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Abstract: Forecasting disease outbreaks in real-time using time-series data can help for the planning
of public health interventions. We used a support vector machine (SVM) model using epidemiological
data provided by Johns Hopkins University Centre for Systems Science and Engineering (JHU CCSE),
World Health Organization (WHO), and the Centers for Disease Control and Prevention (CDC)
to predict upcoming records before the WHO made an official declaration. Our study, conducted
on the time series data available from 22 January till 10 March 2020, revealed that COVID-19 was
spreading at an alarming rate and progressing towards a pandemic. The initial insight that confirmed
COVID-19 cases were increasing was because these received the highest number of effects for our
selected dataset from 22 January to 10 March 2020, i.e., 126,344 (64%). The recovered cases were
68289 (34%), and the death rate was around 2%. Moreover, we classified the tweets from 22 January
to 15 April 2020 into positive and negative sentiments to identify the emotions (stress or relaxed)
posted by Twitter users related to the COVID-19 pandemic. Our analysis identified that tweets mostly
conveyed a negative sentiment with a high frequency of words for #coronavirus and #lockdown
amid COVID-19. However, these anxiety tweets are an alarm for healthcare authorities to devise
plans accordingly.

Keywords: COVID-19; exploratory data analysis; predictive analysis; pandemic; quarantine; anxiety
and stress

1. Introduction

A sequence of mysterious instances of pneumonia-like illnesses began in Wuhan,
Hubei Province, China, on 8 December 2019 [1,2]. When it first came out, it was referred to
as SARS-CoV-2, but it has since been changed to reflect its new name, the new coronavirus
(COVID-19) responsible for infectious coronavirus disease-19 [3–5]. In terms of genetic rela-
tionships, it is related to the severe acute respiratory syndrome (SARS) virus and the Middle
East respiratory syndrome (MERS) [6,7]. The infection has spread to over 200 countries [8]
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and affected 186,410,350 globally, with 4,024,946 deaths [9] up to 11 July 2021. Scientists
believe that COVID-19 originated from the Rhinolophus bat, as a virus isolated from this
species has shown >96% similarity [10].

The mortality rate of COVID-19 is 2%; however, its transmission rate seems quite high
as observed from day to day increasing COVID-19 cases. COVID-19 expanded its niche to
Iran and Italy in mid-February 2020, and cases originating from Iran spread to Afghanistan,
Bahrain, Iraq, Kuwait, Lebanon, Oman, Pakistan, Qatar, Saudi Arabia, and the United Arab
Emirates, putting GCC countries on a high alert. Our research group kept observing the
coronavirus transmission rate, and we felt that it was the right time to analyze available
epidemiological data using exploratory data analysis (EDA) and predictive analysis using
a support vector machine (SVM) to develop visual models and predict the upcoming
COVID-19 pandemic. The discipline of data analysis known as EDA is used to analyze
and understand the insights contained within the provided data collection. Furthermore,
EDA is a crucial step before implementing algorithms and models, as EDA can generate
the further purification of data as well as the profusion of data visualizations [11,12]. In
dynamic models, assumptions are made about the values of parameters without looking at
the real-world dataset, while EDA uncovers hidden information in a dataset. This analysis
helps to increase awareness among the masses about the high rate of transmission and alert
the authorities to take timely measures for controlling this global public health crisis [13].

Up to 11 July 2021, 186,410,350 viral infection cases have been reported globally with
a death toll of 4,024,946 [9]. The initial cluster of reported cases, namely those who visited
the local seafood market in Wuhan, hints towards zoonosis [13]. However, as our research
group keenly observed the changing viral transmission statistics being updated daily by
John Hopkins [14], CDC [15], and WHO [16], we strongly felt that the epidemic situation
was now progressing towards a COVID-19 pandemic. For this purpose, we evaluated
the death toll, recovered cases, and the COVID-19 confirmed cases. In this study, the
word “pandemic” is used to refer to a global spread of an emerging infection, where the
number of individuals infected at a particular time exceeds the treatment capacity [17].
Literature reveals that mathematical modeling has been employed to analyze the movement
of infectious illnesses to learn more about them [18]. We as biologists, data scientists,
and health care workers felt that our prime responsibility was to predict the upcoming
pandemic and anxiety among the public and ring an alarm bell for all concerned authorities,
including WHO and CDC so that they could take the critical measures necessary to stop
the upcoming pandemic.

Moreover, this study comes up with an alternate, complementary method in line with
Shahi et al. [19]. We crawled tweets starting from 10 January 2021 until 15 April 2020 from
all around the globe, particularly from Iran and Pakistan. Taking signals from foreign
counterparts, Pakistani authorities decided against imposing a country-wide partial lock-
down on 23 March for 21 days [20,21]. Pakistan and Iran are neighboring and developing
nations with limited health resources with a high risk of irreversible damage. The fact that
only aggressive measures could help flatten the curve could not be overlooked. Owing
to lockdown situations, individual activity on social media, including Twitter, increased
significantly worldwide. In recent times, many studies have highlighted the importance
of social media for data extraction for a better understanding of public attitudes during a
public health crisis. This can help in the use of social media platforms as supporting tools
for health promotion [22–24]. The COVID-19 outbreak lockdown provided an opportunity
for researchers to study public data from social media platforms to assess people’s attitudes
and sentiments. This will assist policymakers and healthcare professionals in identify-
ing the main concerns and solving them more efficiently. People from different regions
use different languages to express emotions and or opinions [25–27]. However, the most
commonly used language is English. People can express their thoughts and feelings more
openly than ever before with the use of social media networks such as Twitter [28,29].
Therefore, we used Twitter to gauge people’s feelings (Iranians and Pakistanis) towards
the COVID-19 pandemic lockdown. The aim was to predict the spread of disease and
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public response against it. Therefore, we used machine learning to predict the spread
and sentiment analysis to capture people’s sentiments related to COVID-19 pandemic
lockdowns to help higher authorities, psychiatrists, and policymakers for predictions and
timely actions by looking into people’s sentiments. Several machine learning algorithms
can be utilized for predictive analysis, such as SVM, NB, -K-NN, DT, and DL [30,31]. How-
ever, we used a support vector machine (SVM), which is recently used in the literature for
multi-classification [32–34].

The following are the most significant contributions drawn from this research:

i. In connection with the COVID-19 epidemic, a variety of research projects were
carried out. However, limited research has paid attention to the prediction of a
pandemic. Therefore, in this paper, we used predictive analysis to determine the
trend of the growing epidemic curve.

ii. This study conducted a sentiment analysis using Twitter in addition to EDA, which
was a previously unexplored area in terms of lockdown circumstances. While
EDA explores the hidden functionality of the data, sentiment analysis assists to
comprehend the emotional state of the behavioral pattern.

iii. Additionally, this study validated the usefulness of social media data for examining
health-related communications, as well as for determining the emotional condition
of the public during a healthcare crisis.

The remainder of the paper is structured as follows: Section 2 follows with related
works and then is followed by Methods in Section 3. Section 4 emphasizes the experimental
outcomes. Section 5 summarizes the key findings, while Section 6 considers implications
and potential limitations.

2. Related Works

EDA is a technique that takes the supplied dataset and analyzes it to obtain informa-
tion that might be useful. The method uses a visual representation of the facts to assist with
betting comprehension and to improve decision-making. We believe that visualization is
an excellent tool for detecting patterns, predicting future behavior, and recognizing inter-
connectedness. The primary goal of performing an EDA is to assist healthcare professionals
in determining the pattern of COVID-19 inflation rate variation. EDA mostly assists in the
analysis and formation of a comprehensive and wide understanding of the dataset as well
as the potential that arises when specific conditions are met. EDA and data processing
produces the most critical characteristics that aid in the selection of the most qualified
candidates for forming a predictive system [35].

As the COVID-19 epidemic is quickly spreading throughout the globe, we need to
determine the number of unique cases that have been affected by COVID-19, as well as
examine epidemiological data through the EDA [36] approach. Because of the fast spread
of COVID-19, we considered a complete daily data set and determined that it is necessary
to combine case review with epidemic analysis to better understand the epidemiological
features and seriousness of the illness. In addition to assembling a comprehensive dataset,
this investigation examines the various trends in the number of reported instances of
COVID-19. The results of this research also raise questions about whether COVID-19 is on
the brink of a fast outbreak in the coming days or if there is potential to flatten the disease’s
distribution curve.

In addition, the COVID-19 epidemic has had a negative impact on the health and
well-being of the general public throughout the globe. For example, in [37] it was shown
that hospitalized patients worried about their safety, loneliness, exhaustion, and resentment
during the COVID-19 epidemic. They felt nervous as a consequence of fever and insomnia-
related symptoms. People directly affected by the illness, as well as the masses, experience
anxiety as a result of high levels of participation and danger of mortality. More patients
will suffer both physical and psychological issues due to the increased number of infected
individuals and their deaths.
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Moreover, some researchers have examined the effects of COVID-19 on students’ psy-
chological well-being, while others have emphasized the risks to students even during the
lockdown. Hasan and Bao [38] indicated that the leading cause of students’ psychological
distress during COVID-19 is their fear of academic year loss.

COVID-19 lockdowns have restricted movement, and people have canceled their
travel plans, which has impacted the transportation sector as well [39,40]. Recent research
has examined the inequalities in learning resulting from digital discrimination during
COVID-19, and it showed that students are receiving unbalanced learning chances because
of it and fall into mental distress [41–44]. When schools are not open, and children are
being told to stay indoors, their mental health may be negatively impacted in many ways.
To fully comprehend the psychological ramifications of a pandemic of this scale, mental
health research must be performed. This study attempts to investigate the relationship
between lockdown and social media use, measure the level of health information sharing,
and include more data to support future research.

Social media has permeated every aspect of our lives, and because of this, it is an
excellent platform for individuals to express their concerns by crossing geographical
borders [45]. Social media analytics may be used by public health experts and government
officials for a variety of purposes. The functionality allows its users to understand and
experience the emotional transitions of the population while delivering dynamic and
up-to-date information on public knowledge and understanding and reaction to crises,
helping emergency responders to handle the situation more effectively [46]. To explore
how news information has been disseminated, Petersen and Gerken [47] examined social
media and studied the structure of Twitter networks to see how news stories were shared.
Petersen and Gerken [47] found 13 distinct themes associated with COVID-19 hashtag use
in 6.9 million tweets. The most popular themes were “COVID-19 identifying”, “measure
taken”, “geographical”, and, “news and media”. Singh et al. [48] have a major issue with
the fact that many Twitter users worry and are fearful of the pandemic. Furthermore,
the increased usage of social media data allows for the monitoring of people’s health
communication behavior in real-time and at no cost. For the sake of this specific context,
social media platforms like Twitter are particularly pertinent, since they exhibit patterns of
communication, such as using hashtags to showcase individual-generated information [49].

3. Materials and Methods
3.1. Epidemiological Data

We utilized a reliable open COVID-19 dataset provided by the JHU CCSE [14]. This
time-series data is available in both the dashboard and Google sheet format and is daily
updated. Therefore, cases reported every day are cumulative cases for the respective day
in the respective country. This dataset became publicly available on 22 January 2020. We
analyzed a time series of data, from 22 January 2020 to 10 March 2020. The date of 10 March
2020 was chosen as a cutoff, as we regularly monitored reliable data-sharing resources that
reflected a spike in several confirmed cases. It was observed that the COVID-19 had spread
to former safer zones.

3.1.1. Time-Series Data Analysis

We used two data analysis methods, i.e., EDA and predictive analysis using SVM. We
also compared the time-series data from multiple reliable web sources, i.e., WHO, (JHU
CCSE), CDC, and CAN [14–16]. The main aim of applying EDA was to gain insight into
the data trends and obtain confidence for further analysis in conjunction with a machine-
learning algorithm. Such analysis is crucial in data science, which allows us to achieve
particular insights and essential statistical measures [50].

3.1.2. Data Preprocessing

Initially, raw data were cleaned, followed by identifying missing data and removing
duplicates through manual labeling [51,52].
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3.1.3. Support Vector Machine (SVM) Model for Prediction

Specific machine learning algorithms such as SVM are used frequently for predictive
analysis [53–55]. We divided input data into three classes in this work: confirmed COVID-
19 cases, recovered cases, and deaths. Data were used for training the SVM model to predict
the threat of an emerging pandemic. SVM is a binary classification tool that cannot be
applied directly to multiclass problems. To classify multiclass instances, we used the one-
against-all technique, which clusters binary classifications by class [56]. Specifically, three
binary SVMs (3 is the number of classes) were constructed in this study, with each binary
classifier distinguishing one level from the rest of the classes. Choosing the parameter (C)
and the type of kernel function to use while running an SVM model is another critical
step [57]. Parameter C was selected, and the value of 2 was achieved as the best value in
this research using the leave-one-out cross-validation technique [58].

h(x) = wTx + b; (1)

For any new point z, the class of support vector machines classifier is predicted as

ŷ = sign(h(z)) = sing(wTz + b) (2)

where the sign (·) function returns −1 if its argument is negative and +1 if its argument is
positive [59]. SVMs are intrinsically two-class classifiers; a multiclass problem is formed
through the construction of multiclass support vector machines, where a two-class classifier
is developed over a feature vector Φ(

→
x,y′) obtained from the pair that constitutes the class

of the datum and the input characteristics.
The classifier selects the class at test time using the following expression:

y = argmaxy′
→
w

T
Φ
(→

x,y′
)

(3)

We used the discussed model for this study.

3.2. Twitter Data

We analyzed Twitter tweets for assessing sentiments of the Iranian and Pakistani
public amid the COVID-19 lockdown. The Twitter source data was provided by GNIP, a
social media analytics company acquired by Twitter in 2014; since then, GNIP has become
the official Twitter data vendor. For this study, to access the Twitter API, we used the
well-supported Python package named Tweepy, which offers very comprehensive Twitter
API compatibility. Tweets were extracted using the hashtag #LockdownPakistan from
22 January to 15 April 2020. The hashtags #LocdownPakistan and #LockdownIran, and
#coronavirus used were all about the novel coronavirus, which is one of the most often
used scientific and news media terminologies. A total of 2500 tweets were considered for
the analysis.

Model Building

For model building, we used the training set composed of 70% tweets of the polarity. A
supervised machine learning algorithm in Python was used for this purpose. We wrote the
script using the stochastic gradient descent machine learning method to validate the model.

4. Results
4.1. Exploratory Data Analysis

We performed EDA on the COVID-19 dataset (22 January 2020 to 10 March 2020). The
graph in Figure 1 based upon the time series data shows the cases for 22 January, February,
and 10 March 2020. According to the visual representation, verified COVID-19 instances
were growing, since they received the greatest number of impacts for our chosen dataset
from 22 January to 10 March 2020, i.e., 126,344 (64 percent). The number of cases that
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recovered was 34%, and the mortality rate was approximately 2%. Figure 2 shows the
overall cases for January, February, and March 2020.
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Figure 2. Overall view of confirmed, death, and recovered cases.

Until now, COVID-19 has spread to 115 countries worldwide and 33 states/provinces
in China. The total reported cases outside China were 126,258 for March (10 March 2020).
In comparison with February, the virus spread rapidly. The death rate outside China also
seemed to be an interesting parameter, as it seemed that the death rate was also increasing,
with 1582 deaths outside China reported until 10 March 2020. However, the number of
recovered cases remained higher in comparison to the mortality rate, i.e., 17,973 patients
recovered outside mainland China. The value indicator started from 0 to 60,106 from a
light red color to brown colors showing high confirmed cases in China (Figure 3).
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Figure 4 depicts that COVID-19 was quickly hitting other countries such as Iran and
Italy, showing a rapid increase. This increase was affecting neighboring countries, and this
made a total of 114 countries until 10 March 2020. Figure 5 visually represents the three
worst-hit nations individually.
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4.2. Predictive Analysis Using Support Vector Machine (SVM)

To perform predictive analysis, we used SVM. The results revealed that the COVID-19
epidemic was fulfilling all the criteria of progressing towards a pandemic. Figure 6 is a
visual representation of three variables, i.e., COVID-19 confirmed, death, and recovered
cases starting from 22 January 2020. Further, results revealed that although the number of
cases being reported from China was declining, the virus was still propagating. The study
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observed that confirmed cases increased at an alarming rate with 126,838 cases reported till
10 March 2020.
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This visualization (Figure 6) shows the SVM-based prediction for the results, which
shows COVID-19 confirmed (blue), death (red), and recovered (green) cases. It shows that
the virus was transmitting rapidly and was moving towards a pandemic. The projection
was carried out using time-series data up to 10 March 2020.

Classification of the selected dataset was based on global confirmed cases (22 Jan-
uary 2020 to 10 March 2020). There was a slow increase in viral transmission initially
(from 22 January to 1 February), where it affected 27 countries. However, from the 30
of January, WHO conducted an assessment to determine whether or not the situation
would be reported as an international public health emergency [60]. This emergency call
alerted government officials worldwide, leading to the suspension of air travel to and from
China [61–63]. Our result strongly supports that quarantining measures did play a crucial
role in containing viral transmission. The graphs depicted a stable line in the period when
quarantine measures were being practiced effectively. Results indicate that COVID-19
transmission entered a lag phase, and only 15 more nations were affected until 26 February.
Unfortunately, this stability achieved in the transmission rates led to a relaxation in the
quarantine measures adopted globally. The results of the predictive analysis made evi-
dent that from the end of February to 10 March 2020 there was a rapid upsurge in viral
transmission, and 72 countries were hit in a short span of 14 days.

The Figure 7A–C shows the confirmed cases in China, Italy and Iran. This graph
represents the viral transmission pattern. It shows that when travel bans were imposed,
and strict quarantine measures were implemented, there was a lag phase of transmission
of COVID-19 (1–26 February). As soon as quarantine and travel bans were relaxed, the
transmission exploded on an exponential trajectory.
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4.3. Comparison of Visual Data from Multiple Reliable Web Sources

We reported our analysis based on data available on reliable web sources such as
WHO [16] JHU CCSE [14], and CDC [15]. These web sources reported live updates that
shed light on increasing countries hit by the COVID-19. These time-series data supported
our findings that the epidemic of novel COVID-19 was turning towards a pandemic. When
stakeholders do not adopt suitable precautions on time, the situation can get out of control.

Figure 8 is adapted from WHO [16], (JHU CCSE) [14], and CDC [15], respectively.
All these sources showed an increase in confirmed cases and their geographical distribu-
tion. These sources’ overviews showed 113,702 confirmed (4125 new) and 4012 deaths
(203 unique) cases reported until 10 March 2020. However, the recovery rates were much
higher than the death rates, which indicates that although the COVID-19 had a higher
transmission rate, the associated mortality was quite low. This research showed that China
and the rest of the world’s leadership used quarantine measures at the beginning of this
epidemic to confine the virus, and this acted to control the epidemic in the early stages.
Nevertheless, when the quarantine measures were relaxed due to extreme scrutiny, a sharp
upsurge was seen in COVID-19 transmission to new locations worldwide.
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All these sources showed an increase in confirmed cases and their geographical
distribution.

4.4. Results of Tweets to Predict Emotions (Anxiety and Stress)

To have a better understanding, we used the “bing” lexicon to analyze tweets to
discern which terms were associated with positivity and negativity. We counted the words
in each set and came up with the top 10 most frequent positive and negative words in those
datasets. The word cloud and graphs represent the sentiments of people associated with
tweets as positive and negative words.

Figures 9–11 show the word cloud from overall tweets and bar charts from positive
and negative tweets used in this study. The words “family”, “time”, and “home” were the
most frequently occurring words in the overall tweets. On the other hand, words such as
“pandemic”, “death”, “stress”, and “virus” were the most frequently occurring words in
the negative sentiments.
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5. Discussion

The current study estimates the risk of the COVID-19 epidemic turning into a pan-
demic using EDA and predictive analysis algorithms on the time-series data available at



Sustainability 2021, 13, 11339 12 of 16

the John Hopkins university web link. Based on this data, it can be seen that the estimated
number of confirmed cases was supposed to increase, and the death and recovery rates
may have varied in the coming days after 10 March 2020. This cutoff time, i.e., 10 March
2020, was chosen specifically as we observed a sudden spike in the number of COVID-19
cases being reported outside China after February 26. The day-to-day data reflected the
fact that this epidemic was worsening, and a global pandemic was a reality.

As seen by the predictive analysis, death rate was relatively low, i.e., 2% which
indicated that COVID-19 was not as severe as other coronavirus epidemics reported in the
past, including SARS, and MERS, the reported case fatality rates (CFRs) of which were
17% [64–66] and 20% [67], respectively. However, transmission rates of COVID-19 were
much higher than their counterparts, indicating the greater potential of this epidemic
turning into a pandemic.

Further, it is noted that viral transmission was slow initially, and only 27 countries
were affected. This was because as soon as the news of an emerging viral infection spread,
the international community came up with strict measures, which included the shutting off
of air transportation to and from China. Initially, it was thought that quarantining an entire
nation was unprecedented, as both Chinese officials and the international community took
aggressive measures [68]. The main aim of this quarantine was to restrict viral hosts and
starve the virus. However, the health officials criticized the situation and said that such
measures could only deprive any state or region of the medical facilities and not contain
the viral spread [68]. However, as soon as the strict international protocols were relaxed,
Iran emerged as the second endemic zone, and carriers from Iran spread the virus to many
countries across the globe, and the lag phase of 1 February to 26 February was followed by
a heightened increase in the COVID-19 transmission, when from the end of February to
10 March 2020, 72 countries were hit in a short span of 14 days. This analysis is crucial in
helping to understand how important it is to quarantine an individual, a city, or a country
during times of an endemic/epidemic crisis such as this one in order to prevent it from
turning into a pandemic.

Another important aspect of this study is sentiment analysis, and visualization of
tweets is significant for finding the true picture of public emotions against some event and
or incident such as healthcare emergency [22,69]. Outcomes show that stressful negative
words were being more frequently used in tweets as compared to positive words. These
included “stress”, “anxiety”, “worry”, pandemic”, “crisis”, “threat”, and “fear”. However,
some of the positive words “family”, “time”, “home”, “good”, “safe” are seen. It appears
that the people in both countries, Iran and Pakistan, do understand the significance of
lockdown. People are aware that this aggressive measure is for their good, and the virus
can be contained only by social distancing and self-isolation [22,70]. A murky sadness
does dwell among the masses as seen by the words “pandemic”, “disease”, “crisis”, “fear”,
“lockdown”, and “phase”. The masses seem to be worried about the fate of daily wage
earners [71,72]. As shown in Figure 3, we selected the sentiment-laden terms and top 10
most popular positive and negative terms from our tweets and observed their use patterns
to gain a better idea of how they were employed in general. Understanding people’s
feelings about a topic is an important aspect of classifying the words into emotions. Here,
we classified the words based on the recent coronavirus epidemic.

6. Implications and Limitations

In times of public health emergencies, there is a need for a proactive public health
campaign on social media. The healthcare authorities should monitor tweets by the masses
that relate to public health emergencies; these can help devise policies and maintain the
supply chains [73]. Methods should be devised to help the public health and scientific
community access the core quantity of posts on social networking sites while respecting
privacy at the same time. Moreover, sentiment analysis researchers should focus on multi-
lingual sentiment analysis, as most research workers can easily understand English [74].
Furthermore, factors affecting mental health amid pandemic lockdowns should also be
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studied. The tracking of false information circulated online should also be studied, as it is
the most common source affecting mental health.

Limitations include that the results illustrate death only among the COVID-19 con-
firmed cases. Once factual infection data become available, a true CFR can be estimated.
Therefore, future research based on larger sample size and improved specificity can be
conducted. However, we still believe that our analysis can help in gaining an improvised
situational assessment. Looking at the current study from a technical perspective, it is
emphasized that the proposed prediction based on SVM can be critically important, as
it hints towards the start of a pandemic. It will help all the stakeholders and regulatory
authorities to take necessary steps such as grounding air traffic; suspending classes, public
gatherings, and events to contain the viral spread; and managing the epidemic before the
situation worsens and turns into a pandemic. In conclusion, the present study reveals
that the death rate, confirmed cases, and recovered cases all endorse the notion that this
COVID-19 epidemic could turn into a pandemic situation. Moreover, heterogeneous causes
of death, such as risk and age groups, also need to be considered when estimating the CFR
in future studies.

7. Conclusions

Furthermore, as the last two decades have encountered the SARS and MERS epidemics,
and the current situation developed into a COVID pandemic, we strongly believe that
predictive analytics will help improve the situational assessment in the present or any
future health crisis. To the best of our knowledge, this is the very first study on COVID-19
that has incorporated exploratory data analysis and predictive analysis and provided
comparison based on different data sources successively. This study also offers a strong
baseline to take serious preventive measures to counter any new viral outbreak. Our
study provides a roadmap for future researchers to further explore the data, since this
COVID-19 epidemic has now officially entered into a pandemic mode, and to analyze the
key parameters that can help influence timely intervention.

Author Contributions: Data curation, A.Q.; Methodology, K.N. (Khulla Naseer); Formal analysis,
M.E.M.A.; Resources, D.A. and A.Q.; Software, N.H. and S.Q.; Supervision, J.Q.; M.Z.; and S.Y.;
Validation, S.K.D.; Visualization, M.E.M.A. and A.Q.; Writing—original draft, K.N. (Kiran Naz);
Writing—review & editing, K.N. (Kiran Naz). All authors have read and agreed to the published
version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under Grant No. (RG-95-611-42). The authors, therefore, acknowledge with
thanks to DSR technical and financial support. We are also thankful for the in part support by
Universiti Brunei Darussalam under research grant UBD/RSCH/URC/RG(b)/2020/023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to acknowledge John Hopkins and WHO for making their
databases publicly accessible. No ethical approval was required for this work as it was done on the
freely accessible data from John Hopkins.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission

Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [CrossRef]
2. Jung, S.-M.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H.

Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J.
Clin. Med. 2020, 9, 523. [CrossRef]

http://doi.org/10.1056/NEJMoa2001316
http://doi.org/10.3390/jcm9020523


Sustainability 2021, 13, 11339 14 of 16

3. Novel, C.P.E.R.E. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China.
Zhonghua Liuxingbingxue Zazhi 2020, 41, 145.

4. Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The Reproductive Number of COVID-19 Is Higher Compared to SARS
Coronavirus. J. Travel Med. 2020, 27, 1–4. [CrossRef] [PubMed]

5. Heymann, D.L.; Shindo, N. COVID-19: What Is Next for Public Health? Lancet 2020, 395, 542–545. [CrossRef]
6. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of

COVID-19 Associated With Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422. [CrossRef]
7. Giwa, A.; Desai, A. Novel Coronavirus COVID-19: An Overview for Emergency Clinicians. Emerg. Med. Pract. 2020, 22,

1–21. [PubMed]
8. Hasan, N. A Methodological Approach for Predicting COVID-19 Epidemic Using EEMD-ANN Hybrid Model. Internet Things

2020, 11, 100228. [CrossRef]
9. Hasan, N.; Bao, Y.; Shawon, A.; Huang, Y. DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using

CT Image. SN Comput. Sci. 2021, 2, 1–11. [CrossRef]
10. Dhama, K.; Sharun, K.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.;

Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [CrossRef]
11. Dsouza, J.; Velan, Senthil S. Using Exploratory Data Analysis for Generating Inferences on the Correlation of COVID-19 Cases. In

Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagapur, India, 1–3 July 2020; pp. 1–6. [CrossRef]

12. Dey, S.K.; Rahman, M.; Siddiqi, U.R.; Howlader, A. Analyzing the Epidemiological Outbreak of COVID-19: A Visual Exploratory
Data Analysis Approach. J. Med. Virol. 2020, 92, 632–638. [CrossRef] [PubMed]

13. Zu, Z.Y.; Di Jiang, M.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus Disease 2019 (COVID-19): A Perspective
from China. Radiology 2020, 296, E15–E25. [CrossRef] [PubMed]

14. Johns Hopkins University. COVID-19 Dashboard. Available online: https://coronavirus.jhu.edu/map.html (accessed on
25 January 2020).

15. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/
coronavirus/2019-ncov/index.html (accessed on 25 January 2020).

16. WHO. WHO Coronavirus (COVID-19) Dashboard. 2020. Available online: https://covid19.who.int/ (accessed on
28 January 2020).

17. Thompson, R.; Gilligan, C.; Cunniffe, N. When Does a Minor Outbreak Become a Major Epidemic? Linking the Risk from
Invading Pathogens to Practical Definitions of a Major Epidemic. J. R. Soc. Interface 2019. [CrossRef]

18. Bastos, S.B.; Cajueiro, D.O. Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. Sci. Rep. 2020, 10,
19457. [CrossRef] [PubMed]

19. Shahi, G.K.; Dirkson, A.; Majchrzak, T.A. An Exploratory Study of COVID-19 Misinformation on Twitter. Online Soc. Networks
Media 2021, 22, 100104. [CrossRef] [PubMed]

20. Latif, A.; Sajid, I. Pakistan Stays under Lockdown Amid Coronavirus Outbreak. 2020. Available online: https://www.aa.com.tr/
en/asia-pacific/pakistan-stays-under-lockdown-amid-coronavirus-outbreak/1777394 (accessed on 1 July 2021).

21. Nation, T. Pakistan Continues to Observe Partial Lockdown Across Country. 2020. Available online: https://nation.com.pk/26
-Mar-2020/partial-lockdown-continues-across-pakistan (accessed on 2 March 2020).

22. Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hamdi, M.; Shah, Z. Top Concerns of Tweeters during the COVID-19 Pandemic:
Infoveillance Study. J. Med. Internet Res. 2020, 22, e19016. [CrossRef]

23. Jordan, S.E.; Hovet, S.E.; Fung, I.C.-H.; Liang, H.; Fu, K.-W.; Tse, Z.T.H. Using Twitter for Public Health Surveillance from
Monitoring and Prediction to Public Response. Data 2019, 4, 6. [CrossRef]

24. Naseer, J.Q.K.; Qazi, A.; Avuglah, B.K.; Tahir, R.; Rasheed, R.A.; Khan, S.K.; Khan, B.A.; Zeeshan, M.; Humayun, M.A.; Naseem, U.
Travel behaviour prediction amid covid-19 underlaying situational awareness theory and health belief model. Behav. Inf. Technol.
2021. [CrossRef]

25. Abo, M.E.M.; Raj, R.G.; Qazi, A. A Review on Arabic Sentiment Analysis: State-of-the-Art, Taxonomy and Open Research
Challenges. IEEE Access 2019, 7, 162008–162024. [CrossRef]

26. Qazi, A.; Bhowmik, C.; Hussain, F.; Yang, S.; Naseem, U.; Adebayo, A.-A.; Gumaei, A.; Al-Rakhami, M. Analyzing the Public
Opinion As a Guide for Renewable-Energy Status in Malaysia: A Case Study. IEEE Trans. Eng. Manag. 2021, 1–15. [CrossRef]

27. Zhou, Y.; Yang, S.; Li, Y.; Chen, Y.; Yao, J.; Qazi, A. Does the Review Deserve More Helpfulness When Its Title Resembles the
Content? Locating Helpful Reviews by Text Mining. Inf. Process. Manag. 2020, 57, 102179. [CrossRef]

28. Abo, M.E.M.; Raj, R.G.; Qazi, A.; Zakari, A. Sentiment Analysis for Arabic in Social Media Network: A Systematic Mapping
Study. Comput. Sci. 2019. Available online: https://arxiv.org/abs/1911.05483 (accessed on 1 October 2021).

29. Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A System-
atic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [CrossRef]

30. Abo, M.E.M.; Idris, N.; Mahmud, R.; Qazi, A.; Hashem, I.A.T.; Maitama, J.Z.; Naseem, U.; Khan, S.K.; Yang, S. A Multi-Criteria
Approach for Arabic Dialect Sentiment Analysis for Online Reviews: Exploiting Optimal Machine Learning Algorithm Selection.
Sustainability 2021, 13, 10018. [CrossRef]

http://doi.org/10.1093/jtm/taaa021
http://www.ncbi.nlm.nih.gov/pubmed/32052846
http://doi.org/10.1016/S0140-6736(20)30374-3
http://doi.org/10.1016/S2213-2600(20)30076-X
http://www.ncbi.nlm.nih.gov/pubmed/32207910
http://doi.org/10.1016/j.iot.2020.100228
http://doi.org/10.1007/s42979-021-00782-7
http://doi.org/10.1128/CMR.00028-20
http://doi.org/10.1109/icccnt49239.2020.9225621
http://doi.org/10.1002/jmv.25743
http://www.ncbi.nlm.nih.gov/pubmed/32124990
http://doi.org/10.1148/radiol.2020200490
http://www.ncbi.nlm.nih.gov/pubmed/32083985
https://coronavirus.jhu.edu/map.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://covid19.who.int/
http://doi.org/10.1101/768853
http://doi.org/10.1038/s41598-020-76257-1
http://www.ncbi.nlm.nih.gov/pubmed/33173127
http://doi.org/10.1016/j.osnem.2020.100104
http://www.ncbi.nlm.nih.gov/pubmed/33623836
https://www.aa.com.tr/en/asia-pacific/pakistan-stays-under-lockdown-amid-coronavirus-outbreak/1777394
https://www.aa.com.tr/en/asia-pacific/pakistan-stays-under-lockdown-amid-coronavirus-outbreak/1777394
https://nation.com.pk/26-Mar-2020/partial-lockdown-continues-across-pakistan
https://nation.com.pk/26-Mar-2020/partial-lockdown-continues-across-pakistan
http://doi.org/10.2196/19016
http://doi.org/10.3390/data4010006
http://doi.org/10.1080/0144929X.2021.1984579
http://doi.org/10.1109/ACCESS.2019.2951530
http://doi.org/10.1109/TEM.2020.3046749
http://doi.org/10.1016/j.ipm.2019.102179
https://arxiv.org/abs/1911.05483
http://doi.org/10.1109/ACCESS.2019.2906402
http://doi.org/10.3390/su131810018


Sustainability 2021, 13, 11339 15 of 16

31. Naseem, U.; Khushi, M.; Khan, S.K.; Waheed, N.; Mir, A.; Qazi, A.; Alshammari, B.; Poon, S.K. Diabetic Retinopathy Detection
Using Multi-Layer Neural Networks and Split Attention With Focal Loss. In Transactions on Petri Nets and Other Models of
Concurrency XV; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 26–37. [CrossRef]

32. Angulo, C.; Ruiz, F.J.; González, L.; Ortega, J.A. Multi-Classification by Using Tri-Class SVM. Neural Process. Lett. 2006, 23,
89–101. [CrossRef]

33. Phillips, T.; Abdulla, W. Developing a New Ensemble Approach With Multi-Class SVMs for Manuka Honey Quality Classification.
Appl. Soft Comput. 2021, 111, 107710. [CrossRef]

34. Khan, M.; Reza, Q.; Salhan, A.K.; Sirdeshmukh, S.P. Classification of Oils by ECOC Based Multi-Class SVM Using Spectral
Analysis of Acoustic Signals. Appl. Acoust. 2021, 183, 108273. [CrossRef]

35. Adeniyi, M.O.; Ekum, M.I.; Iluno, C.; Ogunsanya, A.S.; Akinyemi, J.A.; Oke, S.I.; Matadi, M.B. Dynamic model of COVID-19
disease with exploratory data analysis. Sci. Afr. 2020, 9, e00477. [CrossRef]

36. Dey, S.K.; Rahman, M.; Siddiqi, U.R.; Howlader, A. Exploring Epidemiological Behavior of Novel Coronavirus (COVID-19)
Outbreak in Bangladesh. SN Compr. Clin. Med. 2020, 2, 1724–1732. [CrossRef]

37. Zandifar, A.; Badrfam, R.; Yazdani, S.; Arzaghi, S.M.; Rahimi, F.; Ghasemi, S.; Khamisabadi, S.; Khonsari, N.M.; Qorbani, M.
Prevalence and Severity of Depression, Anxiety, Stress and Perceived Stress in Hospitalized Patients With COVID-19. J. Diabetes
Metab. Disord. 2020, 19, 1431–1438. [CrossRef]

38. Hasan, N.; Bao, Y. Impact of “e-Learning Crack-up” Perception on Psychological Distress among College Students dur-
ing COVID-19 Pandemic: A Mediating Role of “fear of Academic Year loss”. Child. Youth Serv. Rev. 2020, 118, 105355.
[CrossRef] [PubMed]

39. Munawar, H.; Khan, S.; Qadir, Z.; Kouzani, A.; Mahmud, M. Insight into the Impact of COVID-19 on Australian Transportation
Sector: An Economic and Community-Based Perspective. Sustainability 2021, 13, 1276. [CrossRef]

40. Qazi, A.; Qazi, J.; Naseer, K.; Zeeshan, M.; Hardaker, G.; Maitama, J.Z.; Haruna, K. Analyzing Situational Awareness through
Public Opinion to Predict Adoption of Social Distancing Amid Pandemic COVID-19. J. Med. Virol. 2020, 92, 849–855. [CrossRef]

41. Qazi, A.; Qazi, J.; Naseer, K.; Zeeshan, M.; Qazi, S.; Abayomi-Alli, O.; Ahmad, I.S.; Darwich, M.; Talpur, B.A.; Hardaker, G.; et al.
Adaption of Distance Learning to Continue the Academic Year Amid COVID-19 Lockdown. Child. Youth Serv. Rev. 2021, 126,
106038. [CrossRef]

42. Qazi, A.; Naseer, K.; Qazi, J.; AlSalman, H.; Naseem, U.; Yang, S.; Hardaker, G.; Gumaei, A. Conventional to Online Education
During COVID-19 Pandemic: Do Develop and Underdeveloped Nations Cope Alike. Child. Youth Serv. Rev. 2020, 119,
105582. [CrossRef]

43. Sifat, R.I. COVID-19 Pandemic: Mental Stress, Depression, Anxiety among the University Students in Bangladesh. Int. J. Soc.
Psychiatry 2020, 1, 2. [CrossRef]

44. Qazi, A.; Hardaker, G.; Ahmad, I.S.; Darwich, M.; Maitama, J.Z.; Dayani, A. The Role of Information & Communication
Technology in Elearning Environments: A Systematic Review. IEEE Access 2021, 9, 45539–45551. [CrossRef]

45. Al-Dmour, H.; Masa’Deh, R.; Salman, A.; Abuhashesh, M.; Al-Dmour, R. Influence of Social Media Platforms on Public Health
Protection Against the COVID-19 Pandemic via the Mediating Effects of Public Health Awareness and Behavioral Changes:
Integrated Model. J. Med. Internet Res. 2020, 22, e19996. [CrossRef]

46. De Rosis, S.; Lopreite, M.; Puliga, M.; Vainieri, M. The Early Weeks of the Italian Covid-19 Outbreak: Sentiment Insights from a
Twitter Analysis. Health Policy 2021, 125, 987–994. [CrossRef] [PubMed]

47. Petersen, K.; Gerken, J.M. #Covid-19: An Exploratory Investigation of Hashtag Usage on Twitter. Health Policy 2021, 125, 541–547.
[CrossRef] [PubMed]

48. Singh, P.; Singh, S.; Sohal, M.; Dwivedi, Y.K.; Kahlon, K.S.; Sawhney, R.S. Psychological Fear and Anxiety Caused by COVID-19:
Insights from Twitter Analytics. Asian J. Psychiatry 2020, 54, 102280. [CrossRef] [PubMed]

49. Bentivegna, S.; Artieri, G.B. Rethinking Public Agenda in a Time of High-Choice Media Environment. Media Commun. 2020, 8,
6–15. [CrossRef]

50. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Pub. Co.: Reading, MA, USA, 1977; Volume 2, pp. 5–23. Available online:
http://theta.edu.pl/wp-content/uploads/2012/10/exploratorydataanalysis_tukey.pdf (accessed on 2 March 2020).

51. Qazi, A.; Raj, R.G.; Tahir, M.; Waheed, M.; Khan, S.U.R.; Abraham, A. A Preliminary Investigation of User Perception and
Behavioral Intention for Different Review Types: Customers and Designers Perspective. Sci. World J. 2014. [CrossRef] [PubMed]

52. Jindal, N.; Liu, B. Mining Comparative Sentences and Relations. In Proceedings of the 21st National Conference on Artificial
Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, Boston, MA, USA, 16–20 July 2006;
pp. 1331–1336.

53. Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.; Khan, W.A. The Artificial Neural Network for Solar Radiation Prediction and
Designing Solar Systems: A Systematic Literature Review. J. Clean. Prod. 2015, 104, 1–12. [CrossRef]

54. Qazi, A.; Raj, R.G.; Hardaker, G.; Standing, C. A Systematic Literature Review on Opinion Types and Sentiment Analysis
Techniques. Internet Res. 2017, 27, 608–630. [CrossRef]

55. Salim, N.A.M.; Wah, Y.B.; Reeves, C.; Smith, M.; Yaacob, W.F.W.; Mudin, R.N.; Dapari, R.; Sapri, N.N.F.F.; Haque, U. Prediction of
dengue outbreak in Selangor Malaysia using machine learning techniques. Sci. Rep. 2021, 11, 939. [CrossRef]

56. Li, H.; Sun, F. Comparative Studies of Alignment, Alignment-Free and SVM Based Approaches for Predicting the Hosts of Viruses
Based on Viral Sequences. Sci. Rep. 2018, 8, 10032. [CrossRef]

http://doi.org/10.1007/978-3-030-63836-8_3
http://doi.org/10.1007/s11063-005-3500-3
http://doi.org/10.1016/j.asoc.2021.107710
http://doi.org/10.1016/j.apacoust.2021.108273
http://doi.org/10.1016/j.sciaf.2020.e00477
http://doi.org/10.1007/s42399-020-00477-9
http://doi.org/10.1007/s40200-020-00667-1
http://doi.org/10.1016/j.childyouth.2020.105355
http://www.ncbi.nlm.nih.gov/pubmed/32834276
http://doi.org/10.3390/su13031276
http://doi.org/10.1002/jmv.25840
http://doi.org/10.1016/j.childyouth.2021.106038
http://doi.org/10.1016/j.childyouth.2020.105582
http://doi.org/10.1177/0020764020965995
http://doi.org/10.1109/access.2021.3067042
http://doi.org/10.2196/19996
http://doi.org/10.1016/j.healthpol.2021.06.006
http://www.ncbi.nlm.nih.gov/pubmed/34176671
http://doi.org/10.1016/j.healthpol.2021.01.001
http://www.ncbi.nlm.nih.gov/pubmed/33487479
http://doi.org/10.1016/j.ajp.2020.102280
http://www.ncbi.nlm.nih.gov/pubmed/32688277
http://doi.org/10.17645/mac.v8i4.3166
http://theta.edu.pl/wp-content/uploads/2012/10/exploratorydataanalysis_tukey.pdf
http://doi.org/10.1155/2014/872929
http://www.ncbi.nlm.nih.gov/pubmed/24711739
http://doi.org/10.1016/j.jclepro.2015.04.041
http://doi.org/10.1108/IntR-04-2016-0086
http://doi.org/10.1038/s41598-020-79193-2
http://doi.org/10.1038/s41598-018-28308-x


Sustainability 2021, 13, 11339 16 of 16

57. Bendfeldt, K.; Taschler, B.; Gaetano, L.; Madoerin, P.; Kuster, P.; Mueller-Lenke, N.; Amann, M.; Vrenken, H.; Wottschel, V.;
Barkhof, F.; et al. MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis
using SVM and lesion geometry. Brain Imaging Behav. 2019, 13, 1361–1374. [CrossRef]

58. Leong, W.; Kelani, R.; Ahmad, Z. Prediction of Air Pollution Index (API) Using Support Vector Machine (SVM). J. Environ. Chem.
Eng. 2020, 8, 103208. [CrossRef]

59. Manavalan, B.; Shin, T.H.; Lee, G. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.
Front. Microbiol. 2018, 9, 476. [CrossRef]

60. Jee, Y. WHO International Health Regulations Emergency Committee for the COVID-19 Outbreak. Epidemiol. Health 2020, 42,
e2020013. [CrossRef]

61. Reuters. FACTBOX-Airlines Suspend China Flights over Coronavirus. 2020. Available online: https://www.reuters.com/article/
us-china-health-airlines-factbox-idUSKBN1ZT1RZ (accessed on 1 February 2020).

62. Carlisle, S.M.A.M. Coronavirus Grounds Flights to China From 3 Continents. Here’s What Travelers Should Know. 2020.
Available online: https://time.com/5774906/airlines-ground-flights-coronavirus/ (accessed on 28 January 2020).

63. Reid, D. More Airlines Suspend Flights to and from China Amid Coronavirus Fears. 2020. Available online: https://www.cnbc.
com/2020/01/31/coronavirus-more-airlines-suspend-flights-to-and-from-china.html (accessed on 24 February 2020).

64. Ghani, A.C.; Donnelly, C.; Cox, D.R.; Griffin, J.T.; Fraser, C.; Lam, T.H.; Ho, L.M.; Chan, W.-S.; Anderson, R.; Hedley, A.J.; et al.
Methods for Estimating the Case Fatality Ratio for a Novel, Emerging Infectious Disease. Am. J. Epidemiol. 2005, 162, 479–486.
[CrossRef] [PubMed]

65. Nishiura, H.; Klinkenberg, D.; Roberts, M.; Heesterbeek, J.A.P. Early Epidemiological Assessment of the Virulence of Emerging
Infectious Diseases: A Case Study of an Influenza Pandemic. PLoS ONE 2009, 4, e6852. [CrossRef] [PubMed]

66. A Donnelly, C.; Ghani, A.; Leung, G.; Hedley, A.J.; Fraser, C.; Riley, S.; Abu-Raddad, L.; Ho, L.-M.; Thach, T.Q.; Chau, P.; et al.
Epidemiological Determinants of Spread of Causal Agent of Severe Acute Respiratory Syndrome in Hong Kong. Lancet 2003, 361,
1761–1766. [CrossRef]

67. Mizumoto, K.; Saitoh, M.; Chowell, G.; Miyamatsu, Y.; Nishiura, H. Estimating the Risk of Middle East Respiratory Syn-
drome (MERS) Death During the Course of the Outbreak in the Republic of Korea, 2015. Int. J. Infect. Dis. 2015, 39, 7–9.
[CrossRef] [PubMed]

68. Yang, Y.; Peng, F.; Wang, R.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C. The Deadly Coronaviruses: The 2003 SARS Pandemic
and the 2020 Novel Coronavirus Epidemic in China. J. Autoimmun. 2020, 109, 102434. [CrossRef]

69. Powers, D.M. Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn.
Technol. 2011, 2, 37–63.

70. Mukhtar, S. Preparedness and Proactive Infection Control Measures of Pakistan During COVID-19 Pandemic Outbreak. Res. Soc.
Adm. Pharm. 2021, 17, 2052. [CrossRef] [PubMed]

71. Chohan, U.W. Forecasting the Economic Impact of Coronavirus on Developing Countries: Case of Pakistan. SSRN Electron. J.
2020. [CrossRef]

72. Hyder, A. eBook Short Notes on the Economy during the COVID-19 Crisis; Institute of Business Administration: Karachi, Pakistan,
2020; Volume 2.

73. Breland, J.Y.; Quintiliani, L.M.; Schneider, K.L.; May, C.N.; Pagoto, S. Social Media As a Tool to Increase the Impact of Public
Health Research. Am. J. Public Health 2017, 107, 1890–1891. [CrossRef] [PubMed]

74. Dashtipour, K.; Poria, S.; Hussain, A.; Cambria, E.; Hawalah, A.Y.A.; Gelbukh, A.; Zhou, Q. Multilingual Sentiment Analysis:
State of the Art and Independent Comparison of Techniques. Cogn. Comput. 2016, 8, 757–771. [CrossRef] [PubMed]

http://doi.org/10.1007/s11682-018-9942-9
http://doi.org/10.1016/j.jece.2019.103208
http://doi.org/10.3389/fmicb.2018.00476
http://doi.org/10.4178/epih.e2020013
https://www.reuters.com/article/us-china-health-airlines-factbox-idUSKBN1ZT1RZ
https://www.reuters.com/article/us-china-health-airlines-factbox-idUSKBN1ZT1RZ
https://time.com/5774906/airlines-ground-flights-coronavirus/
https://www.cnbc.com/2020/01/31/coronavirus-more-airlines-suspend-flights-to-and-from-china.html
https://www.cnbc.com/2020/01/31/coronavirus-more-airlines-suspend-flights-to-and-from-china.html
http://doi.org/10.1093/aje/kwi230
http://www.ncbi.nlm.nih.gov/pubmed/16076827
http://doi.org/10.1371/journal.pone.0006852
http://www.ncbi.nlm.nih.gov/pubmed/19718434
http://doi.org/10.1016/S0140-6736(03)13410-1
http://doi.org/10.1016/j.ijid.2015.08.005
http://www.ncbi.nlm.nih.gov/pubmed/26275845
http://doi.org/10.1016/j.jaut.2020.102434
http://doi.org/10.1016/j.sapharm.2020.04.011
http://www.ncbi.nlm.nih.gov/pubmed/32299683
http://doi.org/10.2139/ssrn.3563616
http://doi.org/10.2105/AJPH.2017.304098
http://www.ncbi.nlm.nih.gov/pubmed/29116846
http://doi.org/10.1007/s12559-016-9415-7
http://www.ncbi.nlm.nih.gov/pubmed/27563360

	Introduction 
	Related Works 
	Materials and Methods 
	Epidemiological Data 
	Time-Series Data Analysis 
	Data Preprocessing 
	Support Vector Machine (SVM) Model for Prediction 

	Twitter Data 

	Results 
	Exploratory Data Analysis 
	Predictive Analysis Using Support Vector Machine (SVM) 
	Comparison of Visual Data from Multiple Reliable Web Sources 
	Results of Tweets to Predict Emotions (Anxiety and Stress) 

	Discussion 
	Implications and Limitations 
	Conclusions 
	References

