by applying the
Precision, Recall, and F-measure measurement methods, which are mainly used to evaluate
the performance of the ML to which the classification algorithm is applied. Table 12, below,
is the result of the comparison of the performance of the classification model with the
Design Error Check module. All four models do not show much difference in their Precision
and Recall values. Although the design error prediction rate of the four models is about
50%, performance improvements are expected after adding data in the future and for
follow-up studies.

Table 12. Validation results of the applied ML algorithms for the Design Error Check module.

Module Testing Models Applied
Algorithm

Cross Validation with STD Scaler (Fold: 10)

Precision (Percent) Recall (Percent) F-Measure (Percent)

Design Error Check

Model #1 Decision Tree 52 50 51.0
Model #2 Random Forest 53 53 53.0
Model #3 Gradient Boosting 51 50 50.5
Model #4 XGBoost 51 53 52.0

5.3. Change Order Forecast Module (M4)

Construction changes inevitably occur due to the large scale and complexity of the
plant project. In practice, design changes are commonly referred to as change orders.
This change order eventually affects the delay and cost increase due to reworking, and
is a major cause of subsequent problems such as claims. The purpose of the Change
Order Forecast module is to classify the causes of change orders to recognize the risks of
change orders in advance, and to predict the impact on the cost and schedule due to change
orders. The Designer Check module and the Change Order Forecast module are fundamentally
similar modules in the analysis of the impact of design errors and change orders on the
construction schedule and cost, semi-structured data, data pre-processing, and application
algorithms. However, there is a slight difference in the details of the reference data for
analysis, resulting in a different dataset.

5.3.1. Data Collection

The Change Order Forecast module collects data such as the types of design change by
their construction type, the reasons for the design change, the change order reports, the
revision history, PIDs, and the plot plans of the 32 plant projects that have already been
completed. The dataset for the change order analysis was defined by dividing the design
change causes by type, cost overrun, and schedule delay effect due to design changes (refer
to Appendix A, Table A2). The causes of design changes were presented in 12 types, and
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the detailed classification of the change order dataset was developed through the EPC
design expert workshop.

5.3.2. Data Pre-Processing

The data pre-processing of the Change Order Forecast module was performed in the
same way as the Design Error Check module. The data scaling was performed using
four scaling methods: the Standard Scale, MinMax Scale, Robust Scale, and MaxAbs
Scale. In order to improve the accuracy of the ML model, unnecessary variables, such as
the design ID, PID and Plot plan drawing data, were deleted using regular expressions.
A pretreatment was performed for the pre-processed text data, and feature selection was
performed through normalization and integer vectorization of the text data in the same
way as the Design Error Check module. The text data for which the feature selection has been
completed enable the identification of 12 types of change orders based on the keywords
frequently appearing in the reason for the change order. Among the change order data, the
project name, which is the project identification information, was anonymized.

5.3.3. Change Order Forecasting Modelling

Because the cause of a change order, the target variable of a change order, is a cate-
gorical variable, an ML model was constructed using classification algorithms, such as
Decision Tree, Random Forest, Gradient Boosting, and XGBoost. The cause of a change
order was classified by applying a classification model based on the reason for a change
order, and the effect on the cost and schedule was analyzed by constructing a model based
on revision history data. After each model training, the model that showed the most
optimal performance when inputting the user data was selected and provided to the user.

5.3.4. Validation for the Change Order Forecast Module

The model evaluation of the Change Order Forecast module was validated using
a classification-grouping model to which the Decision Tree, Random Forest, Gradient
Boosting, and XGBoost algorithms were applied. Tenfold cross-validation was used in the
validation. In the same way as the Design Error Check, it was tested using data scaled with
a standard scaler, and the training and the testing datasets were divided and applied at
a ratio of 80:20. In order to evaluate the performance of the Change Order Forecast module
in this study, the precision, recall, and F-measure measurement methods used in the per-
formance evaluation of classification algorithms, similar to the Design Error Check module,
were applied. In the result of the 10-fold cross-validation, the Random Forest algorithm
showed the highest prediction rate of change order detection, with an F-measure of 66.5%.
If change orders can be predicted by applying ML, it is expected to be highly useful as
a breakthrough technology that can quickly supplement design data by detecting design
errors. Table 13 shows the performance evaluation results of the four forecasting models
for the Design Error Check module and the Change Order Forecast module.

Table 13. Validation results of the applied ML algorithms for the Change Order Forecast module.

Module Testing Models Applied
Algorithm

Cross Validation with STD Scaler (Fold: 10)

Precision (Percent) Recall (Percent) F-Measure (Percent)

Change Order
Forecast

Model #1 Decision Tree 55 60 57.4
Model #2 Random Forest 66 67 66.5
Model #3 Gradient Boosting 60 63 61.5
Model #4 XGBoost 64 60 61.9

6. The Equipment Predictive Maintenance Module (M5)

Despite regular preventive maintenance and the replacement of parts to prevent
equipment failure during plant operation, there is a limit to the prevention of sudden
failure. The Predictive Maintenance module of this study uses the ML algorithm to predict the
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demand for plant equipment items requiring maintenance and to predict the maintenance
cycle, thereby increasing the facility’s utilization rate and reducing operating costs. In
this study, in consideration of the scalability of the facility to be analyzed in the future
and the additional functions to the EMAP system, the analysis was performed on rotating
machinery among plant facilities. The turbo fan engine of the aircraft and the wastewater
treatment pump of the wastewater treatment facility were selected as the target facility for
the analysis of the Predictive Maintenance module.

6.1. Data Collection

Due to the extreme control of plant equipment makers on the outflow of OM and
the run-to-failure data of equipment, it is almost impossible to collect source data from
industrial sites, and even if it is secured, a high cost must be paid [68]. In particular, the
types of OM data used in the data-driven predictive maintenance approach to which ML is
applied are complex and diverse [69], so it is important to identify the characteristics of the
collected data, and to select an analysis method accordingly. For this study, the sensor and
the maintenance data of plant facilities, which were publicly available, were collected and
used to secure a sufficient amount of data for the ML model application. The ML model
for predictive maintenance was designed and analyzed using the aircraft turbofan engine
data provided by the Prognostics Data Repository of the National Aeronautics and Space
Administration (NASA) [70]. The Turbo fan engine dataset consists of 100 engines and
the sensor data measured when these 100 engines are running. In addition, data on the
pump maintenance of domestic wastewater treatment facilities were also collected. The
pump in a wastewater treatment facility is the equipment for moving wastewater during
wastewater treatment processes. The maintenance history data and the parts demand data
for replacement were collected for the four types of pumps (inflow pumps, flow control
pumps, treated water transport pumps, and sludge transport pumps) (refer to Table A3
in Appendix A). As it is customary not to store external environmental data in domestic
wastewater treatment facilities, the environmental data was not reflected.

6.2. Dataset Generation

For the collected data, the data types were defined for each plant facility, and reference
data for each facility was created based on the same type of data. This reference data was
used as a dataset for the training and testing of the ML model after the pre-processing.
NASA’s turbofan engine data is data generated by repeatedly operating the turbofan after
setting different operating setting values until failure due to wear occurs in a total of
100 units (engines). The data was defined based on the operating setting value and the
Remaining Useful Life (RUL) variable. NASA’s turbo fan engine dataset consists of the
multivariate time series data collected until the system failures. Each time series was
collected from a different turbo fan engine, and was considered to be from the same type
of turbo fan engine. The dataset provides 20,631 data points for training, and 100 data
points for testing. Because the dataset shows the pattern that the fault rates increase as the
systems reach failures, the testing dataset that was chosen by the non-stratified random
subsampling method was provided by NASA [70,71]. The testing dataset includes the time
series data selected until a specific time prior to showing high fault rates by reaching system
failures [70]. These training and testing datasets were used in the data pre-processing
steps, such as the data transformation, scaling, and normalization to improve the ML
performance, as explained in detail in Section 6.3.

The maintenance data collected from the four pumps of the wastewater treatment
facility consist of pump operation and maintenance history data, and parts demand data.
When constructing the pump dataset, the variables for the prediction of maintenance
demand and variables for the prediction of parts demand were classified as shown in
Table A3 in Appendix A. Among the maintenance data of the pump, 987 data points for
maintenance demand forecasting and 54,795 data points for parts demand forecasting
were composed.
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6.3. Data Pre-Processing

The data used in the Predictive Maintenance module was pre-processed through data
transformation, scaling, and normalization. In addition, in the case of data with po-
tential security problems, confidential information leakage can be prevented through
de-identification processing and transformation.

For the RUL prediction of the NASA turbofan engine, the maximum possible cycle
(time) value per engine and for 24 sensor values were set as variables. Among the 25 vari-
ables (the maximum possible cycle and 24 sensor values), Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), which are data dimension reduction
methods, were used to extract the variables that significantly affect RUL. Input variable
selection using PCA is a method of converting high-dimensional data, such as images, into
low-dimensional data, and is used to reduce noise while minimizing data loss [72]. LDA is
an ML algorithm that projects data points so that data belonging to different classes can be
classified linearly, and it is used for classification and dimensionality reduction [72]. For
the turbofan engine data, both of these methods were applied to determine the variable
that has the most significant influence on the target variable, RUL.

For both the turbofan engine and the wastewater treatment pump data of the Predictive
Maintenance module, scaling was performed to adjust the properties distributed in different
ranges and sizes between the data to be distributed in a certain range. Standard Scaling,
Min-Max Scaling, Max Abs Scaling, and Robust Scaling were applied to the scale. A Ran-
dom Forest algorithm was applied to evaluate the performance of the original data and
the data refined by the five scaling techniques. As a result of various scaling performance
analyses of the turbofan engine data, 30% of the RMSE value was shown in the original
dataset scaled with the Standard Scaler, which showed the highest performance.

6.4. Predictive Maintenance Modelling

The RUL prediction of the turbofan engines, the pump maintenance demand predic-
tion of the wastewater treatment facility, and the pump parts demand prediction were
generated by applying regression algorithms (Decision Tree, Random Forest, Gradient
Boosting, and XGBoost). Figure 10, below, shows the analysis process for the prediction of the
pump maintenance cycle and parts demand forecasting for wastewater treatment facilities.
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6.5. Validation for the Predictive Mainetenance Module

The raw data used for training in the Predictive Maintenance module numbered 20,631,
and the original dataset scaled by the standard scaler was applied to the analysis. In
ML, the datasets were divided into the training and the testing datasets in order to avoid
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overfitting, and to evaluate the models after eliminating bias from the datasets [73]. In
general, 20% of the original data were allocated to the test dataset [73]. Because the turbo
fan engine dataset was time series data, there was a possibility of bias when using the
fraction of the data at a specific point in time for the test [73]. In order to avoid containing
this bias, the 100 data samples provided by NASA were used as a testing set instead of
setting a new dataset by separating a part from the original dataset [70].

Both the data for the prediction of the pump maintenance demand of the waste
maintenance facility and the data for the prediction of the parts demand were divided into
the training data and the evaluation data at a ratio of 80:20, and a performance test was
performed after the model training. All of the data were applied to the test after scaling
with a standard scaler.

The performance evaluation of a regression model, such as the RUL prediction of
a turbofan engine, was tested by setting the Root Mean Square Error (RMSE) as an evalua-
tion index. The RMSE is one of the most frequently applied indicators in regression model
evaluation, and it is used as a measure to evaluate the difference between the actual value
and the predicted value [74]. The closer the RMSE value is to 0, the better the model is
evaluated, as given by Equation (5):

RMSE =
√

mean(et2) (5)

The RUL prediction of the turbofan engines aims to predict the maintenance pattern
and cycle by predicting the engine that will fail within 30 cycles among 100 engines (units).
As a result of the evaluation of the performance of the RUL prediction model of the turbofan
engine using RMSE as an evaluation index, XGBoost was evaluated as the best performing
model, with an error rate of 20.78.

In order to verify the prediction accuracy of the model to which the XGBoost of the
lowest RMSE value is applied, the accuracy of the Confusion Matrix was selected as an
evaluation index and further tested. Accuracy, in this study, is a calculation of the ratio of
the number of actual maintenance items adopted and the number of maintenance items
detected, i.e., (Equation (6)).

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

The testing of the prediction accuracy of the turbofan engine failure by applying the
XGBoost model, which has the best performance in RUL prediction, showed Precision
89.5%, Recall 68.0%, F-measure 77.3%, and Accuracy 90.1%. It can be analyzed that the
prediction model applied with the XGBoost algorithm shows about 90% prediction accuracy
for turbofan engine failure.

The maintenance demand prediction and parts demand prediction model of the
wastewater treatment facility pump was created by applying the Decision Tree, Random
Forest, Gradient Boosting, and XGBoost algorithms. The performance tests were performed
by selecting Accuracy as an evaluation index. As a result of the performance evaluation,
the XGBoost model was found to have the best predictive rate, with an F-measure value
of 91.1% and an Accuracy of 83.9%. Table 14 shows the performance test results for each
predictive model for the predictive maintenance of the pump. In the Predictive Maintenance
module, the RUL prediction of the turbofan engine, maintenance demand prediction of
wastewater treatment facility pump, and parts demand prediction were all analyzed to
find the best performance of the prediction model applied with XGBoost.
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Table 14. Validation results of the applied ML algorithms for the Predictive Maintenance module (pump maintenance).

Applied
Algorithm TP FP FN TN Precision

(Percent)
Recall

(Percent)
F-Measure
(Percent)

Accuracy
(Percent)

Decision Tree 237 41 12 8 85.3 95.2 89.9 82.2
Random Forest 249 48 0 1 83.8 100.0 91.2 83.9

Gradient Boosting 235 44 14 5 84.2 94.4 89.0 80.5
XGBoost 246 45 3 4 84.5 98.8 91.1 83.9

7. Application Systems on the Cloud Service Platform

This chapter describes the system implementation of the framework proposed in
this study. EMAP is a cloud-based engineering data analysis system that integrates ML
platforms and decision support systems to provide for its users. In order to implement
EMAP as an integrated analysis support system, cloud computing, development S/W, and
system linkage are key. The integrated analysis system requires a variety of various S/W.
Various S/Ws, such as text analysis tools for text analysis, a Web Application Server (WAS),
an engineering ML platform, a decision support system, and a data open system, etc., have
been developed and integrated. WAS is a combination of a web server and a web container,
and the web container creates a result through an internal program when there is a client’s
request, and then returns it to the client [75]. In this study, Tomcat, which can implement
open-source software for Java Servlet and Java Server Pages technologies, was applied [76].
As EMAP’s ML automation platform provides an engineering reference model, it has the
advantage of being able to obtain predictive values without going through the separate
code work required for ML analysis by simply inputting the data in a specific format. In
other words, the tasks previously performed by data analysts can be performed at once
through the integrated analysis support system. The decision support system was built
based on the ML algorithm provided by the engineering ML platform. The five main
modules of the decision support system were developed using the Python programming
language. Python is one of the most widely used object-oriented programming languages;
it has many features, such as easy parsing when implementing NLP, which can be easily
read and understood by others, and is highly extensible [77]. The integrated analysis
system was developed using HTML, a Cascading Style Sheet (CSS), and JavaScript.

User convenience, which is an advantage of EMAP, comes from cloud computing
technology. The cloud computing in this study was built by a cloud specialist. The
cloud specialists provided the infrastructure for cloud services such as cloud storage and
basic security. The analysis process of the decision support technology was serviced by
a cloud built by a cloud specialist. The system-to-system linkage used an Application
Programming Interface (API). “API” refers to an interface made to control the functions
provided by an operating system or programming language so that it can be used by
an application program [78]. It mainly provides interfaces for file control, window control,
image processing, text control, and the like. When the data is linked, data is exchanged in
JSON format.

The intelligent decision support system, which is the core of EMAP, consists of five
main modules: (M1) ITB Analysis, (M2) Design Cost Estimation, (M3) Design Error Check,
(M4) Change Order Forecast, and (M5) Equipment Predictive Maintenance. When a user inputs
data, such as ITB or design data, the analysis results from these five modules are displayed.
The user management screen and UI were designed, and the analysis results, such as
design errors and design changes, were expressed in charts or graphs to visualize the
results quickly and intuitively. The analysis results of each module can be downloaded in
a specific standardized format, such as a CSV or an Excel file.
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8. Conclusions and Future Works
8.1. Conclusions

This study was conducted in order to predict the risk of EPC projects and support
decision-making by using ML technology. A cloud-based Engineering Machine-learning
Automation Platform (EMAP) was developed as the outcome of this study. The EMAP
developed through this study has the following characteristics. First, it is an intelligent
decision support system intended to respond to risks by extracting risk clauses at each stage
of an EPC project and predicting the resulting risks. Second, it is a big-data knowledge
base that utilizes the data generated throughout the entire project cycle, including bidding,
engineering, construction, and OM. Third, it is an ML platform developed by applying
various algorithms and techniques of artificial intelligence, such as ML, deep learning,
and NLP. Fourth, a cloud-based integrated platform was developed so that the users
could easily access the five modules through EMAP. The decision support system is the
core of EMAP, and it consists of five main modules: ITB Analysis, Design Cost Estimation,
Design Error Check, Change Order Forecast, and Equipment Predictive Maintenance. The ITB
Analysis module applied NLP techniques, such as syntactic and semantic analysis, NER,
and PhraseMatcher, to extract the risk clauses from the bidding documents and analyze the
risk impact. The Design Cost Estimation module predicts the design cost by analyzing the
engineer’s M-H by applying the ML prediction algorithm. The Design Error Check module
detects the data associated with design errors by the ML algorithm, and then predicts
possible design errors for each type of work and the impact on the schedule delay. The
Change Order Forecast module analyzes the data causing the design changes, and predicts
the impact on the cost overrun and schedule delay due to the design change using the ML
algorithm. After analyzing the sensor data and maintenance data of the equipment, the
Equipment Predictive Maintenance module predicts the equipment maintenance and parts
demand through the ML model. Each major module is implemented using Python. In
addition, in order to verify the model applied to each module, a performance test was
performed through a case study.

As a result of the performance test for the risk clause extraction of the ITB analysis
module, the F-measure of the CRC submodule was 87.1%, indicating the highest risk
extraction performance. The TF, Semantic Analysis, Design Parameter Comparison, and
Technical Risk Extraction submodules yielded F-measures of 70.0, 86.8, 87.6, and 88.4%,
respectively. Considering that most of the performance of NLP technology is at the 80%
level, it shows improved performance compared to previous studies [13]. In particular,
compared to a previous study [13] in which only 1.6% of the sentences were extracted, this
study showed a higher extraction rate and accuracy, with a sentence extraction rate of 10%
and an F-measure of 86.8%. As a result of the performance evaluation of the Design Cost
Estimation and Equipment Predictive Maintenance modules to which the regression algorithm
was applied, the Random Forest model for the Design Cost Estimation module and the
Gradient Boosting model for the Equipment Predictive Maintenance module were evaluated
to be the most optimal models. As a result of the performance test of the Design Error
Check and Change Order Forecast module to which the classification algorithm was applied,
the Random Forest model showed the highest detection accuracy compared to the other
classification algorithms in both modules. If design errors or equipment maintenance can
be detected by applying ML, higher usability can be expected, along with a faster response.

As a result of this study, it is expected to have practical functions, such as the improve-
ment of management tasks through the risk response of EPC projects. The contributions of
this study are as follows:

• It improved convenience by integrating it into a single system, rather than an individ-
ual system for each EPC project stage.

• It broke away from the existing risk management method centered on statistical
analysis by using big data generated throughout the entire project cycle, such as the
bidding, design, construction, and OM of EPC projects.
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• It presented a support model for preemptive response to future risks by identifying
risks in each stage of the project in advance.

• It improved user accessibility by developing a cloud-based integrated platform.
• It implemented an automated ML platform that does not require the support of

ML developers.
• It contributed to the scalability of research in related fields through an ITB Analysis

research attempt applying AI technology to the EPC project.
• It reduced the time and workload through the preemptive review of contractual risks

when analyzing large amounts of bidding documents.
• It reinforced omission prevention and risk response functions when reviewing con-

tracts and technical specifications.
• It prevented errors and improved the work accuracy of the person in charge of the

design through the systematic management of a project that depended only on the
experience of engineers.

• It contributed to the development of the engineering industry through the convergence
of big data and AI technologies.

8.2. Limitations and Further Works

The limitations drawn from this study and the discussion points for further research
in the future are as follows.

First, there are limitations in the sufficient data collection. This study is a big-data-
based ML integration platform that targets the entire plant project cycle, and thus the data
for the ML application is important. The collection of the data throughout the entire plant
project phase was one of the most significant challenges in conducting the research. In
particular, the contracts and cost data were difficult due to legal restrictions according to
corporate confidentiality regulations. In addition, there was a limitation that all of the
previously secured data could not be disclosed, as the security of the items that correspond
to the project confidentiality of the data provider was required. In order to resolve this, the
data provider and the researcher concluded upon a non-disclosure agreement (NDA) to
solve the legal requirements.

Second, in the ITB Analysis of this study, only unstructured data such as text were
analyzed, excluding tables and drawings in the scope of the works. Although tables
and drawings occupy a significant portion of the documents, the accuracy of table or
drawing recognition is still insufficient in the existing analysis techniques [79]. In the
future, active research on the improvement of the accuracy of table or drawing recognition
is needed. If various unstructured data —such as tables, drawings, images and videos—can
be integrated and analyzed along with the text information, big data-driven research will
be possible.

Third, the Design Analysis Package and Equipment Predictive Maintenance module (M2-
M5) in this study do not include the life cycle cost analysis at each stage. It is difficult
to generalize life cycle cost estimation processes because the maintenance frequencies
and cost of each project are different, depending on the plant type. Furthermore, there
are limitations due to data availability and confidentiality. However, if the cost data can
be collected according to plant type in the future, research on system development that
can estimate construction and maintenance costs throughout the project life cycle will
be necessary.

Fourth, in order to develop an integrated engineering analysis system based on ML,
this study established the concept and process for each of M1–M5, as well as the system
architecture, and then developed the EMAP system. In each module development process,
a case study was performed by selecting a specific part of the engineering discipline as
the PoC, but the size of the training dataset used for each module was limited due to the
data availability. The analysis results of the Design Analysis Package (M2-M4) and Equipment
Predictive Maintenance Module (M5) may not be directly applicable, depending on the plant
type, except for M1, which was introduced in a separate paper [41]. Therefore, it is limited
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to generalize the EMAP system to all types of plant projects. Nevertheless, further studies
are expected to be carried out to overcome the limitations, extend the compatibility by
plant type, and enhance the generalization. It is also expected that the results of this study
can be applied to EPC contractors in overseas countries other than South-Korea.
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Abbreviations

The following abbreviations and parameters are used in this paper:

AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
BIM Building Information Modeling
CRC Critical Risk Check
CSV Comma-separated values
DECRIS Detail Engineering Completion Rating Index System
EMAP Engineering Machine-learning Automation Platform
EPC Engineering Procurement Construction
FIDIC Fédération Internationale Des Ingénieurs-Conseils
IE Information Extraction
IoT Internet of Things
ITB Invitation to Bidder
JSON JavaScript Object Notation
LD Liquidated Damages
LDA Linear Discriminant Analysis
LSTM Long Short Term Memory Models
MAPE Mean Absolute% Error
ML Machine Learning
MRO Maintenance, Repair, and plant Operation
NASA National Aeronautics and Space Administration
NDA Non-Disclosure Agreement
NER Named Entity Recognition
NLP Natural language processing
OM Operation and Maintenance
PCA Principal Component Analysis
P&ID Piping and Instrumentation Diagram
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PM Project Management
PMIS Project Management Information System
PoC Proof of Concept
POS tagging Part of Speech tagging
RNN Recurrent Neural Networks
RUL Remaining Useful Life
SMEs Subject Matter Experts
SoW Scope of Work
SVO Subject-Verb-Object
WAS Web Application Server

Appendix A. Detailed Classification of the Dataset Configuration of the Design Data

Table A1. Classification description of the design error type and impact, and the schedule delay impact of the design
error dataset.

Class Sub-Class Description

D1 Design Concept
O1 For Operation
H1 Human Error

Design Error Type D3 Project Specification
D2 Design Standard Not implemented
C1 Company Comment
X1 Miscellaneous Error

A Safe Simple Modification wintih Scope
Design Error Impact B Marginal Cost Impact for 2-Discipline

C Serious Cost Impact for more than 2-Disciplines

Projects shorter than
26 months

Safe Delay between 0 and 1 Days
Marginal Delay between 2 and 15 Days

Schedule Delay Impact
Serious Delay for over 15 Days

Project longer than
26 months

Safe Delay between 0 and 2 Days
Marginal Delay between 3 and 24 Days
Serious Delay for over 25 Days

Table A2. Classification description of the type of design change cause of the design change dataset, and the impact of cost
overrun and schedule delay.

Class Sub-Class

Types of Design Change Cause

D1 (DWG. Addition) P1 (P&ID Change)
V1 (Valve Change) C1 (Request by Project Owner)
L1 (Line Addition) S1 (Specification Addition)
L3 (Line Change) P2 (Plot Plan Change)

L2 (Location Modification) D2 (Design Change)
V2 (Valve Addition) X1 (Miscellaneous Error)

Serious Delay over 2% of Total Schedule

Cost Overrun Impact
due to Design Change

Total Design Cost
Total Project Cost × 100

Safe Cost Overrun between 0 and 4.99% of Total Cost
Marginal Cost Overrun between 5 and 9.99% of Total Cost
Serious Cost Overrun over 10% of Total Cost

Schedule Delay Impact
due to Design Change

Total Design Time
Total Project Time × 100

Safe Delay over 0–0.99% of Tota l Schedule
Marginal Delay over 1.00–1.99% of Tota l Schedule
Serious Delay over 2% of Total Schedule
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Table A3. Classification of the maintenance demand variables and parts demand variables from the pump data.

Class Feature Category Feature Name Description

Variables for Pump
Maintenance Demand

Basic Information Basic Information

DATE Date

YR Year

MTH Month

WK Week

PUMP_UNIT Pump Name

Operating
Performance

Pump Operation

PUMPED_CNT Number of Pumping Times

OPER_TIME Operating Hours

LIBORIL_USG_QTY Cumulative Oil Usage

Maintenance Performance TARGET Planned/Unplanned
Maintenance Labels

Variables for Pump
Parts Demand

Basic Information Basic Information

DATE Date

MTH Month

PUMP_UNIT Pump Name

ITEM_UNIT Part Name

RUL Remaining Useful Life

Parts Details Quantity of Demand QTY Quantity
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