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Abstract: Cross-border e-commerce, involving international product transactions via online and
mobile platforms, is growing at a dramatic rate around the globe. One of the main concerns of
brand firms is preventing counterfeit products from being sold under their names on e-commerce
platforms. Counterfeit goods not only create economic losses to both the supply and demand sides,
but also undermine efforts to improve sustainability. Proliferating counterfeits harm the brands of
supply firms and trust in selling e-commerce platforms. In addition, they discourage participants in
the supply chain from investing in social and environmental sustainability. If end-customers have
access to detailed and comprehensive product information with a traceability system that can help
overcome information uncertainty and asymmetry, losses can be prevented. The result of the pilot
test has shown that securely shared in-depth product information among supply chain stakeholders
from the supply side to end-customers can help prevent counterfeit goods from proliferating further
by enabling consumers to determine the authenticity of products and report forgeries before paying.

Keywords: information asymmetry; cross-border e-commerce; traceability; counterfeiting prevention;
encrypted QR code; Blockchain; PoET algorithm; Sawtooth system

1. Introduction

The growing use of the Internet has disrupted many existing business models and
led to the introduction of innovative new businesses, such as e-commerce, which is a key
feature of the modern digital economy. As cross-border trade volume has increased, global
transactions and government enforcement has compelled many e-commerce platforms to
comply with regulatory mandates. However, when it comes to cross-border e-commerce,
platforms frequently fail to monitor agents, distributors, business partners, supply inter-
mediaries, and other third-party intermediaries because of the complexity of supply and
distribution channels [1]. The lack of supply side traceability reduces customers’ trust in
platforms, resulting in economic and reputation damage to stakeholders.

A supply chain is a complex network in which a variety of participants coordinate
tasks and exchange information [2]. After SCM systems were first introduced in 2000, most
firms have adopted them to strategically manage the flow of goods, from raw materials to
final products [3]. Despite rapidly increasing cross-border transactions and end-customers’
desire to instantly confirm product origin, ingredients, and manufacturers, existing SCM
methods, including manual data entries, have been unable to satisfy real-time data ex-
changes [4] while maintaining the data integrity of supply chains. Because of outdated
SCM functions, inconsistent data taxonomy and ways of exchanging data, vague fears of
product information leakage, and unknown threats [5], many participants in supply chains
are reluctant to share their product data with end-customers.

In the meantime, as more consumers have become eco-conscious and understand
how their buying decisions impact the environment, demand for more comprehensive
information about products has rapidly increased. Both business and personal customers
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who buy consumable goods via e-commerce platforms frequently ask for information
on raw material suppliers, ingredients, and distribution channels of departure countries,
valuing such transparency [6] more than ever before. The growing sensitivity of consumers
to supply chain data and information is a positive step from the perspective of sustainabil-
ity, because fake information and the uncontrolled distribution of counterfeit goods has
undermined the efforts of firms who attempt to follow the rules in their supply chains, in
the end, consumers have to pay a higher social and environmental price [7].

While brand firms have worked to establish a positive name and values by following
sustainable and ecological business practices, a massive number of counterfeiters have
been detected as the volume of cross-border transactions has grown. The case of Asiago [8]
is an example. Not only the food industry, but in many other industries, including phar-
maceuticals, luxuries, and apparel, counterfeit products harm companies’ trustworthiness
and cost customers’ money and even health. Since forged products can be mistaken for the
originals in terms of appearance, they are subject to strict regulation and checks. However,
more advanced technological solutions are also imperative, considering the volume of
cross-border e-commerce transactions.

For instance, as concerns about food security have increased, a food traceability system
based on Blockchain technology was developed [9] that can trace the entire supply chain in
real time, as well as eliminate the dubious intervention of middlemen. In many Blockchain
feasibility tests around the world, it has been reported that Blockchain technology can
effectively filter fraudulent interventions and counterfeit goods, thanks to its technological
characteristics, such as digital signature and validation [10]. As the supply chains of firms
in the global e-commerce environment have become increasingly disaggregated, moving
away from domestic control [6], brand value and profits of them can be increasingly
damaged by forgery behaviors. Brand firms, including manufacturers and platforms, are
now seeking ways to protect their value in securely sharing product information across
their direct and indirect value chains.

While there is a growing literature on Blockchain and its potential to promote sustain-
ability by boosting traceability and transparency, and better coordinate complex global
value chains [11], it is still rare to find concrete examples showing how best to exploit
Blockchain characteristics, traceability, and transparency, in order to prevent the distribu-
tion of counterfeit goods.

It is argued in this paper that Blockchain has a digital recording mechanism suited
for dealing with the enhanced complexity of supply chains. In addition, it is suggested
that complementing Blockchain with authentication tags enables product information to be
securely shared among supply chains stakeholders and end-customers, thus significantly
removing counterfeit goods from e-commerce platforms.

The research focuses on how to exploit the technological features of Blockchain in
order to solve information uncertainty and asymmetry resulting in counterfeiting and
economic losses of the weakest SCM participants including the end-customers within the
research scope of green SCM since counterfeiting harms firms, particularly those who
have invested considerable amounts of technological and economic resources in efforts
to comply with sustainable and ecological rules and standards. The rest of the paper is
organized as follows. Section 2 reviews Blockchain technology and its applications in
the context of green supply chain management. Section 3 explores the system design
and the pilot test results of cross-border traceability system based on Blockchain and
complementary technologies. It introduces the system configurations for cross-border
data sharing with end-customers, and Blockchain’s complementary technologies, such as
encrypted QR Codes and PoET consensus algorithms. Section 4 discusses the results of the
pilot test and the benefits and limitations of the proposed system. It analyzes and evaluates
the performance of the system based on various factors, including hardware, block timing,
network latency, and the confirmation of product information abroad. Section 5 concludes
the work and the contributions and proposes possible avenues for future research.
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2. Theoretical Background
2.1. Counterfeiting from the Perspective of Green SCM
2.1.1. Green Supply Chain Management

Since 1994, when the first retail Internet transaction was successfully performed [12],
global e-commerce sales have annually increased by almost 30 percent [13]. In 2019, world-
wide retail e-commerce sales amounted to USD 3.53 trillion [14]. This phenomenon is
mainly due to giant platforms such as Amazon, Alibaba, JD.com, and Pinduoduo [15].
As online shopping has become one of the most popular retail activities in the COVID-19
era, the business frontiers of e-commerce have naturally grown beyond domestic bor-
ders [16–18]. Today, cross-border e-commerce is everywhere.

Cross-border e-commerce is a type of international e-commerce in which transactions
are conducted via online and mobile platforms [19] across domestic borders. In a world
where Internet-based transactions are common, managing business relationships is critical
to the success of businesses, and a well-managed supply chain, which allows intra and
interfirm integration, affects every aspect of business activity [3].

According to the Global Supply Chain Forum, supply chain management (hereinafter
referred to as SCM) is defined as the integration of key business processes from end users
through original suppliers who provide all the value, including products, services, and
information, to supply chain participants [20]. SCM is the management of all of the value
flows of those business relationships and is distinguished from logistics management in
that it does not encompass suppliers who provide raw material to the manufacturer, or
multiple layers of processes within and across companies outside the direct marketing
processes [21]. However, if it is presumed that SCM encompasses all of the firms in the
whole supply chain, from raw material provider to the end-customers, the dimensions of
SCM can affect productivity [22]. For this reason, it is necessary for a firm to decide on who
the primary SCM participants are [3] by adding critical values to the business processes.

Recently, as climate change has increasingly impacted daily life, the public has be-
come more aware of environmental issues, and accordingly multinational manufacturing
firms have become more concerned with managing their supply chains [23,24]. Operating
without firm control over its own supply chain can impact corporate social responsibil-
ity, which negatively impacts product quality and innovation. From this perspective,
scholars consider ecological consideration an important management factor of supply
chain [25–27] and have called for green awareness in a variety of aspects including product
and process design [28,29], manufacturing [27,30], and purchasing [31]. Customers and
governments [32,33] have begun to raise more green issues and standards, in return more
companies have started to incorporate green policies and efforts throughout their supply
chains, such as eco-labeling and green advertising [34]. Even though such firms’ green
practices are basically business oriented in terms of market regulatory compliance, brand
promotion, and competitive advantages, the ripple effect on the supply chain has influenced
more SCM participants [22]. With the increasing awareness of social and environmental
responsibility [35], green practices [27,31,36] have been incorporated into the SCM of firms.
Although it is argued that some green behaviors, such as green purchasing, have a negative
effect on organizational performance [25], practicing green activities usually increases
the environmental and financial performance [37,38] of firms due to the well-monitored
supply chains. There is little doubt that sustainable and green practices are value adding to
business, and opening business opportunities, especially for consumer brands [39].

It is no doubt that green supply chain management (hereinafter, referred to as GSCM)
is related to firms’ comprehensive efforts to improve performance along their supply
chain [40]. Thus, GSCM is broad and holistic [22]. It is not only about greening primary
business processes with respect to environmental issues, but also includes social factors
such as labor and human resource practices [41] and many other CSR practices [23–25]
including diversity, human rights, and safety issues [36]. While successful GSCM cases can
be found in many industries, from consumer goods, foods [39], and pharmaceuticals [24,40]
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to automobiles [42], it is also undeniable that firms’ efforts to pursue GSCM are frequently
undermined by a variety of offensive behaviors, including counterfeiting and forgeries.

2.1.2. Counterfeiting Issues

Coupang, founded in 2010 and funded by the SoftBank Vision Fund with about
2 billion dollars in 2018, is currently the largest e-commerce retailer in South Korea. South
Korea has one of the highest rates of Internet penetration and smartphone adoption in the
world, and hence has become a lucrative market for e-commerce platforms [43]. As the
trading volume of Coupang, including cross-border transactions via its open market, has
dramatically increased, customers’ outcry over counterfeit goods has also rapidly grown,
in spite of its sizable investment in SCM innovations and unrivaled consumer offerings.

Counterfeit issues plague various industries including manufacturing [44–46]
foods [8,9,47], dairies [48], pharmaceuticals [49–54], 3D-printed goods [55], and luxu-
ries [56,57] and also degrade the credibility of intangible assets [10,58,59] including a
variety of certifications such as HACCP, organic ingredients, energy saving, eco marks,
fair trade, anti-child labor, Forest Stewardship Council (FSC), Marine Stewardship Council
(MSC), and many others. Nonetheless, it is still rare to find preemptive measures to cope
with consumer losses caused by buying fake goods.

In most cases, e-commerce customers rarely have the ability to know in advance
whether they are buying genuine goods or not, and thus tend to rely on e-commerce
platforms’ fame and credibility. On the e-commerce firms’ side, they have made efforts
to drive fake products off their platforms and SCM, by hiring dedicated personnel, by
operating a 24 h monitoring system, and by setting sanction standards for the sale of
counterfeit goods. For example, if a product being sold is found to be counterfeit, the
sellers are expelled from the platform for good.

However, these measures are far from ex ante prevention capable of prescreening
before payment. Fake goods are frequently marked with “looking like genuine” barcodes
which makes it difficult and takes a while for customers and the firms to acknowledge
and judge fakeness. Even though it is a criminal offense under the criminal laws of
many countries when sellers deceive consumers with fake products, counterfeit goods are
becoming a worse headache in online transactions. Not only institutional measures but
also technological methods are required to prevent forgery behaviors, since counterfeiting
is found across SCM, from raw materials to marketing, and from country to country, across
e-commerce platforms.

In the case of Shopify, a newly rising e-commerce firm [46] in the US, faulty goods
problems have increased as fast as its growth rate, and the consequences have gone beyond
damaging the brands and reputations of the original firms, to even putting people’s lives
in danger [48]. Despite these consequences, counterfeiting has become a fast-growing
lucrative business of more than USD 600 billion value annually [49]. The International
Chamber of Commerce estimates that the size of counterfeiting and piracy will reach USD
4.2 trillion by 2022. In the case of pharmaceutical counterfeiting, the WHO estimates that
10 [51] to 30 percent of drugs [53] on the global market are counterfeit, and the situation
is particularly serious in developing countries [49,51–53] due to the invisibility of supply
chain systems.

Growing forgery behavior is not only problematic in the food and pharmaceutical
industries but also in many unexpected industries, including additive manufacturing [55],
luxury fashion [56], and others [57]. It leads to a devaluing and economic loss of legiti-
mate firms, what it is worse is that the raw materials or ingredients are from unknown
sources [52], and faulty foods, dairies, and drugs can pose a significant threat to people’s
lives [8], with multiple fatal accidents [48,50,54] from industrial dyes, and other tainted
and contaminated ingredients [9].

At the same time, counterfeiting documents including welfare vouchers [58], insurance
papers [59,60], and L/C [10] have also created serious social distrust [8,9] of the integrity of
policies and institutions. Fake certificates undermine the sustainability efforts of original
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brands [47] and the credibility of public institutions at the same time, since inappropriate
goods can never meet environmental regulations or supervision guidelines.

As forgery behaviors have proliferated, customer awareness has been accordingly
raised, and today more people want transparency about the processed and agricultural
products they consume [61]. Product labels and manufacturing and logistics informa-
tion [47] have become matters of concern, and consumers have started to ask for transparent
traceability across the SCM, especially in crossing borders in the e-commerce world.

Manufacturing firms and e-commerce platforms also want to protect their brand
value and profits by preventing illegal events associated with the supply chain from
the beginning [5] in spite of rather slow transactions and low visibility with the current
SCM [45].

Regarding the counterfeiting of tangible and intangible products, a variety of stud-
ies have suggested that Blockchain features have useful technological characteristics for
enhancing visibility and transparency [62] in complex multi-level SCMs, since all the
transactions in the complex SCM layers can be captured and recorded. It is also known
that Blockchain can effectively reduce risks regarding fraud and counterfeit goods [2] and
securely record transactions [45] by minimizing human interventions.

2.2. Key Features and Applications of Blockchain for Supply Chain

Blockchain is a decentralized and distributed public digital ledger for recording
data and information, or in other words, transactions, in blocks. In principle, written
transactions on blocks are irreversible, and cannot be changed without changing all the
previously written transactions on prior blocks. As a result, ever since its basic concept
and disruptive potential were introduced with Satoshi Nakamoto’s paper “Bitcoin: A
Peer-to-Peer Electronic Cash System” in 2008, research and experiments with Blockchain as
a technology of trust have sharply increased across industries [63] including distributions
and logistics, financial services, and healthcare.

In the early period, many applications were centered in the financial area, including
digital assets, remittance and online payment, smart contracts, and reputation systems [64].
While Bitcoin is an innovation for financial services based on Blockchain [65], Blockchain is
a general-purpose technology and can be categorized into public, private, consortium [65],
or hybrid [64].

Public Blockchain is an open, non-restrictive, and distributed ledger system not
requiring permission. Bitcoin, Litecoin, and Ethereum are typical examples. Anyone with
access to the Internet can be a node with authority for mining, accessing records and
verifying transactions. Because there is no centralized entity in charge, decision-making
activities like verifying transactions require consensus algorithms.

In contrast, private Blockchain is a closed, restrictive, and permissioned system.
One cannot join the system without an invitation from the controlling node which is in
charge of the private system, and each node has a different level of accessibility and a
specific authority for creating, viewing, and verifying transactions. Ripple works as both
a cryptocurrency and a digital payment network, and unlike Bitcoin, anyone who wants
to become a node in the Ripple network needs permission. Ripple is usually regarded
as a private Blockchain although all the nodes on the network conduct polls and decide
whether a transaction is valid and authentic.

While a private Blockchain is controlled by one organization, a consortium or federated
Blockchain is managed by more than one organization, and a few selected nodes are
authorized for verifying transactions and overseeing the consensus process. Hyperledger
Fabric, Hyperledger Sawtooth, Corda, and Quorum are representative examples. Among
them, Hyperledger has strong business applicability and has been widely tested. In the
pilot test, Hyperledger Sawtooth is adopted, in which PoET (Proof of Elapsed Time) is used
as a consensus mechanism. Sawtooth is an open-source code in Hyperledger driven by Intel.
Its high modularity, by separating the core system from the application domains, makes
application development convenient. To improve latency, throughput, and scalability, Intel
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has proposed utilizing the trusted computing of CPU, which can offer a Trusted Execution
Environment (TEE) where executions are performed without tampering from fallacies.

Hybrid Blockchain has both public and private features. Blockchain systems for smart
homes can be private as well as public. It is private to ensure the security of each home
Internet of Things (IoT) devices, but at the same time needs to connect to a public Blockchain
for digital payments. Finally, a hybrid Blockchain can consist of a public Blockchain, as
Mainnet, and multiple private Blockchains, so-called sidechains. Hdac, Interchain, and
ICON are some examples of hybrid Blockchains.

Among the many features of Blockchain, decentralization is the most typical and
critical [64], whether public or private. Blockchain developers have tried to distribute the
dominance and power of a central agency in order to avoid issues such as high cost, biases,
bottlenecks, and corruption problems coming from centrality. Unlike conventional systems,
Blockchain no longer requires surveillance by a third party [65] to verify transactions [66].
Instead, peer-to-peer communication assumes the role of the third party, where peers on
the network share the data and information of all the other nodes [11]. While transactional
data and information are visible to anyone on the network, unlimited communication
coming from decentralization necessitates the anonymity [64] and pseudonymity [11,66]
of nodes.

Decentralization also requires consensus algorithms [64] for performing decision-
making activities. A variety of consensus algorithms [47,65] have been tested and improved,
including PoW, PoS, DPOS, dBFT, PBFT, Ripple, Tendermint, and PoET. Selecting the
right consensus algorithm is essential for a Blockchain system because the system has
to effectively prevent fallacy-users who try to intercept system control and make wrong
choices that can be associated with high energy usage and poor performance. The PoET
consensus algorithm is adopted for the pilot test since it can ensure a level of security
similar to PoW (Proof-of-Work) by using the CPU feature and can reduce energy usage
with a competitive hashing operation compared with PoW.

PoET is based on Software Guard Extensions (SGX), Intel’s trusted computing plat-
form, which helps the node creating a block to generate a proof of the waiting time.
Compared with PoW, PoET is known for less computational workload while creating and
keeping high fairness with “one CPU one vote” even though trusted computing technolo-
gies including SGX may not guarantee 100 percent reliability. Since there were insufficient
empirical results for Hyper Sawtooth and the PoET algorithm [67], we would like to suggest
that multiple pilot tests are necessary to validate their feasibility for business applications.

Decentralization and peer-to-peer communication in Blockchain make reverse transac-
tions almost impossible [11]. Once a transaction is written on a block, the records cannot be
changed since every block is linked to the previous one up to a head block. In SCM, these
features work positively [68] in that the irreversible traceability can be used to address
transaction transparency and accuracy, as well as smart contracts [64]. For smart contracts,
Blockchain transactions can be executed with specifically tied (or programmed) compu-
tational logic. The terms of a contract among nodes can be programmed in advance and
embedded in the Blockchian system as a smart contract, which provides a programmed
transaction protocol. Smart contracts can be utilized in various fields including finance,
utilities, IoT [66,69] loyalty management, SCM and many others.

The technological features of Blockchain that are related to the sharing, openness, and
decentralization of data and information among nodes make it unique and innovative,
especially in the area of SCM [51,70,71]. A group of researchers have found that Blockchain
can prove the trustworthiness of products and documents based on the traceability fea-
ture [45,52,68,70]. Due to the ever-increasing complexity of supply chain management has
also increased demand for transparent operations from the perspective of social and envi-
ronmental sustainability [70], and Blockchain’s complete traceability of end-to-end SCM
has been welcomed by practitioners and developers as the right tool for SCM transparency.

In the meantime, tagging technologies, such as barcodes, QRs, RFID (900 MHz),
and NFC (13.56 MHz) have long been widely adopted in order to prevent counterfeit
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and to provide traceability. Recently there have been increasing experiments to combine
them with Blockchains. Those trials have successfully verified that inventories can be
completely traceable, while enhancing aspects of operating performance such as reduced
stock-outs, shortened lead-times, and improvement in operating cost [52]. In some public
health projects designed to prevent counterfeit medicines [70], RFID tags were combined
with Blockchain and provided object status data such as tablet information [4] with real-
time visibility. The combination of Blockchain and QR code, a two-dimensional barcode
introduced by Denso-Wave in 1994, has also been widely tested for traceable SCM in
many countries. QR codes are cheap and easy to use, since they can be easily printed on
individual assets and are scannable by mobile apps.

However, it also argued that Blockchain’s advantageous SCM features work negatively
in business circumstances. Because it is virtually impossible to intentionally operate (delete,
insert, move forward and backward) transactions once the transactions are written on
blocks, a sort of rigidity [64] is intrinsic. Accordingly, correcting entry errors and inaccurate
data is almost impossible, which means that incorrect data and information can remain in
Blockchains permanently [63]. In addition, the slow processing speed which results from
checking all the previous blocks for each transaction considerably limits scalability. It is still
necessary to overcome constraints in throughput, latency, and scalability when compared
with the existing centralized systems, in which, for example, an average of 5000 credit-card
transactions per second can be handled [70].

Counterfeiting is a growing challenge in supply chain management as trading be-
comes far more complex [45] and the volume of e-commerce based on digital technologies
skyrockets. Not only tangible products such as agricultural produce [9], food [47], and
medicines [49,50] but also intangible products and documents [53,55,56,58,59] are the ob-
jects of counterfeiting. Blockchain has been broadly tested as an alternative to existing
anti-counterfeiting systems by adding systemic traceability. For example, BlockVerify with
NFC tags offers Blockchain-based anti-counterfeit solutions for pharmaceuticals, luxuries,
and electronics [57].

In enterprise-level Blockchain initiatives driven by multinational consumer firms and
retailers, traceability has been enhanced without harming interoperability with legacy
systems such as ERP (enterprise resource planning) systems. Walmart partnered with
IBM [45] and has successfully completed a traceability pilot, tracking the origins of pork
and mangoes, and now it traces the origin of more than 25 products, with plans to expand
to all fresh greens. To track fresh foods and produce, Blockchain needs to interoperate and
be incorporated with existing cold-chain systems, which usually consist of RFID tagged
refrigerated containers and ERP. Blocks may record the temperature, traffic times, and
verify authenticity of products by continuously recording product history.

Blockchain has also been applied for monitoring illegal labor practices such as child
labor in mining [52]. Ridesharing firms such as Arcade City [64] have adopted it to
track personal reputations that can be easily forged. For energy grids and Internet of
Things [71] networks, security is so critical that Blockchain is frequently employed as a
secure backbone as well as a billing system. VeChain with NFC tags [68] was developed to
fight counterfeiting in fashion apparel, by letting consumers verify product information
with mobile apps that communicate with NFC tags placed inside each item. It was found
that standardizing traceability processes, system interfaces [68], and a good degree of
interoperability with legacy systems are significant. Keeping this in mind, we tried to find
the best trade-off among system configurations for traceability, interfaces, interoperability,
and system cost.

3. A Systemic Methodology for Anti-Counterfeiting in E-Commerce Environment
3.1. System Configuration

Our research question lies in “how to overcome information uncertainty and asym-
metry that bring about counterfeiting behaviors with technological innovation”. From
this perspective, the systemic methodology how to overcome information uncertainty and
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asymmetry for anti-counterfeiting is basically based on private Blockchain since Blockchain
is proven as an effective innovation to enhance traceability problems in SCM in a variety of
prior research.

While private Blockchain tends to widely adopt PBFT (Practical Byzantine Fault
Tolerance) possibly due to IBM’s brand and dominance, it was tried to find a viable system
configuration that includes a consensus algorithm, smart contract, and data format for
cross-border logistics. It is very difficult to change or update nodes in PBFT, thus the
rigidity of PBFT is a disadvantage for logistics traceability where node changes might
be frequent, as distribution channels and participants come and go in the value chain,
creating sales outlets or creating new customers. On the other hand, the PoET consensus
algorithm is based on elapsed time proof; therefore it can support many changes with
less electric power even though it works similarly to proof-of-work (PoW). In PoET, the
random waited time is partially dependent on the CPU performance. The higher the CPU
performance, the faster the processing speed and the higher the probability of becoming a
block producer (BP).

If configuring a pilot system based on Hyperledger Sawtooth, which is a Blockchain
platform using the PoET consensus algorithm, an Intel CPU supporting the SGX environ-
ment can be an individual node and ensure elapsed time provided by Trusted Execution
Environment (TEE). In other words, the elapsed time proof algorithm effectively operates
in any Blockchain system consisting of Intel CPUs that can scale up to thousands of nodes
and support SGX. Accordingly, the HyperLegder Sawtooth platform and PoET consensus
algorithm were adopted. It was expected that interface issues because the system was
configurated with HyerLedger Sawtooth and PoET, different from the counterpart system
which is based on HyperLedger Fablic and PoW. For this it was decided to establish API
server called “MiddleReceiver” between two different Blockchain systems.

The current Blockchain system can only search and access data based on key indexing,
which means if real-time statistics and filters are used, it is necessary to check all the data
of the entire Blockchain ledger again for every transaction. In other words, if a system is
configured that stores and retrieves all the data in Blockchain, it can check the status only
at a specific time, thus additional functions including statistic results are not possible. In
order to set up an effective product authentication system, a variety of product-related
information such as product origins, statistics, and distribution channels must be openly
shared among stakeholders on the value chain. To this end, the existing simple Blockchain–
Application (DApp) structure shown in Figure 1a may not be a viable a solution. The
system should have specific logics that periodically record the essential raw data whose
integrity and reliability are guaranteed in the Blockchain. They should store statistical
information in a separate database, and then periodically verify data integrity between the
Blockchain and database. The configuration is shown in Figure 1b.

Figure 1. (a) Blockchain–DApp interface. (b) Blockchain–database interface.

In addition, it is required to set up a system that maintains decentralization as much
as possible without compromising the reliability and integrity of information. At the
same time, it should provide functions and transaction speed suitable for cross-border
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logistics. Blockchain is frequently called a “Status Machine”, technically, Status refers to
“information stored” at a specific point in time. So, the status machine is a device that
remembers the status of a specific object for a given period of time. The request to change
the stored status is a “transaction”. Blockchain technology was originally created for the
safe payment of Bitcoins; therefore, most Blockchain structures are strongly related to
payments; if node A sends 1 Bitcoin to node B, 1 Bitcoin of node A decreases. However,
the status of logistics process is not intended to establish a balance, but to store data on
warehousing, shipment, distribution, product release, store receipt, product sales, and so
on. What is more, each company and each value chain can have various statuses. Therefore,
transactions can also be defined using formats other than deposit and withdrawal. Since
having an individual Blockchain system for every stakeholder would not make sense, it is
necessary that a comprehensive status operation method can handle all the logistics. For
this, the “State-Transition Diagram” is conceptualized shown in Figure 2a and smart contract
setting in order to flexibly respond to multiple situations of on-chain transactions is seen in
Figure 2b.

Figure 2. State-transition: Create a status change rule, and respond according to the situation: (a) State-transition diagrams,
(b) smart contract rule settings.

Finally, data collection interfaces were analyzed based on a standard logistics process
in Figure 3 from raw material producers to end-customers. Barcodes, RFID, NFC, and other
data-collecting interfaces were taken into consideration in order to set up the pilot system.

Figure 3. Data collection interface configuration based on standard logistics process.
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3.2. Pseudo Data Test

To test the traceability of domestic logistics and distribution before a cross-border pilot,
first pseudo data sets were fabricated, then a Hyperledger Sawtooth system established
having three full nodes as a Blockchain core which perform validation functions, and
APIs which operate other business functions. The overseas counterpart is a Chinese
e-commerce firm whose Blockchain platform is based on Hyperledger Fabric. For the
interface between Hyperledger Sawtooth and Hyperledger Fabric in Figure 4, an API called
MiddleReceiver was established in order to make REST API calls with cores and to perform
additional functions.

Figure 4. Interface based on MiddleReceiver between Sawtooh and Fabric.

In order to prevent counterfeiting in any process in the cross-border e-commerce
environment by ensuring end-to-end traceability, one way might be to let local consumers
confirm the originality and genuineness of products with their mobile phones. Like
exemplified in Figure 5, anti-counterfeiting is possible by informing end-customers of full
product information, including not only the country of origin and production history but
also very detailed product-relevant information, such as customs clearance information,
domestic distribution, and the logistics of departure and transit countries, with the product
certificates of origin countries. However, consumers abroad should be provided with
detailed and comprehensive product information at the appropriate level, which would
not only satisfy traceability enough to block forgery behaviors, but fulfill the domestic
regulations of the departure country (in this case, South Korea) about data sharing. Thus,
the data architecture is carefully constructed seen in the following example for this purpose.

Figure 5. Expanded product information of a ginseng health drink.
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• Product Name: A ginseng health drink
• Sharing information: Cultivation place, processing and production, distribution,

certificates, warehousing, etc.

Before the pilot test started with real product information, pseudo-data were fabricated
seen in Figure 6 including origins, suppliers, manufacturing, distribution, logistics, and
sales, and then tested the data flows between Sawtooth and Fabric. First, 88234215600016B
and 688234215600016D were applied to the two finished products with pseudo-information
after shipping inspection; the two codes were unique keys to identify objects without
duplication. Then, the successful data interchange and flows between Sawtooth and Fabric
were confirmed, as shown in Figure 7.

Figure 6. Expanded product information of the ginseng health drink.

Figure 7. Private Blockchain data logs: Used as evidence of unchanging transactions afterwards.

3.3. Real Business Data Test

For the pilot test, two domestic manufacturing firms were contacted. One was a
food and beverage firm and the other a cosmetics firm, and four pilot test products (one
beverage and three cosmetics) were selected. From the test, it was confirmed that once an
end-customer scanned an electronically signed QR code on a product shown in Figure 8a,
if it had been authentic, the proof of authenticity of Figure 8b was shown, and then relevant
product information like Figure 8c would be displayed on the customer’s mobile phone.
When the end-customers scanned the QR code of a product, a forgery alert of Figure 9a
will be displayed when the product t is counterfeit. If the product was already registered
as purchased by other customers, a duplication alert of Figure 9b is displayed. Duplication
also needs to be reported because it is assumed that duplication can occur when the product
information is fabricated by other reasons except for entry mistakes.
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In case of an authentic product, detailed and comprehensive product information
can be fetched as shown in Figure 10, some of detailed information is shown in Figure 11.
For edible products, food falsification can result in significant health problems, therefore
end-customers need to review relevant information as broadly as possible. Likewise,
ingredients of beauty products also matter to users; thus, providing the information is
beneficial, as seen in Figure 12. When it comes to e-commerce transactions, end-customers
are usually in the vulnerable position of information asymmetry. Thus, it is tried via the
test that open and safe sharing of product information, which are usually not shared with
customers, can enable e-commerce participants including end-customers to avoid economic
losses coming from information asymmetry in advance to some extent by helping them
make a better choice in the unclear circumstance.

Figure 8. (a) QR scanning, (b) proof of authenticity, (c) more product information.
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Figure 9. (a) Forgery alert and report, (b) duplication alert and report.

Figure 10. Detailed and comprehensive product information, from raw material to customer purchase.
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Figure 11. Some examples of detailed product information (food and beverage); (a) raw material supplier, (b) processing
contractor, (c) manufacturing plant, (d) shipment inspection, (e) food certificate (organic or ingredient test, etc.).



Sustainability 2021, 13, 11057 15 of 20

Figure 12. Detailed and comprehensive product information (cosmetics); (a) from manufacturing
plant to logistics and sales information, (b) ingredient information.

4. Implications and Limitations

Ever since Blockchain’s strong traceability and decentralization features have been
exploited by the finance industry [66], academic and business experiments have increased
for the purpose of finding anti-counterfeiting and forgery solutions in a variety of in-
dustries [45,47,52,57,65,68,70,71]. Like many prior studies, it is argued that our research
and the pilot test verified that Blockchain, supplemented with other technologies such as
secured QR [70], can be an effective anti-counterfeiting solution by performing small scale
but end-to-end pilot tests.

In the pilot test, various Blockchain platforms were considered—HyperLedger, Saw-
tooth, Ethereum Private chain, JD chain (DBFT-based self-construction), and Hyperledger
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Fabric were taken into consideration, and we tried to establish a secure and flexible API
server. In spite of many benefits of having an API server, there are several disadvantages.
One of them is that management complexity increases as the number of nodes increases.
When the size of the SCM increases as new suppliers participate in the SCM, managing the
cost of the API Sever may rise, too. It is also noted that linkage between different Blockchain
platforms via APIs can induce security issues because API servers are frequently the targets
of cyber-attacks. From this perspective, ledger-level linkage is mentioned as the best option.

In real-world applications, however, linking ledgers may not be a viable solution,
especially when it comes to cross-border e-commerce transactions involving multiple
countries, because each country has its own data standard, laws, and guidelines. In
addition, the protocol formats adopted by individual firms are all different. Ledger-level
interface also would require the standardization of data and protocols at every level and
can induce serious cost-efficiency problems. Even though a ledger-level linkage between
Hyperledger Fabric and Ethereum was recently tested, Samsung NexLedger and LG
Monachain, both of them are customized based on Hyperledger Fabric, and can rarely
interface on the leger level once small changes in the protocols of each platform happen.

While the Blockchain in Transport Alliance (BITA) addresses the issue, with more than
200 companies around the world participating ledger-level linkage pilots, it is argued that
the API server is a practical option for now because inconsistencies in protocols, consensus
algorithms, and data formats can be handled via API server. In addition, expansion to
larger-scale tests and real business applications becomes a lot easier when connecting
heterogeneous Blockchain platforms in cross-border environments.

However, it is undeniable that attacks on APIs are serious and secure data interfaces
among heterogeneous systems still need to be guaranteed. In order to deal with this
issue tentatively, the API, Middle Receiver, as a security watchdog has a function of
periodically and randomly checking the consistency of the interfacing data. Random
checking can reduce system overload, while at the same time keeping the proper frequency
of security checks. The faster the cycle, the larger the number of random data to be searched.
Higher consistency checks will cause a higher system load, so it is important to select an
appropriate period and data quantity. In future research, it will be intended to perform
more optimization experiments to determine the best combinations of search cycle and
random check data quantity under various control variables including security level, data
consistency, and system resources.

5. Conclusions

Many business models in the Internet era still rely on information asymmetry and ac-
cording to uncertainty. Some try to manipulate the discrepancies on purpose in order to get
profits. As the intact trades are common, trust is more significant because we heavily rely
on the given information by other parties before we make decision and spend our resources.
The situations are the same for retail platforms, manufacturing firms, and end-customers.
In terms of e-commerce transactions, the lack of traceability and openness of information
frequently result in costs of firms’ reputation, customers’ money, and social trust. From
this perspective, our experiment contributes to verifying that “technology innovation is
beneficial for solving social challenges including information asymmetry and uncertainty
in implementing GSCM". It is proven that the pilot system based on Blockchain reinforces
traceability and sharing of information, thus fabricated false information and counterfeiting
have little place from the beginning in transactions of cyberworld. E-commerce stakehold-
ers can safely share detailed information, and end-customers, the weakest participants of
transactions, can avoid losses coming from information asymmetry and uncertainty. Al-
though barriers to adoption [62] and technological limitations [63] still exist, it is beneficial
for the society to further adopt and utilize technology innovation such as Blockchain-based
traceability. Many researchers in academia and industry have so far argued that utilization
of innovation such as Blockchain’s traceability and decentralization are effective and useful
for solving practical issues and we added further empirical evidence.
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Since technology innovation and applications are beneficial for economic and social
values, we would like to ask governments to fund Blockchain projects, in addition to
encourage academia and businesses actively to be engaged in those experiments regardless
of the size and potential benefits.

The results of the pilot test showed that it is possible for all of the participants in a
supply chain, including overseas end-customers, to securely share comprehensive prod-
uct information, from raw materials to shipment certificates. As a result, end-customers
themselves can differentiate and report counterfeits before those fallacy behaviors be-
come rampant on selling platforms. Our systemic methodology is only one of many
approaches and we believe that there are innovative ways to resolve information uncer-
tainty and asymmetry.

Our experiment is a technological feasibility test performed at a small scale. Experts
say that Blockchain still has a long way to go to provide advance performance in terms of
latency, throughput, and scalability. The efficiency of Blockchain significantly depends on
the scalability issues. In the short term, it is not suitable for real-time payment (payment)
services due to the inherent problem of low transaction processing rate (TPS); thus selective
applications are required according to transaction features such as service levels and
methods. Currently, there are offline solutions such as Raiden Network, which distributes
transactions that flow to the Mainnet. In the long run, as the development of Blockchain
technology speeds up, the scalability will be resolved and be used for real-time payments.

In the pilot, it was attempted to implement 300 TPS with a small number of nodes.
Since legacy credit-card systems handle 5000 transactions per second on average, it will
be necessary to scale up the system to test feasibility in a real business application. At
the same time, the system configuration should be cost efficient and interoperable with a
variety of legacy systems that stakeholders are already used to. In this pilot, above all it we
aimed for the best trade-off between operating cost and system performance.

In the real world, costs, including those of the system and management, must be coun-
terbalanced with the benefits of adoption [71], and therefore it is important for academia
and businesses to repeat pilot tests, regardless of scale.

Currently, it is planned to perform feasibility testing at a business scale, which is
expected to be a huge and complicated project. In an actual cross-border business environ-
ment, a variety of selling firms will register their products on the Blockchain system, so
that huge volumes of purchasers can simultaneously scan QR codes on online screens and
mobile phones to query product information and distribution history, to filter out fakes.

In order to evaluate business scale feasibility, the cross-border traceability system
should be flexible and be able to accommodate link data exchanges with a variety of types
of overseas e-commerce platforms, to monitor inventories in real time to manage each
product inventory, and to interoperate with the company logistics and distribution systems
in the departure, transit, and destination countries. In addition, to establish a cross-border
traceability system it will also be crucial to review cross-border regulations and institutions
among countries, involving customs offices.
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