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Abstract: The effective prediction of bus load can provide an important basis for power system dis-
patching and planning and energy consumption to promote environmental sustainable development.
A bus load forecasting method based on variational modal decomposition (VMD) and bidirectional
long short-term memory (Bi-LSTM) network was proposed in this article. Firstly, the bus load series
was decomposed into a group of relatively stable subsequence components by VMD to reduce the
interaction between different trend information. Then, a time series prediction model based on
Bi-LSTM was constructed for each sub sequence, and Bayesian theory was used to optimize the
sub sequence-related hyperparameters and judge whether the sequence uses Bi-LSTM to improve
the prediction accuracy of a single model. Finally, the bus load prediction value was obtained by
superimposing the prediction results of each subsequence. The example results show that compared
with the traditional prediction algorithm, the proposed method can better track the change trend of
bus load, and has higher prediction accuracy and stability.

Keywords: variational mode decomposition (VMD); Bayesian optimization; bidirectional long
short-term memory (Bi-LSTM); power system bus load forecasting

1. Introduction

With the development of energy environment, the proportion of power consumption
on the user side in energy consumption is gradually increasing. The large-scale introduction
of distributed generation and the diversification of user behavior characteristics pose
new challenges to power dispatching planning. Because the power on the user side is
mostly collected from the bus side, accurate prediction of bus load is of great reference
significance to power planning. The bus load can be predicted by exploring the internal
connection and development law between the load influencing factors and the bus load.
Accurate load forecasting can be applied to many fields such as power system planning,
market transactions, dispatching, etc., and serves as an important basis for the work of
related departments. Electric energy consumption has become one of the most important
modes of energy consumption in the world. The accurate prediction of electric energy
consumption can also predict the future energy development trend, provide a basis for the
development of renewable energy, and help the sustainable development of humans and
the environment.

In recent years, the research on the theory of bus load forecasting has become increas-
ingly mature, and its forecasting methods can be divided into three categories: statistical
forecasting methods, intelligent forecasting methods, and combined forecasting methods.
The statistical forecasting algorithm analyzes the time series based on the implicit time
dependence and recursive relationship between the bus loads at different times, and then
obtains the short-term bus load forecast values, including time series models, gray models,
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etc. However, the time series model has a suitable prediction effect when the relationship
between load and time is linear or exponential, but the relationship between bus load and
time is irregular and does not have obvious linear or exponential relationship; thus, the
application scenarios have certain limitations. The intelligent prediction method realizes
prediction by extracting the features of the data. Typical representatives are Deep Neural
Network (DNN) [1], Support Vector Machine (SVM) [2], long and short-term memory
(LSTM) Network [3–5], DeepAR [6], N-BEATS [7], Transformer [8], etc. These methods
have the ability to model the nonlinear load process, can better adapt to nonlinear spikes
and more accurately model the data characteristics of the load, and have better forecasting
accuracy. They have become the main research direction of short-term bus load forecasting
in recent years.

With the increasing application of data preprocessing theories such as wavelet trans-
form, empirical mode decomposition (EMD) [9,10], ensemble empirical mode decompo-
sition (EEMD) [11], and variational mode decomposition (VMD) [12,13], in view of the
nonlinear and non-stationary characteristics of the load sequence, the data preprocessing
method is used to decompose the original sequence, and each sub-sequence is predicted
separately, and the prediction result is obtained by superimposing and reconstructing.
With the progress of data preprocessing methods, bus load forecasting has more process-
ing methods, and the combined forecasting method has been developed. Combination
forecasting methods can be divided into two categories. One is to weight and synthesize
the forecast results of different forecasting methods to obtain the combined forecast. The
forecast results are easily affected by weight distribution. The other is based on the non-
linearity of the bus load sequence non-stationary characteristics, using signal processing
methods such as wavelet transform, EMD, and VMD to decompose the original sequence,
separately model each sub-sequence component, and reconstruct its prediction results
through superposition to obtain the combined prediction results that meet the accuracy re-
quirements. Reference [14] uses EMD to decompose the bus load for multi-step prediction,
which has achieved ideal prediction results, but EMD is prone to mode aliasing and cannot
choose the number of decomposed components. VMD can find the optimal solution of
the natural modal function model through repeated iterations within a limited number of
times, which can effectively avoid modal aliasing and improve robustness. Reference [15]
proposed four hybrid models based on four decomposition methods, EMD, VMD, wavelet
packet transform, and intrinsic time-scale decomposition to forecast agricultural commod-
ity futures prices. The results showed that VMD contributed the most in improving the
forecasting ability.

In intelligent prediction methods, the forecasting model based on LSTM in the field of
deep learning has great prediction performance. Reference [16] improved the multi-level
gated LSTM prediction model to effectively improve the accuracy of bus load prediction.
However, the hyperparameters of LSTM are artificially set before the machine learning
model starts the learning process, rather than parameters such as weights and biases
obtained by training. The choice of hyperparameters plays a vital role in the improvement
of model performance. Therefore, it is necessary to carry out parameter adjustment work
according to different application scenarios. Hyperparameter optimization methods mainly
include grid search method, random search method, Bayesian optimization algorithm, and
so on. Among them, the grid search method is an exhaustive search method that traverses
the hyperparameter space. It has the disadvantages of being time-consuming and low
efficiency when searching in the high-dimensional space. The random search algorithm
avoids the above to a certain extent through sparse and simple sampling. However, it
still has the disadvantage of not being able to use prior knowledge to select the next set
of hyperparameters. The basic idea of Bayesian optimization algorithm is to use prior
knowledge to approximate the posterior distribution of the unknown objective function and
then adjust the hyperparameters, which significantly improve the efficiency and accuracy
of search in high-dimensional space. The data preprocessing method is selected for noise
reduction preprocessing before bus load curve prediction in order to obtain more stable
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prediction results. In reference [17], the bidirectional long-term and short-term memory
(Bi-LSTM) network is used to predict the bus load sequence, which effectively improves the
learning ability of the network to historical data. However, with the combination prediction
model dividing the complete sequence into multiple subsequences, not all sequences are
suitable for bidirectional training. Therefore, it is necessary to use the optimization method
to select the Bi-LSTM.

Based on this, a bus load forecasting method based on VMD and Bayesian Optimiza-
tion Bi-LSTM is proposed in this paper. Firstly, VMD is used to stabilize the original bus
load series, which is decomposed into a group of subsequence components with different
frequencies. Then, the LSTM neural network prediction model of each subsequence com-
ponent is constructed, the network related super parameters are optimized by Bayesian
theory, and whether Bi-LSTM is used is judged to improve the prediction accuracy of a
single model. Finally, the prediction results of each subsequence are superimposed to
obtain the predicted value of bus load. In the second part of this paper, we expound the
theoretical part of the proposed method and compare and verify the method through an
example in the third part. The example results show that compared with the traditional
algorithm, the prediction model constructed in this paper has a significant improvement in
the accuracy of single-step prediction and multi-step prediction, and can better track the
change trend of bus load.

The rest of the paper is organized as follows. Section 2 introduces the theories of
methods that are used in the bus load forecasting method of power system, which includes
VMD, LSTM, BiLSTM, and Bayesian optimization method, and establishes the VMD-
BiLSTM combined prediction model. There is a case study in Section 3 to test the model
and compare the model proposed in this paper with SVM, LSTM, Bayesian-LSTM, Bayesian-
BiLSTM, and VMD-BiLSTM methods to prove its effectiveness. The conclusion and future
studies are presented in Section 4.

2. Theoretical Framework

Here, we mainly explain the theoretical framework of the bus load forecasting in
this article.

2.1. Variational Mode Decomposition
2.1.1. Construction of Variational Mode Decomposition Function

Variational modal decomposition (VMD) is an adaptive signal processing method pro-
posed by Dragomiretskiy, which can be effectively applied to the smoothing processing of
nonlinear and non-stationary time series [13]. It iteratively searches for the optimal solution
of the variational mode, continuously updates each mode function and center frequency,
and obtains a number of Intrinsic Mode Functions (IMF) with a certain bandwidth.

In the process of VMD, each natural mode is a finite bandwidth with a center frequency,
so the variational problem can be defined as seeking k natural mode functions uk(t) and
making the bandwidth of each mode is the smallest, and the sum of each mode is equal to
the input signal f. The specific construction steps are as follows:

(1) Through the Hilbert transform, the analytical signal of the modal function uk(t)
is obtained:

[δ(t) +
j

πt
] ∗ uk(t) (1)

Among them, δ(t) is the Dirichlet function, ∗ is the convolution symbol.
(2) Perform frequency mixing on the analytical signal to transform the frequency

spectrum of each mode to the fundamental frequency band:[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt (2)
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(3) The constraints of the optimized variational model are:
min

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

s.t.
K
∑

k=1
uk(t) = X(t)

(3)

In the formula, K is the number of IMFs, {uk} = {u1, u2,..., uk} is IMFs, and {ωk} = {ω1,
ω2, ..., ωk} is the center frequency of uk.

2.1.2. Solution of Variational Mode Decomposition Function

(1) Using the quadratic penalty factor α and the Lagrangian multiplication operator
λ (t), the constrained problem is turned into a non-constrained problem.

Extended Lagrangian function expression:

L({uk}, {ωk}, λ) =
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥X(t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), X(t)−

K
∑

k=1
uk(t)

〉 (4)

(2) Initialize û1
k , ωk, λ̂1:

Iteratively update ûk, ωk, λ̂n under the condition of ω ≥ 0:

un+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûn+1
i (ω) +

λ̂n(ω)
2

1 + 2α
(
ω−ωn

k
)2 (5)

un+1
k (ω) =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(6)

λ̂n+1(ω) = λ̂n(ω) +

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(7)

Until ∑k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/
∥∥ûn

k

∥∥2
2 < ε.

By using the VMD, different scales or trend components can be decomposed from the
bus load sequence step by step to form a series of sub-sequence components with different
time scales. The sub-sequences have stronger stationarity than the original series, and
regularity help to improve forecast accuracy.

2.2. Long Short-Term Memory Neural Network
2.2.1. LSTM Operation Rules

The long and short-term memory (LSTM) network is a special modified version of
the cyclic neural network. While retaining the cyclic feedback mechanism, the topology
of the LSTM network controls the accumulation speed of information by introducing a
gating unit, selectively adding new information, and selectively forgetting. The previously
accumulated information solves the long-term dependence problem in sequence modeling.

Compared with ordinary RNN, LSTM neural network is also composed of an input
layer, output layer, and hidden layer, but its hidden layer is replaced by ordinary neurons
with memory modules containing gating mechanism. Its internal structure is shown in the
Figure 1.
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Figure 1. Internal structure of LSTM.

The memory unit ct is the core component of the LSTM memory module. It is realized
by controlling the forget gate, input gate, and output gate. It contains the long-term
memory information of the sequence. The hidden layer state ht contains the short-term
memory information of the sequence, which is updated faster than memory unit update
speed [16].

Suppose a total of k time steps of the input vector sequence are divided into x1, x2, ...,
xk according to the input time sequence, and the t-th time step is taken for analysis.

The LSTM operation rules are as follows:
(1) Update the output of the forget gate, select the historical information that the

memory unit needs to keep, and control the degree of influence of ct−1 on ct:

ft = σ(W f xt + U f ht−1 + b f ) (8)

(2) Update the two parts of the output of the input gate, select the current input
information that the memory unit needs to retain, and control the degree of influence of xt
on ct:

ft = σ(W f xt + U f ht−1 + b f ) (9)

c̃t = tanh(Wcxt + Ucht−1 + bc) (10)

(3) Update the cell status according to the input gate and forget gate:

ct = ft ◦ ct−1 + it ◦ ct′ (11)

(4) Update the output gate output, select the output information that the memory unit
needs to retain, and control the degree of influence of ct on ht:

ot = σ(Woxt + Uoht−1 + bo) (12)

ht = ot ◦ tanh(ct) (13)

(5) Update the forecast output at the current moment:

ŷt = σ(Vht + c) (14)

Among them, ft, it, and ot represent the calculation results of the forget gate, input
gate, and output gate at time t; Wf, Wi, and Wo represent the weight matrix of the forget
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gate, input gate, and output gate, respectively; bf, bi, and bo represent the weight matrix of
the forget gate, input gate, and output gate, respectively. The bias term of the forget gate,
input gate, and output gate; o is the dot product symbol of the matrix element; σ(x) is the
Sigmoid activation function of each gate:

σ(x) =
1

1 + e−1 (15)

Its value range is (0, 1). Through the conversion of Sigmoid function, the input can be
converted into probability values, so it is widely used as the activation function of artificial
neural network transmission.

When xt is input to the network, it will be processed by a tanh neural layer and three
gates at the same time as the hidden layer vector ht−1 of the previous time step. The tanh
function is a hyperbolic tangent activation function, and its expression is:

tanh(x) =
sinh(x)
cosh(x)

=
e2x − 1
e2x + 1

(16)

Its value range is (−1, 1), the output is centered at the origin, and the convergence
speed is faster than that of Sigmoid. It is usually used as the activation function of the
output gate.

The tanh layer will create a new candidate state vector ct
′. The forgetting gate ft

determines what information to discard and retain from the cell state ct−1 of the previous
time step. The input gate it determines how to update the candidate state vector. After the
cell state is updated, the output gate ot decides how to filter the new state vector ct into
output information ht.

2.2.2. Training Process of LSTM

The training algorithm of LSTM neural network mainly includes two categories: back
propagation algorithm over time and real-time cyclic learning algorithm. The concept of
backpropagation algorithm is clear and it has advantages in computational efficiency. This
paper selects this method to train LSTM neural network.

The back propagation method expands the LSTM into a deep feedforward neural
network in time sequence, and then further calculates the relevant parameter gradients
according to the error back propagation algorithm of the feedforward network, and trains
the model [18]. The LSTM network sequence expansion diagram is shown in Figure 2.

Figure 2. Sequence structure diagram of LSTM.

The specific training steps are as follows in Figure 3.
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Figure 3. Training steps of LSTM.

(1) Forward calculation of the output value of the LSTM memory module.
The ct and ht of the current time step are calculated by the gating mechanism of LSTM

and are retained for the calculation of the next time step. When the calculation of the last
step is completed, the hidden layer vector hk will be used as the output and the prediction
corresponding to this set of sequences’ value (tag value) to compare.

(2) Reverse calculation of the error item value of each memory module, including two
reverse propagation directions in chronological order and at network level.

Calculate the loss function value according to the comparison result of step 1, and
select the square sum error function as the loss function of LSTM; the expression is:

L =
1
2 ∑

i∈outputs
(ŷi − yi)

2 (17)

(3) According to the corresponding error term, calculate the gradient of each weight,
and the gradient descent method iterates the parameters including W, U, V, ct, and ht:

θ̂j = θj − α
∂

∂θj
L
(
θj
)

(18)

Through the gating mechanism and perfect parameter update rules, LSTM realizes
the selection and screening of the input information flow, and improves the processing
ability of the recurrent neural network for long sequences.

The back-propagation algorithm can compare the predicted value with the real value
by using the error function after the forward calculation, and then optimize the net-
work parameters. Therefore, the back-propagation algorithm can back calculate and
optimize many parameters of LSTM. The cyclic learning algorithm can deal with some
sequence problems, but it has serious long-term dependence problems after multi-stage
propagation—the gradient tends to disappear or explode, and it is difficult to continue
to optimize within the number of iterations in many cases. However, the introduction of
gating mechanism in LSTM solves the gradient disappearance problem and performs well
in sequence processing.
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2.2.3. Bidirectional LSTM

The bidirectional long and short-term memory (Bi-LSTM) network is derived from
the bidirectional cyclic neural network [19]. Its main feature is to increase the learning
function of the neural network for future information, thereby overcoming the defect that
the unidirectional LSTM network can only process historical information. The Bi-LSTM
mainly splits the ordinary LSTM into two directions, but the two LSTMs are connected to
the same output layer. Such a structure can provide complete upper and lower sequence
information for the input sequence of the output layer. Using a Bi-LSTM network to model
bus load forecasting is to input historical data into a forward LSTM network and a reverse
LSTM network at the same time, so as to capture a complete time series global information.
The Bi-LSTM neural network structure diagram is as follows in Figure 4.

Figure 4. Bi-LSTM Neural Network Structure Diagram.

Because the bus load has certain regularity and planning, the joint grasp of historical
and future information can better learn the characteristics and laws of the load curve.

The update formula of the back-to-forward cycle neural network layer is:

h1,t = f
(
Wh1,txt + Wh1 h1,t−1 + bh1

)
(19)

The update formula of the looping neural network layer from front to back is:

h2,t = f
(
Wh2,txt + Wh2 h2,t+1 + bh2

)
(20)

The two layers of recurrent neural networks are superimposed and input to the
hidden layer:

yt = g
(
Uh1 h1,t + Uh2 h2,t + by

)
(21)

Among them, h1, t, and h2, t are the hidden units of the front pass layer and the back
pass layer at time t, respectively; yt is the model output at time t; f (*), g(*) are optional
activation functions; Wh1,t, Wh2, t, Wh1, Wh2, Uh1, and Uh2 are the weight matrices of the
corresponding objects; and bh1, bh2, and by are the bias terms of the corresponding objects.

2.3. Bayesian Optimization of LSTM
2.3.1. Bayesian Optimization Theory
Gaussian Regression Process

In the feasible region, uniformly select points that obey the multi-dimensional normal
distribution as candidate solutions to establish a Gaussian regression model [20]: y1

...
yn

 ∼ N

0,

 k(x1, x1) · · · k(x1, xn)
...

...
k(xn, x1) · · · k(xn, xn)


 (22)
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Among them, K is the covariance matrix, x is the input value, and y is the response
output value.

Through the training set, the updated value y* is obtained according to the posterior formula:

P
(

y∗
∣∣∣y ∼ N

(
K∗K−1y, K∗∗ − K−1KT

∗

))
(23)

Among them, K∗ is the covariance of the training set, and K∗∗ is the covariance of the
newly added sample.

Update the Gaussian regression model according to the updated value:[
y
y∗

]
∼ N

(
0,
[

K KT
∗

K∗ K∗∗

])
(24)

The Gaussian regression model considers the relationship between yN and yN+1 and
establishes input and output functions to provide a search basis for parameter optimization.

Acquisition Function Process

On the basis of the Gaussian regression model, it is necessary to use the collection
function to solve the optimal solution of the function. This paper selects the expectation
improvement method to use the mathematical expectation to solve the optimal solution.

xn+1 = argmaxEIn(x) (25)

EIn(x) = En

[
[ f (x)− f ∗n ]

+
]

(26)

= (µ− f ∗n )
(

1− φ

(
f ∗n − µ

σ

))
+ σϕ

(
f ∗n − µ

σ

)
(27)

Among them, φ(x) is the probability density of the normal distribution, ϕ(x) is the
standard normal distribution about x, µ is the mean value of the input value x, and σ is the
variance of the input value x.

The expected value is used for parameter optimization, and the next optimal value is
effectively sought within a certain range, so as to find the optimal parameter within the
number of iterations [20].

2.3.2. Hyperparameter Optimization of LSTM

The hyperparameters of the LSTM neural network used for bus load prediction can
be divided into two categories: structural hyperparameters and training hyperparameters.
The structural hyperparameters mainly include the number of hidden neurons in the
network, etc [21]. The number of hidden layer neurons determines the expressive ability
of the network, but also determines whether the network is over-fitting and the network
is time-consuming. Reasonable hidden layer neurons help improve the performance of
the network’s predictive ability. The use of the bidirectional long-term memory network
improves the network’s ability to learn historical data, but it also leads to slow network
prediction and different effects. Choosing different curves to predict whether to use a
Bi-LSTM can save prediction time while ensuring prediction accuracy [22].

The training hyperparameters of the LSTM neural network mainly include learning
rate, L2 regularization parameters, etc. A suitable initial learning rate helps to significantly
improve the iterative convergence speed and prediction accuracy of deep learning models.
L2 regularization parameters are additional items of the network loss function and can
prevent the over-fitting problem to a certain extent.

In summary, this paper will use Bayesian optimization algorithm to optimize and
debug the number of hidden layer neurons of LSTM neural network, whether to use
Bi-LSTM, initial learning rate, and L2 regularization parameters.



Sustainability 2021, 13, 10526 10 of 20

2.4. VMD-Bi-LSTM Combined Prediction Model

The power system bus load itself has fluctuating characteristics and is affected by
distributed power dispatch and user-side behavior characteristics. Its curve has a certain
degree of non-linear and non-stationary characteristics. The use of conventional learning
forecasting methods to improve the forecasting accuracy is relatively limited. Considering
the outstanding advantages of variational modal decomposition technology in sequence
smoothing processing and the excellent performance of LSTM networks in time series data
modeling, this paper proposes a VMD-Bi-LSTM combined forecasting model. The specific
modeling process is as follows, as shown in the Figure 5.

Figure 5. Flowchart of VMD-BiLSTM combined prediction.

(1) In view of the non-stationary characteristics of the bus load sequence, the VMD
method is used to decompose, and each IMF component and residual component are obtained;

(2) Normalize each sub-sequence component separately, and divide the training
sample and the test sample according to the same ratio;

(3) Construct an LSTM neural network prediction model for each sub-sequence com-
ponent, and use Bayesian optimization algorithm to optimize the hyperparameters of a
single model to obtain the most suitable hyperparameter combination for decomposing
the sequence and determine whether to use Bi-LSTM in sub-sequences;

(4) Train the prediction model after hyperparameter optimization, use the trained
prediction model to perform multi-step extension prediction, and superimpose the recon-
struction to obtain the multi-step prediction value of bus load;

(5) Compared with actual data, the multi-step prediction performance of the prediction
model is evaluated by calculating error indicators.

3. Case Study

Here, we analyze the example of the method proposed in this paper. The example
takes the bus load data of Canberra, Australia, from 16 January to 22 January 2016 as
the data set, including 270 time steps (30 min as a time step). The first 244 time steps
of the data are used as the training sequence and the last 36 time steps are used as the
verification sequence.

3.1. Temporal Data Decomposition

The original bus load sequence is decomposed byVMD, and six groups of IMF compo-
nents and one group of residual components are separated step by step. The decomposition
results are shown in Figure 6.
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Figure 6. (a) Original sequence and IMFs; (b) IMFs and residual.

Decomposing the bus load sequence through variational modal decomposition shows
that the natural modal function consists of multiple sub-sequences with small amplitude
and stable frequency. Although the frequency of the remainder is relatively unstable, the
amplitude is small, which affects the overall bus load. The forecast trend change of the
load has less impact.

3.2. Hyperparameter Optinization of VMD-LSTM

On the basis of smoothing the original sequence, it is necessary to construct the LSTM
network prediction model of the sub-sequence components, and to optimize the related
structure hyperparameters and training hyperparameters. The hyperparameter results
obtained by using Bayesian optimization algorithm in this paper are shown in the Table 1.

Table 1. Hyperparameters of each subsequence.

Sequence Number of Units Using Bi-LSTM Layer Initial Learning Rate L2 Regularization

IMF 1 197 1 0.01 0.0013
IMF 2 73 2 0.011 0.00018
IMF 3 66 1 0.011 0.000021
IMF 4 64 2 0.016 0.0024
IMF 5 199 1 0.01 1.16
IMF 6 140 1 0.021 0.00018

Residual 130 1 0.01 0.00097
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3.3. Model Evaluation Index

In order to visually analyze the predicted error value, the curve correlation coefficient
is introduced to evaluate the shape difference between the predicted curve and the real
curve, and the root mean square error (RMSE) is introduced to visually analyze the devi-
ation between the observed value and the true value. The accuracy is analyzed, and the
standard error is selected as the criterion for predicting the dispersion level.

In order to evaluate the forecasting effect of the proposed bus load forecasting method,
the RMSE, NRMSE, standard error, and correlation coefficient are selected as the overall
forecasting results evaluation index of the short-term bus load forecasting method.

eRMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2

(28)

eNRMSE =

√√√√√ RMSE

mean
(

n
∑

i=1
yi

) (29)

eSTD =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(30)

ρ(A, B) =
1

N−1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(31)

where σA and σB are the standard deviation of dataset A and dataset B, respectively, and
the standard deviation formula is as follows:

σx =

√√√√√ n
∑

i=1
(xi − x)2

n− 1
(32)

where yi is the true value of bus load and ŷi is the predicted value of bus load. The correla-
tion coefficient r is used to characterize the accuracy of the prediction curve and the calibra-
tion curve. The closer the correlation coefficient is to 1, the higher the prediction accuracy.

3.4. Model Evaluation Index

After optimizing the Bayesian parameters of each sub-sequence of the bus load, the
long and short-term memory network is trained, and the next time step is predicted
in Figure 7, and the single-step prediction results of each sub-sequence component are
integrated into the historical monitoring data. The new input sequence of the single-step
forecasting model can realize the multi-step rolling forecast of each component, which
can realize the rolling forecast load value for a period of time in the future. The rolling
prediction method is used to predict multiple time steps in the future, and the prediction
results are shown in Figure 8.
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Figure 7. Subsequence training prediction results.
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Figure 8. Subsequence multi-step prediction results.

The multi-step prediction results of bus load can be obtained by superimposing the
predicted values of each subsequence, and the error analysis of each subsequence is carried
out by using the prediction evaluation index. The error results are shown in Table 2. From
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the training prediction results and multi-step prediction results, it can be seen that the
eRMSE of IMF6, which accounts for a large proportion of the original sequence of bus load,
is 1.3635 and eSTD is 0.8233 in the next 12 time steps, with small prediction error. With
the increase in prediction time steps, the prediction eRMSE in the next 36 time steps will
increase to 20.2677, eSTD and eNRMSE will also increase accordingly, but the r will increase
from 0.9521 to 0.992. The shape of the prediction curve will gradually stabilize and be
closer to the shape of the original curve. With the increase in time steps, the prediction
accuracy will decline, but the prediction curve will gradually remain stable; the shape
gradually approaches the original curve, which has suitable prediction stability.

Table 2. Performance comparison of multi-step prediction.

Sequence Time Step eRMSE r eNRMSE eSTD

IMF 1
12 0.8909 0.9917 7.6779 0.9299
24 0.7262 0.9904 −39.3426 0.7265
36 0.6631 0.9899 −33.9655 0.6387

IMF 2
12 1.1507 0.9941 −0.7562 1.0931
24 1.1929 0.9877 −2.3908 1.2184
36 1.1635 0.9834 −2.5087 1.1713

IMF 3
12 7.9527 0.9904 −0.5446 2.9920
24 6.7540 0.9882 −0.7751 4.2085
36 7.7266 0.9840 −4.8082 7.6166

IMF 4
12 5.0755 0.9999 0.0630 1.5155
24 8.7905 0.9987 2.8258 5.2502
36 14.6416 0.9869 2.2186 14.6664

IMF 5
12 15.7076 0.9999 0.2571 8.4288
24 15.2865 0.9997 −0.0559 9.7277
36 15.3647 0.9996 −0.0740 10.4295

IMF 6
12 1.3635 0.9521 0.000472 0.8233
24 7.6753 0.9585 0.0026 5.9782
36 20.2677 0.992 0.0069 14.6026

Residual
12 11.4701 0.6938 9.4522 11.9700
24 17.4227 0.6755 −1.5639 15.2513
36 15.9639 0.6827 −1.3800 15.3315

The prediction eNRMSE of other subsequences is lower than 16, the r is higher than 0.98,
the prediction error is small, and the prediction shape remains suitable. The prediction
results of a single stable natural mode function subsequence meet expectations.

The decomposition remainder of bus load has many burrs and unstable frequency,
so the prediction correlation coefficient is low. However, due to its small amplitude, its
prediction error is also small, and its impact on the overall prediction result of bus load is
relatively small.

The multi-step prediction results of each subsequence and remainder are superim-
posed to obtain the multi-step prediction curve of bus load, as shown in Figure 9. The
prediction curve fits with the real curve and has accurate prediction results. In order to
verify the prediction performance of the proposed method, different models in various
cases are selected for comparative analysis. The SVM that uses radial basis function as
kernel function for prediction is compared with LSTM to verify the advantages of LSTM
in time series prediction. The VMD-Bayesian-BiLSTM model is compared with EEMD-
Bayesian-BiLSTM model and EMD-Bayesian-BiLSTM to verify the advantages of VMD
in short-term combination forecasting. The VMD-LSTM combined prediction model and
LSTM model are selected for prediction to verify the prediction accuracy and stability
of the combined prediction model. The VMD-Bayesian-LSTM model is compared with
VMD-LSTM model, and the Bayesian-BiLSTM model is compared with the Bayesian-LSTM
model and LSTM to verify the improvement effect of Bayesian optimization theory on
LSTM prediction accuracy and the necessity to consider the applicability of BiLSTM in
sequence prediction. The comparison results are shown in Table 3 and Figure 10.
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Figure 9. Prediction results of VMD-BiLSTM.

Table 3. Performance comparison of different models.

Title 1 Time Step eRMSE r eNRMSE eSTD

VMD-Bayesian-BiLSTM
12 15.7524 0.9986 0.0052 16.4296
24 16.6947 0.9994 0.0064 16.6392
36 14.9219 0.9995 0.0055 14.8022

EEMD-Bayesian-BiLSTM
12 19.6386 0.9963 0.0073 16.4825
24 22.3739 0.9971 0.0088 17.9276
36 26.8462 0.9951 0.0091 21.9372

EMD-Bayesian-BiLSTM
12 21.8372 0.9968 0.0083 17.8362
24 25.8376 0.9946 0.0096 19.8372
36 28.3826 0.9938 0.0105 23.8261

VMD-BiLSTM
12 15.8235 0.9978 0.0052 16.4784
24 22.9478 0.9974 0.0073 20.4936
36 23.7018 0.9968 0.0088 20.9806

Bayesian-BiLSTM
12 25.6357 0.9965 0.0092 21.9365
24 30.6387 0.9956 0.0105 25.3794
36 32.7487 0.9947 0.0124 28.3748

Bayesian-LSTM
12 49.3128 0.9865 0.0163 43.5910
24 38.2263 0.9971 0.0147 35.6199
36 44.1296 0.9953 0.0163 44.7550

LSTM
12 66.9500 0.9867 0.0222 40.1171
24 80.9277 0.9933 0.0311 53.9405
36 71.9871 0.9937 0.0266 55.8161

SVM
12 86.4025 0.9777 0.0286 51.8872
24 97.3993 0.9894 0.0374 67.1863
36 89.0407 0.9891 0.0329 71.4600

The comparison of different models shows that the prediction accuracy of each time
step of LSTM is greatly improved compared with SVM. After decomposing the bus load
sequence, the eRMSE, r and other indices of VMD-LSTM are greatly improved on the basis
of the LSTM model, which greatly improves the prediction accuracy and stability. The
comparison of VMD-Bayesian-BiLSTM and EEMD-Bayesian-BiLSTM and the comparison
of VMD-Bayesian-BiLSTM and EMD-Bayesian-BiLSTM shows that the prediction error of
the prediction model considering VMD in multiple time steps is lower than that of EMD
and EEMD. With the proposal of Bayesian optimization theory, the eRMSE of 36 time steps
of combined prediction is reduced from 23.9219 to 14.9219, the eNRMSE is reduced from
0.0088 to 0.0055, the eSTD is reduced from 20.9806 to 14.8022, and the results of LSTM are
also greatly improved after Bayesian optimization. The results of the Bayesian-BiLSTM
model are improved compared with those without considering Bi-LSTM. The comparison
of various data shown in Figure 10 verifies that the VMD-LSTM combined prediction
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model based on Bayesian optimization proposed in this paper has more accurate prediction
results and more stable multi-step prediction results.

Figure 10. (a) Comparison of eRMSE; (b) comparison of r; (c) comparison of eNRMSE; (d) comparison of eSTD.

In order to verify the applicability of the model proposed in this paper, this paper
randomly selects two groups of 270 time step data sets in the bus load data set in Canberra,
Australia, in 2016, which are divided into data set 2 and data set 3 for verification. In order
to eliminate the regional influence, three groups of 270 time step data sets are randomly
selected from the 2014 Beijing bus load data set, namely data set 4, data set 5, and data set
6, and their errors are tested in Table 4.

Table 4. Test of different data sets.

Title 1 Time Step eRMSE r eNRMSE eSTD

Data set 1
12 15.7524 0.9986 0.0052 16.4296
24 16.6947 0.9994 0.0064 16.6392
36 14.9219 0.9995 0.0055 14.8022

Data set 2
12 16.8362 0.9993 0.0058 16.4784
24 17.9378 0.9987 0.0078 17.9387
36 17.9373 0.9989 0.0083 17.9272

Data set 3
12 15.9327 0.9991 0.0055 16.9365
24 16.9372 0.9989 0.0067 18.3794
36 18.8372 0.9988 0.0093 19.3748

Data set 4
12 17.3128 0.9995 0.0163 18.5910
24 18.2263 0.9988 0.0147 19.6199
36 19.1296 0.9985 0.0163 21.7550

Data set 5
12 17.8362 0.9993 0.0087 18.8362
24 19.8367 0.9983 0.0093 20.9837
36 21.8272 0.9969 0.0128 22.9472
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Table 4. Cont.

Title 1 Time Step eRMSE r eNRMSE eSTD

Data set 6
12 18.8367 0.9991 0.0115 19.8362
24 18.9272 0.9992 0.0134 20.9372
36 20.8367 0.9983 0.0176 21.9272

Average Value
12 17.0845 0.9992 0.0088 17.8513
24 18.0933 0.9989 0.0097 19.0830
36 18.9149 0.9985 0.0116 19.7889

It can be seen from Table 4 that through the test of multiple groups of randomly
selected data in the same time step, the error value is always controlled in a low range, and
the average error of six groups of data has suitable prediction results. This shows that the
proposed method has appropriate prediction stability and adaptability.

4. Conclusions and Future Studies

Aiming at the current research hotspot in the field of deep learning, this paper studies
the bus load forecasting, establishes the bus load forecasting method based on VMD-
BiLSTM, and draws the following conclusions:

(1) The VMD method is used to deal with the non-stationary characteristics of bus
load series and reduce the interaction between different time scale information, which
is conducive to further mining the characteristics of original series and improving the
prediction performance of the model;

(2) The cyclic network structure and gating mechanism of LSTM neural network
are used to capture the temporal correlation of each sub sequence component, so as to
track the change trend of bus load more effectively. Compared with other models, the
VMD-LSTM combined prediction model has a significant improvement in multi-step
prediction accuracy;

(3) Bayesian optimization algorithm is used to optimize the super parameter combina-
tion of LSTM neural network to overcome the adverse effect of empirical selection on the
improvement of model prediction performance;

(4) Bayesian optimization considers the applicability of the sequence to the bidirec-
tional neural network. While using the Bi-LSTM network to enhance the training ability,
considering the applicability of the sequence, the prediction performance of the network
has been optimized and improved.

This method has certain feasibility in the field of bus load forecasting, can be applied
in the direction of energy consumption forecasting and power production planning, and
is conducive to the planning and development of clean energy in the future and the
sustainable development of energy.

The model proposed in this paper has achieved suitable results in short-term pre-
diction, but it is uncertain whether it can ensure the prediction accuracy and stability in
long-term prediction when the data support is sufficient, and whether it is adaptable in
other areas. Due to time constraints, this paper does not compare it with ETS, ARIMA, and
Thet to reflect the optimization performance. In the future, this proposed model can be
implemented in different areas to validate its effectiveness and compared to alternative
approaches and stronger baselines. Moreover, by taking a new variety of data input for
sustainability studies, the model can be implemented for carbon emission forecasting. The
author will study and optimize the excellent prediction methods in the field of machine
learning in order to establish an accurate prediction model that can be applied in the field
of sustainability.
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Nomenclature

δ(t) The Dirichlet function
K The number of IMFs/the covariance matrix
uk IMF
ωk The center frequency of uk
α The quadratic penalty factor
λ (t) The Lagrangian multiplication operator
ct The memory unit
ht The hidden layer state
xk The input vector sequence
ft The calculation results of the forget gate
it The calculation results of the input gate
ot The calculation results of the output gate
Wf The weight matrix of the forget gate
Wi The weight matrix of the input gate
Wo The weight matrix of the output gate
bf The weight matrix of the forget gate
bi The weight matrix of the input gate
bo The weight matrix of the output gate
o The dot product symbol of the matrix element
σ(x) The Sigmoid activation function of each gate
x The input value
y The response output value
y* The updated value through the training set
K* The covariance of the training set
K** The covariance of the newly added sample
φ(x) The probability density of the normal distribution
ϕ(x) The standard normal distribution about x
µ The mean value of the input value
σ The variance of the input value x

Abbreviations
DNN Deep Neural Network
SVM Support Vector Machine
IMF Intrinsic Mode Functions
LSTM Long Short-term Memory
Bi-LSTM Bidirectional Long Short-term Memory
EMD Empirical mode decomposition
VMD Variational mode decomposition
RMSE Root mean square error
NRMSE Normalized root mean square error
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