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Abstract: Glyphosate-based foliar spray herbicides are the most common method for urban weed
control due to their broad-spectrum and efficacy for burndown applications. As interest in glyphosate
alternatives has increased in recent years, this project assessed the efficacy of the following non-
glyphosate-based alternative weed management strategies: glufosinate, imazapyr, MCPA + dicamba,
prodiamine, pine oil, clove oil, nonanoic acid, acetic acid + hydrochloric acid and steam against
untreated (negative) controls and glyphosate-treated sites. Across all four seasonal treatments (winter,
spring, summer and autumn), glyphosate and glufosinate reduced weed coverage (>65% after 4
and 12 weeks); imazapyr reduced weed coverage by >80% after 12 weeks; and steam reduced weed
coverage by >80% after 4 weeks, and after 12 weeks showed to reduce weed coverage by >20% after
the second application. The MCPA + dicamba, prodiamine, pine oil, clove oil, nonanoic acid and
acetic acid + hydrochloric acid treatments had mixed impacts on weed coverage. Minimal alterations
to soil physicochemical properties were observed across the two sites for all treatments. Assessment
of impacts the different weed management strategies had on arthropod and microbial relative
abundance showed minimal alterations; with only steam observed to reduce relative microbial
abundance. Glufosinate, imazapyr and steam may be considered alternatives to glyphosate for
reducing weed coverage but may not be as effective or have undesirable off-target effects. Overall,
glyphosate provided the most consistent weed reduction at both sites over 12 weeks, without any
recorded negative off-target or soil biota impacts.

Keywords: weed plant management; herbicide; glyphosate; glufosinate; steam; imazapyr; soil biota;
next generation sequencing; arthropods; bacteria; fungi

1. Introduction

Introduced invasive plant species (weeds) are controlled to maintain and preserve
native flora and fauna in urbanised areas and revegetated habitat zones, prevent damage to
infrastructure and to maintain aesthetically pleasing streetscapes and parklands [1]. Weed
control strategies can affect soil biota either by eliminating weeds and their associated
rhizosphere or by directly influencing the physiology and diversity of organisms including
bacteria, fungi and arthropods [2–7].

There are many forms of weed control and, globally, the use of glyphosate-based
herbicides is one of the most common approaches [8]. Glyphosate is a broad-spectrum and
non-selective herbicide that was initially developed as an alternative to other herbicides
that would cause uncontrollable crop damage, had lower efficacy, were subject to the devel-
opment of resistance, or posed health risks to humans [9]. Glyphosate-based herbicides are
the most popular choice for weed control based on their low cost, ease of application, target
specificity and high efficacy for killing a broad range of weeds. Glyphosate was originally
perceived as having low toxicity towards animals, however, recently, it has been suggested
that glyphosate may lead to carcinogenesis in humans [10]. In 2017, the International Agency for
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Research on Cancer (IARC) published a report (https://publications.iarc.fr/Book-And-Report-
Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-
Organophosphate-Insecticides-And-Herbicides-2017, accessed on 20 August 2021) classifying
glyphosate as a Group 2A agent (probable carcinogens) [11].

Growing public concern and negative perception, tighter trade regulations and in-
creased abundance of glyphosate resistant weeds[12] has prompted the need to explore
alternative weed management strategies. Here the efficacy of seasonally applied weed
reduction strategies is tested at two urban reserves that had mixed weed profiles (>80%
plant coverage across soil surface), had not been used as croplands, and did not harbor any
desirable plants.

Glyphosate is a highly effective herbicide due to its rapid soil binding, biodegradation,
non-volatility, stability in favourable conditions (e.g., sunlight), complete solubility in
water, easy application on crops, and reduced toxicity compared to other broad spectrum
herbicides [13]. When applied on plant foliage, glyphosate is absorbed through cuticles
and transported through the symplast via phosphate carrier channels [14]. Glyphosate
moves through phloem, in a pathway similar to other photoassimilates, where it migrates
towards growth and storage tissues [15]. These tissues include roots, tubers, rhizomes,
young leaves and meristematic zones [15]. Glyphosate accumulates in plant tissue and
cells with high rates of metabolism and growth, including root nodules, root tips and shoot
apices [16].

After application to foliage and plant uptake, glyphosate’s break down products
include aminomethylphosphonic acid (AMPA). Due to its chemical similarity with glycine,
AMPA can outcompete this amino acid for biological pathways such as enzyme active
sites; reducing glutamate synthesis and serine production [14]. Ultimately, the inhibition
of chlorophyll biosynthesis and photosynthetic activity by glyphosate results in plant
death [14,17]. Many weeds, including Lolium rigidum (annual Ryegrass) have evolved
glyphosate resistance mechanisms. For example, some weeds have alterations in the
chloroplast enzyme 5-enolpyruvylshikimate-3-phosphate synthase, enabling continued
phenylalanine, tyrosine, and tryptophan production [18,19]. Less reliance on glyphosate
through the adoption of new weed management strategies will remove the selective
pressure of glyphosate resistance in weeds, slowing the emergence of new glyphosate
resistant weeds [18,19].

Microorganisms play a vital role in maintaining soil health; where they can support
plant growth through nutrient cycling, improving soil structure, balancing soil pH and
enhancing soil water retention [20,21]. Soil microbes play vital roles in carbon cycling;
where carbon can be released as either CO2 or CH4, or, sequestered within the soil as
an inorganic form [20]. Clearly, a key component of natural and managed ecosystems
is the diverse and complex soil microbial interactions that occur to maintain the health
of the soil [22]. Previously, the effects of aqueous glyphosate exposure to fungi and the
effects of folia glyphosate application to the rhizosphere of Glycine max (Soybean) have
been investigated, with findings showing that prolonged exposure of soil microorganisms
to glyphosate shifts the soil microbiome in favour of undesirable plant pathogenic fungal
communities (including Fusarium spp.); whereas other studies described this shift within
as little as two weeks post glyphosate treatment [23,24]. Infection of plants by these
pathogens contributes towards their death, however, could adversely impact future land
use via deteriorated soil health.

In soil, arthropods play essential roles in the maintenance of soil quality and pro-
ductivity; where they reduce bulk density, increase soil pore size, facilitate soil horizon
mixing, increase aeration and drainage, increase water holding capacity, decompose litter,
and improve soil aggregate structure [25–27]. Arthropod communities can be disrupted
by land management practices, such as herbicides use resulting in reductions to their
abundance and diversity [25–27]. Six studies have previously reported that glyphosate
exposure reduces diversity and abundance of arthropods, in a range of environments,
including forests, pasture fields, gardens, parks, corn fields, soybean fields, nature reserves,
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greenhouses and laboratory conditions [25,26,28–30]. This is due to the herbicides either
directly killing the insects or more often, altering the vegetation of an ecosystem; where
either plants are an attractant, the vegetation is a food source (directly or indirectly), or
provides a habitat [25,26,28–30]. For example, glyphosate exposure has been demonstrated
to reduce melanin nodule size (help eliminate infection) in the caterpillar Galleria mellonella.
This decreased their survival following infection with the fungus Cryptococcus neoformans.
Moreover, glyphosate exposure increased susceptibility of the mosquito Anopheles gambiae
to Plasmodium falciparum infection, reduced uninfected mosquito survival and altered the
midgut microbial composition of adult mosquitoes diversity [27].

The aim of this study was to: (i) measure the degree to which different weed man-
agement strategies reduced weed plant coverage compared to glyphosate, (ii) assess the
impact of the different weed management strategies on soil physiochemical properties
and (iii) ascertain the impact of weed management strategies on microbial and arthropod
abundance and diversity in soils.

To determine the alternative treatments to be trialled, a comprehensive survey of current
commercially available (in Australia) weed control products was conducted. Candidates
shortlisted for trialling against glyphosate were selected based on: mode of action, solubility in
water, poison schedule, resistance, effect on metabolism (plant and other organisms if known),
flammability, contact effect, active constituent, specificity spectrum, residual/non-residual,
exposure risk, common form, storage requirements and cost. The shortlist represented
chemical, plant oil-based, organic acid-based and physical management options readily
available in Australia. The chemical alternatives selected for testing were imazapyr, glu-
fosinate, 2-methyl-4-chlorophenoxyacetic acid (MCPA) + 3,6-dichloro-2-methoxybenzoic acid
(dicamba) and prodiamine. These were chosen based on being similar to glyphosate in activity
(glufosinate), having longer residual and pre-emergent effects (imazapyr) or being currently
commonly used in Australia to selectively reduce weeds (MCPA + dicamba and prodiamine).
The plant oil-based commercially available alternatives selected for assessment were pine
oil and clove oil (40.4 g/L of acetic acid mixed with 40.4 g/L plant-based clove oil). The
organic acid-based alternatives selected for testing were nonanoic acid and acetic acid
+ hydrochloric acid. Steaming of weeds was selected as a non-chemical, physical weed
eradication strategy for assessment against glyphosate as it is increasingly being considered
by local government and industries as an alternative option, as it reduces weed viability
instantly; and more viable than other manual weed eradication techniques. Overall, these
treatments were chosen for comparison to glyphosate due to being commercially available,
appropriate for use on urban weed landscapes (i.e., similar application cost), and having
either kindred (glufosinate) or different modes of action (MCPA + dicamba, prodiamine,
pine oil, clove oil, nonanoic acid, acetic acid + hydrochloric acid, and steam) for weed
reduction [31]. Beyond the scope of this work, adoption of weed treatments with different
modes of action to glyphosate will likely reduce selective pressure for the development of
glyphosate resistance in weeds.

2. Materials and Methods
2.1. Herbicide Solution Preparations and Application Strategy

Stock forms of glyphosate, pine oil, glufosinate, MCPA + dicamba, acetic acid + hy-
drochloric acid, prodiamine and imazapyr were diluted in water to recommended working
concentrations (Table 1) as specified by manufacturers. For clove oil and nonanoic acid,
pre-prepared working solutions were purchased (Table 1). For each weed management
treatment and the untreated control, three blocks (10 m × 27 m) were used to represent
biological triplicates for each treatment. For example, one biological replicate consisted
of eleven separate blocks (nine for alternative herbicides, one for glyphosate and one for
a negative control with no herbicide treatment). Within each block, five separate 1 m2

quadrats (with 0.6 m spaces between each quadrat) were used as technical replicates to
represent one biological sample (Figure 1). Within each quadrat, 200 mL of herbicide was
sprayed evenly across all plants. For the steam treatment, a commercial weed steamer
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unit was used as per the manufacturer’s directions. The temperature was set between
140 ◦C and 180 ◦C for 10–20 s application rate per 0.015 m2, to cover the entire 1 m2 area of
each quadrat. The ten weed management treatments were all applied seasonally (southern
hemisphere winter, spring, summer and autumn, respectively) at four time points over
a 12 month period in 2020–2021, with applications performed within the first month of
each season (southern hemisphere winter, spring, summer and autumn, respectively). The
effect each of the ten weed management treatments had on total percentage plant (weed)
coverage for each quadrat was assessed 4 weeks and 12 weeks post treatment.

Table 1. Concentration of active ingredients and dilution factors for making working concentrations in 1 L volumes. For
each product, a 1 L working solution was prepared and 200 mL of the working solution applied to each 1 m2 quadrat (400 L
per ha). Levels of active ingredients specified may vary between products offered by different manufacturers or form of
herbicide (granule, pre-diluted solution or concentrate).

Glyphosate Pine Oil Glufosinate MCPA+
Dicamba

Acetic Acid +
Hydrochloric

Acid
Prodiamine Imazapyr Nonanoic

Acid Clove Oil

Stock conc. 360 g/L 680 g/L 200 g/L
340 g/L

MCPA + 80
g/L dicamba

900 g/L acetic
acid + 10 g/L

hydrochloric acid
480 g/L 700 g/kg 36.8 g/L

40.4 g/L clove
oil + 40.4 g/L

acetic acid

Dilution 10 mL/L 200 mL/L 5 mL/L 27 mL/L 90 mL/L 40 mL/L 13 g/L N/A N/A

Final active
conc. 36 g/L 136 g/L 2 g/L

9.18 g/L
MCPA + 2.16
g/L dicamba

81 g/L acetic acid
+ 0.9 g/L

hydrochloric acid
19.2 g/L 9.1 g/L 36.8 g/L

40.4 g/L clove
oil + 40.4 g/L

acetic acid

Application
rate per m2 7.2 g/m2 27.2 g/m2 0.4 g/m2

1.84 g/m2

MCPA + 0.43
g/m2

dicamba

16.2 g/m2 Acetic
acid + 0.18 g/m2

hydrochloric acid
3.84 g/m2 1.82 g/m2 18.4 g/m2

8.08 g/m2 clove
oil + 8.08 g/m2

acetic acid

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 25 
 

to represent biological triplicates for each treatment. For example, one biological replicate 

consisted of eleven separate blocks (nine for alternative herbicides, one for glyphosate and 

one for a negative control with no herbicide treatment). Within each block, five separate 1 

m2 quadrats (with 0.6 m spaces between each quadrat) were used as technical replicates 

to represent one biological sample (Figure 1). Within each quadrat, 200 mL of herbicide 

was sprayed evenly across all plants. For the steam treatment, a commercial weed steamer 

unit was used as per the manufacturer’s directions. The temperature was set between 140 

°C and 180 °C for 10–20 s application rate per 0.015 m2, to cover the entire 1 m2 area of each 

quadrat. The ten weed management treatments were all applied seasonally (southern 

hemisphere winter, spring, summer and autumn, respectively) at four time points over a 

12 month period in 2020–2021, with applications performed within the first month of each 

season (southern hemisphere winter, spring, summer and autumn, respectively). The 

effect each of the ten weed management treatments had on total percentage plant (weed) 

coverage for each quadrat was assessed 4 weeks and 12 weeks post treatment.  

2.2. Treatment Sites and Design of Treatment Blocks for Testing Weed Management Strategies  

Two sites were chosen to test the effects of the different weed control strategies, based 

on their soil types. Site 1 has a heavy clay soil type (Vermont South, Victoria, Australia, 

GPS coordinates: −37.860234, 145.198830). Site 2 has a sandy soil type (Aspendale, Victoria, 

Australia, GPS coordinates: −38.012448, 145.090683). At each site, three blocks of 10 m × 27 

m were selected. Within each block eleven small plots (equalling an area of 7.4 m × 1 m, 

within the 10 m × 27 m blocks) were measured out and treatments performed within five 

separate 1 m2 quadrats as previously described (Figure 1). Plant coverage was estimated 

based on modified Braun-Blanquet cover-abundance scale for vegetation analysis 

methods [32–34]. Briefly, for each 1 m2 quadrat total live/dead weed coverage was 

determined by measuring the total coverage of green (live) vs. brown (dead) plant 

material within each 1 m2 quadrat. The five technical replicate quadrats of each small plot 

were averaged to represent one technical replicate, and the three small plots for each 

treatment used to represent biological triplicates. Assessment of plant coverage was 

performed at both sites immediately before treatment, 4 weeks post-treatment and 12 

weeks post-treatment. At the same time points, plant taxonomic identification was 

performed for weeds present at both sites [35–37]. For each 1 m2 quadrat, one soil sample 

(50 g) was taken immediately before and 4 weeks post-treatment and immediately stored 

on ice. Upon returning to the laboratory 10 g of soil was taken out for bacterial number 

counts (CFU) and colony types and the remaining 40 g stored frozen at −80 °C for 

subsequent DNA extractions. 

 

Figure 1. Overview of experimental design and trail sites for assessing the effects of the different 

weed management strategies. For each weed management strategy and the untreated control (T1–

T11), five replicate 1 m2 quadrats were measured along separate small plot lines (two trial sites, 

Figure 1. Overview of experimental design and trail sites for assessing the effects of the different weed management
strategies. For each weed management strategy and the untreated control (T1–T11), five replicate 1 m2 quadrats were
measured along separate small plot lines (two trial sites, three replicate treatment blocks per site, eleven small plots per
block, each small plot 10 m in length), where A represents the 0.6 m gap between quadrats of a small plot and B represents
the 1.5 m gap between small plots.

2.2. Treatment Sites and Design of Treatment Blocks for Testing Weed Management Strategies

Two sites were chosen to test the effects of the different weed control strategies, based
on their soil types. Site 1 has a heavy clay soil type (Vermont South, Victoria, Australia,
GPS coordinates: −37.860234, 145.198830). Site 2 has a sandy soil type (Aspendale, Vic-
toria, Australia, GPS coordinates: −38.012448, 145.090683). At each site, three blocks of
10 m × 27 m were selected. Within each block eleven small plots (equalling an area of
7.4 m × 1 m, within the 10 m × 27 m blocks) were measured out and treatments performed
within five separate 1 m2 quadrats as previously described (Figure 1). Plant coverage
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was estimated based on modified Braun-Blanquet cover-abundance scale for vegetation
analysis methods [32–34]. Briefly, for each 1 m2 quadrat total live/dead weed coverage was
determined by measuring the total coverage of green (live) vs. brown (dead) plant material
within each 1 m2 quadrat. The five technical replicate quadrats of each small plot were aver-
aged to represent one technical replicate, and the three small plots for each treatment used
to represent biological triplicates. Assessment of plant coverage was performed at both
sites immediately before treatment, 4 weeks post-treatment and 12 weeks post-treatment.
At the same time points, plant taxonomic identification was performed for weeds present
at both sites [35–37]. For each 1 m2 quadrat, one soil sample (50 g) was taken immediately
before and 4 weeks post-treatment and immediately stored on ice. Upon returning to the
laboratory 10 g of soil was taken out for bacterial number counts (CFU) and colony types
and the remaining 40 g stored frozen at −80 ◦C for subsequent DNA extractions.

2.3. Soil Bacterial Colony Counts including Assessment of Bacterial and Fungal Morphological
Diversity after Herbicide Treatment

To assess colony forming units (CFU) of bacteria and diversity within soil (based
on observed bacterial morphology) after 4 weeks post treatment, one gram of soil was
weighed out from the 50 g collected as described above (Section 2.3). The one gram of soil
was suspended in 10 mL of 1× phosphate buffered saline (PBS) solution, in sterile 15 mL
plastic tubes. The samples were mixed vigorously by vortexing for 3 min. Using aseptic
technique, 100 µL of the soil suspension was transferred to a sterile microcentrifuge tube
containing 900 µL of PBS. These samples were serially diluted a further eight times to reach
a dilution factor of 10−9. A volume of 100 µL from each sample of diluted soil was spread
across the surface of solidified half-strength nutrient agar (50% NA) medium After spread
plating the diluted samples, they were set aside to dry at room temperature for 1 h, then
incubated for 72 h at 22 ◦C. After the incubation period, the total number of colonies and
number of different types of colonies (based on physiological and morphological traits)
were counted. Samples (100 µL) of the serially diluted preparations were also spread plated
on PDA medium, set aside to dry at room temperature for 1 h, incubated for 72 h at 22 ◦C
and the different types of fungi (based on morphology and physiology) assessed.

2.4. Extraction of Total Genomic DNA from Soil Samples and NGS Sequencing

Extraction of total genomic DNA from soil samples for in preparation for assessing
bacterial and fungal diversity was performed using DNeasy PowerSoil Pro Kits (Qia-
gen, Melbourne, Australia, Cat. No. 47014) and following the kit protocol. The initial
quality of extracted DNA was assessed using a NanoDrop ND-2000_spectrophotometer
(ThermoFisher Scientific, Scoresby, Australia) to determine concentration and purity.

Sequencing of bacterial 16S rRNA and Fungal Internal Transcribed Spacer (ITS) re-
gions, using next generation sequencing (NGS), was conducted by the Australian Genome
Research Facility (AGRF) (https://www.agrf.org.au/) (accessed on 1 October 2021). The
NGS sequencing, data generation and presentation were based on previously reported
methods [38]. Briefly, the sequences were analysed using the QIIME pipeline (version1.9.1) [39],
operational taxonomic units (OTUs) selected using the QIIME “pick_open_otus” option
based on s a 97% sequence similarity threshold [40], the uclust method for clustering [41]
and sequence alignment using PyNAST [39]. The final taxonomic assignment was prepared
by AGRF using the Greengenes database to determine species of bacteria [42] and the
UNITE database for species of fungi [43].

2.5. Assessment of Arthropods in Quadrats Treated with Different Weed Management Strategies

Using the full quadrat method [44], 1 m2 quadrats were divided into quarters
(0.25 × 0.25 m) and all invertebrate species within this area were counted and identified
based on morphology. Abundance values were multiplied by four to estimate the total
abundance per quadrat. Pitfall traps were also used to capture arthropods. Following meth-
ods described by Work et al., 2002, 4.5 cm diameter plastic cylinders, 15 cm in length, filled
with ethylene glycol ~4 cm from the bottom, were placed centrally in three quadrats of each

https://www.agrf.org.au/


Sustainability 2021, 13, 11454 6 of 24

small plot for each treatment (n = 15) [45]. After 7 days, the traps were collected, and the
arthropods counted and classified to taxonomic order level based on morphology [46–48].
Relative abundance for arthropods was calculated based on the average number observed
from the two different assessment strategies and % relative abundance plotted [49].

2.6. Soil Physical and Chemical Properties

Samples used for cumulative effect of weed management strategies were collected
as follows: ten core samples (5 cm in diameter and 10 cm in depth) were collected from
random quadrats for each of the three replicate small plots. The 30 core samples for each
treatment group were pooled and 300 g weighed out into a plastic ziplock bag. Analyses of
soil physical and chemical properties were performed by SWEP Analytical Laboratories
(Keysborough, Australia) using methods devised by [50–52].

2.7. Data Analysis and Statistical Methods

Formatted data (using Excel) was imported into the statistical program SPSS for
all statistical analysis. Probability plots were produced for all data to test for normal
distribution. Analysis of variance (ANOVA) tests and Tukey’s Post Hoc analyses were used
to determine significant difference of means across the controls and multiple treatments for
percentage plant coverage and microbial quantification and diversity data sets.

3. Results
3.1. Effect of Weed Management Strategies on Weed Coverage 4 and 12Weeks Post Application

Seasonally, at each trial site (Vermont South and Aspendale), the effect each of the
ten weed management treatments had on total percentage plant (weed) coverage for each
quadrat was assessed 4 weeks and 12 weeks post treatment (Figure 2A–D, Figure 3A–D,
Figure 4A–D and Figure 5A–D).

The Vermont South site had dense weed coverage and a heavy clay soil profile with
the following dominant weed plant species identified: Solanum nigrum (Black Nightshade),
Brassica rapa L., Eleusine indica (Crowsfoot), Paspalum dilatatum (Paspalum), Cypress rotundus
(Nut Grass), Digitaria sanguinalis (Summer Grass), Poa anua (Winter Grass), Romulea rosea
(Guilford Grass), Trifolium rapens (White Clover), Medicago polymorpha (Burr Medic), Vicia sativa
(Common Vetch), Sonchus olerachus (Milk Thistle), Gnaphalium sharcium (Cudweed),
Taraxacum officinale (Dandelion), Conyza spp. (Fleabane), Plantago laceolata (Lambstongue),
Rumex crispus (Curled Dock), Rumex obtusifolius (Broad-leaf Dock), Rumex conglomeratus
(Clustered Dock), Oxalis pes-caprae (Sour Grass) and Nothoscordum inodorum (Onion Weed).

The Aspendale site had a sandy loam soil type with a weed profile that included:
Solanum nigrum (Black nightshade), Brassica rapa L. (Wild Cabbage), Taraxacum officinale
(Dandelion), Oxalis strica (Sour Grass), Nassella trichotoma (Serrated Tussock), Nassella neesiana
(Chilean Needle Grass), Arctotheca calendular (Cape Dandelion), Pennisetum clandestrium
(Kikuyu), Lycium ferocissimum (African Boxthorn), Ulex europaeus L. (Gorse), Echium plantagineum
(Paterson’s curse) and Cynodon dactylon (Bermuda Grass).

For winter treatments at Vermont South, 4 weeks after application of glyphosate,
glufosinate and MCPA + dicamba weed coverage was significantly (p < 0.05) reduced by
~65% (Figure 2A). Prodiamine treatment significantly reduced (p < 0.05) weed coverage
by ~30% and steam significantly reduced (p < 0.05) reduced the coverage by over 95%.
All other treatments had no significant effect on reducing weed coverage compared to
untreated controls (Figure 2A). At Aspendale 4 weeks after application, glyphosate, pine
oil, glufosinate and clove oil treatments reduced weed coverage significantly (p < 0.05)
by >90% (Figure 2C). Treatment with acetic acid + hydrochloric acid reduced coverage
significantly (p < 0.05) by ~70% and steam reduced coverage significantly (p < 0.05) by over
90%. All other treatments had no significant effect on reducing weed coverage compared
to untreated controls (Figure 2C). For winter treatments, after 12 weeks of regeneration
(post treatment) at both sites, glyphosate and glufosinate significantly reduced (p < 0.05)
weed coverage by between 40–60% (Figure 2B,D). At both sites after 12 weeks imazapyr
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significantly reduced (p < 0.05) weed coverage by over 70% (Figure 2B,D). After 12 weeks
at both sites pine oil, clove oil, nonanoic acid, acetic acid + hydrochloric acid, prodiamine,
MCPA + dicamba and steam treatments did not significantly alter weed coverage compared
to untreated controls (Figure 2B,D).
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Figure 2. Effect of weed management strategies on average percentage coverage of weeds in winter 4 weeks post-treatment
((A) for Vermont South; (C) for Aspendale) and 12 weeks post-treatment ((B) for Vermont South; (D) for Aspendale).
For (A), “a” denotes significant difference (p < 0.05) between glyphosate, glufosinate and MCPA + dicamba treatments
compared to the untreated control group; “b” denotes significant difference (p < 0.05) between prodiamine treatment
compared with all other treatment groups; and “c” denotes significant difference (p < 0.05) between steam treatment
compared with all other treatment. For (B,D), “a” denotes significant difference (p < 0.05) between glyphosate and
glufosinate treatments compared to respective untreated “control” groups; and “b” denotes significant difference (p < 0.05)
between imazapyr treatment compared with all other respective treatment groups. For (C), “a” denotes significant difference
(p < 0.05) between glyphosate, pine oil, glufosinate and clove oil treatments compared with all other treatment; “b” denotes
significant difference (p < 0.05) between acetic acid + hydrochloric acid treatment compared with all other treatment groups;
and “c” denotes significant difference (p < 0.05) between steam treatment compared with all other treatment groups.

The percentage weed coverage for quadrats treated with the different weed manage-
ment strategies was assessed 4 and 12 weeks post application in spring (Figure 3A–D). At
Vermont South four weeks post treatment glyphosate, glufosinate, imazapyr and steam
treatments significantly (p < 0.05) reduced weed coverage per m2 by over 70% compared
to the untreated control (Figure 3A). At Aspendale four weeks post treatment glyphosate,
pine oil, glufosinate, acetic acid + hydrochloric acid, clove oil, imazapyr and steam treat-
ments significantly (p < 0.05) reduced weed coverage per m2 by over 20% to over 95%
compared to the untreated control (Figure 3C). Twelve weeks post spring treatments at both
sites, glyphosate, glufosinate and steam significantly reduced (p < 0.05) weed coverage by
between 20–60% (Figure 3B,D). At both site 12 weeks post treatment imazapyr significantly
reduced (p < 0.05) weed coverage by over 90% (Figure 3B,D). Minimal changes in weed
coverage per m2 was measured at either site 12 weeks post treatment for pine oil, clove oil,
nonanoic acid, acetic acid + hydrochloric acid, prodiamine and MCPA + dicamba steam at
both sites (Figure 3B,D).
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Figure 3. Effect of weed management strategies on average percentage coverage of weeds in spring 4 weeks post-treatment
((A) for Vermont South; (C) for Aspendale) and 12 weeks post-treatment ((B) for Vermont South; (D) for Aspendale). For
(A), “a” denotes significant difference (p < 0.05) between glyphosate, imazapyr and steam treatments compared to the
untreated control group; and “b” denotes significant difference (p < 0.05) between glufosinate compared with all other
treatment groups. For (B,D), “a” denotes significant difference (p < 0.05) between glyphosate, glufosinate and steam
treatments compared to respective untreated control groups; and “b” denotes significant difference (p < 0.05) between
imazapyr treatment compared with all other respective treatment groups. For (C), “a” denotes significant difference
(p < 0.05) between glyphosate, glufosinate, imazapyr and steam treatments compared with the untreated control; “b”
denotes significant difference (p < 0.05) between pine oil and clove oil treatments compared to the untreated control; and
“c” denotes significant difference (p < 0.05) between acetic acid + HCl treatment compared to the untreated control and
nonanoic acid, MCPA + dicamba groups.

The percentage weed coverage for quadrats treated with the different weed manage-
ment strategies was assessed 4 and 12 weeks post application in summer (Figure 4A–D).
Four weeks post treatment at Vermont South glyphosate, glufosinate, imazapyr and steam
treatments significantly (p < 0.05) reduced weed coverage per m2 by over 80% compared
to the untreated control (Figure 4A). At Aspendale four weeks post treatment glyphosate,
pine oil, glufosinate, nonanoic acid, acetic acid + hydrochloric acid, clove oil, imazapyr and
steam treatments significantly (p < 0.05) reduced weed coverage per m2 by over 20% to
over 95% compared to the untreated control (Figure 4C). After twelve weeks post summer
treatments at both sites, glyphosate, glufosinate and steam significantly reduced (p < 0.05)
weed coverage by between 20–60% (Figure 4B,D).

The percentage weed coverage for quadrats treated with the different weed manage-
ment strategies was assessed 4 and 12 weeks post application in autumn (Figure 5A–D). At
Vermont South four weeks post treatment glyphosate, glufosinate and imazapyr and steam
treatments significantly (p < 0.05) reduced weed coverage per m2 by over 80% compared
to the untreated control (Figure 5A). Four weeks post treatment at Aspendale glyphosate,
pine oil, glufosinate, nonanoic acid, acetic acid + hydrochloric acid, clove oil, imazapyr and
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steam treatments significantly (p < 0.05) reduced weed coverage per m2 by over 20% to
over 95% compared to the untreated control (Figure 5C). After twelve weeks post autumn
treatments at both sites, glyphosate, glufosinate and steam significantly reduced (p < 0.05)
weed coverage by between 20–60% (Figure 5B,D).
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Figure 4. Effect of weed management strategies on average percentage coverage of weeds in summer 4 weeks post-treatment
((A) for Vermont South; (C) for Aspendale) and 12 weeks post-treatment ((B) for Vermont South; (D) for Aspendale). For
(A), “a” denotes significant difference (p < 0.05) between glyphosate, glufosinate, imazapyr and steam treatments compared
to the untreated control. For (B), “a” denotes significant difference (p < 0.05) between glyphosate and imazapyr treatments
compared to the control, pine oil, glufosinate, nonanoic acid, MCPA + dicamba, acetic acid + HCl, prodiamine and clove oil
treatments; “b” denotes significant difference (p < 0.05) between glufosinate and all other treatment groups except for steam;
and “c” denotes significant difference (p < 0.05) between steam and all other treatment groups except for glyphosate and
glufosinate. For (C), “a” denotes significant difference (p < 0.05) between glyphosate compared to the control and all other
treatments except for glufosinate; “b” denotes pine oil, nonanoic acid, acetic acid + HCl and clove oil treatments as being
significantly different (p < 0.05) to the control but not from glufosinate; “c” denotes significant difference (p < 0.05) between
glufosinate compared to the control, MCPA + dicamba, prodiamine, imazapyr and steam treatments; and “d” denotes
significant difference (p < 0.05) between imazapyr and steam compared to the untreated control and all other treatment
groups. For (D), “a” denotes significant difference (p < 0.05) between glyphosate and glufosinate treatments compared to
the control; “b” denotes significant difference (p < 0.05) between imazapyr and all other treatments; and “c” denotes steam
treatment as being significantly different compared to the untreated control.

3.2. Effect of Weed Management Strategies on Bacterial Abundance and Diversity in Soil 4 Weeks
Post Treatment

Four weeks after each seasonal treatment no significant difference (p < 0.05) in colony
forming units (CFU) of bacteria per gram of soil was observed between the soil samples
from untreated controls and soils treated with different weed management strategies at
either trial sites (Supplementary Tables S1–S8). Generally, the CFU per gram of soil and
diversity was lower in sandy loam samples from Aspendale compared to the CFU per
gram of soil in the heavy clay from Vermont South (Supplementary Tables S1–S8).
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Figure 5. Effect of weed management strategies on average percentage coverage of weeds in autumn 4 weeks post-treatment
((A) for Vermont South; (C) for Aspendale) and 12 weeks post-treatment ((B) for Vermont South; (D) for Aspendale). For
(A), “a” denotes significant difference (p < 0.05) between glyphosate, imazapyr and steam treatments compared to untreated
control group; and “b” denotes significant difference (p < 0.05) between glufosinate treatment compared with all other
treatment groups except for glyphosate treatment. For (B), “a” denotes significant difference (p < 0.05) between glyphosate
and untreated control; “b” denotes significant difference (p < 0.05) between glufosinate, and steam compared to the control;
and “c” denotes significant difference (p < 0.05) between imazapyr and all other treatments. For (C), “a” denotes significant
difference (p < 0.05) between glyphosate, imazapyr and steam treatments compared to untreated control group; “b” denotes
significant difference (p < 0.05) between glufosinate treatment compared with all other treatment groups; and “c” denotes
significant difference (p < 0.05) between pine oil, nonanoic acid, acetic acid + HCl and clove oil compared to the control,
glyphosate, imazapyr and steam treatment groups. For (D), “a” denotes significant difference (p < 0.05) between glyphosate
and steam compared with the untreated control; “b” denotes significant difference (p < 0.05) between glufosinate compared
to the control; and “c” denotes significant difference (p < 0.05) between imazapyr and all other treatments.

3.3. Effect of Weed Management Strategies on Arthropod Relative Abundance 4 Weeks
Post Treatment

Arthropod relative abundance varied across all treatments throughout all four seasons
with no discernible link between a particular weed management strategy and relative
abundance at either the Vermont South (Figure 6) or Aspendale (Figure 7) sites. On
average, Hymenoptera was the most abundant order at both sites across all seasons.
Relative abundance of Hemiptera was higher at Aspendale compared to Vermont South,
particularly for “prodiamine”, “clove oil”, “imazapyr” and “steam” treatments.
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Figure 6. Effects of weed management strategies on relative abundance of Arthropod Orders enumerated at Vermont South
for (A) winter, (B) spring, (C) summer and (D) autumn applications.

3.4. Effect of Weed Management Strategies on Bacterial Diversity in Soil 4 Weeks Post Treatment

Sequencing of total 16S rRNA in soil samples taken 4 weeks after treatment with the
different weed management strategies showed that the relative abundance of bacteria phyla
was generally similar for all treatments compared to the control, except the steam treatment
groups at both sites across all seasons (Figure 8A–D and Figure 9A–D). The relative abun-
dance of phyla did alter seasonally with increased Verrucomicrobia present in winter sam-
ples and increased Fibrobacteres present in spring samples (Figure 8A,B and Figure 9A,B).
The spring glyphosate treatment showed increased relative abundance of cyanobacteria
compared with other treatments (Figure 8B). For soils from winter steam treatments, Pro-
teobacteria were the most abundant phyla, with a general lower level of diversity (lower
number of phyla) (Figures 8A and 9A). Firmicute abundance increased in soils treated
with steam in spring, whilst Proteobacteria abundance was reduced (Figures 8B and 9B).
Four weeks post summer treatments, a common seasonal trend was observed for mi-
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crobial communities within the soil at both sites (Figures 8C and 9C). For the imazapyr
treated soil at Vermont South an increase in Gemmatimonadetes was observed in summer
(Figure 8C). Four weeks post summer steam application, the overall diversity of bacte-
ria phyla was reduced at both sites, with increased relative abundance of Firmicutes at
both sites (Figures 8C and 9C). For the bacterial communities four weeks post autumn
treatment, at both sites a seasonal shift in community composition was observed, where
the relative abundance of Actinobacteria increased, whereas the Fibrobacteres abundance
reduced dramatically for all chemical treatments (Figures 8D and 9D). Four weeks post
autumn treatments the steam treatment at both sites showed to increase Fibrobacteres
relative abundance (Figures 8D and 9D).
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Figure 7. Effects of weed management strategies on relative abundance of Arthropod Orders enumerated at Aspendale for
(A) winter, (B) spring, (C) summer and (D) autumn applications.
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Figure 8. Effects of weed management strategies on relative abundance of bacteria phyla 4 weeks post treatment at Vermont
South (heavy clay soil profile) for (A) winter, (B) spring, (C) summer and (D) autumn applications.

3.5. Effect of Weed Management Strategies on Fungal Diversity in Soil 4 Weeks Post Treatment

Sequencing of total fungal ITS in soil samples taken 4 weeks after treatment showed
that the relative abundance of fungal phyla varied between treatments, with the high-
est relative abundance generally being Ascomycota for all seasons at the two trial sites
(Figure 10A–D and Figure 11A–D). The treatment of acetic acid + hydrochloric acid in win-
ter at Vermont South increased Blastocladiomycota relative abundance, with a reduction
in Ascomycota relative abundance also observed (Figure 10A). Four weeks post winter
steam treatment at Vermont South increased relative abundance of Mortierellomycota were
observed (Figure 10A). For the steam treated areas 4 weeks post treatment at Aspendale,
Blastocladiomycota relative abundance was seen to increase (Figure 11A).



Sustainability 2021, 13, 11454 14 of 24
Sustainability 2021, 13, x FOR PEER REVIEW 15 of 25 
 

 

Figure 9. Effects of weed management strategies on relative abundance of bacteria phyla 4 weeks 

post treatment at Aspendale (sandy loam soil profile) for (A) winter, (B) spring, (C) summer and 

(D) autumn applications. 

3.5. Effect of Weed Management Strategies on Fungal Diversity in Soil 4 Weeks Post Treatment 

Sequencing of total fungal ITS in soil samples taken 4 weeks after treatment showed 

that the relative abundance of fungal phyla varied between treatments, with the highest 

relative abundance generally being Ascomycota for all seasons at the two trial sites 

(Figures 10A–D and 11A–D). The treatment of acetic acid + hydrochloric acid in winter at 

Vermont South increased Blastocladiomycota relative abundance, with a reduction in 

Ascomycota relative abundance also observed (Figure 10A). Four weeks post winter 

steam treatment at Vermont South increased relative abundance of Mortierellomycota 

were observed (Figure 10A). For the steam treated areas 4 weeks post treatment at 

Aspendale, Blastocladiomycota relative abundance was seen to increase (Figure 11A).  

For spring samples at both sites, the steam treatment reduced the number of different 

phyla present, particularly in spring samples were >80% of species present belonged to 

Figure 9. Effects of weed management strategies on relative abundance of bacteria phyla 4 weeks post treatment at
Aspendale (sandy loam soil profile) for (A) winter, (B) spring, (C) summer and (D) autumn applications.

For spring samples at both sites, the steam treatment reduced the number of different
phyla present, particularly in spring samples were >80% of species present belonged to
Ascomycota (Figures 10B and 11B). For the summer round of treatments at both sites,
there was an obvious seasonal associated change of the fungal community profiles, where
a reduced amount of diversity was observed (Figures 10C and 11C). For the summer
treatment round, an increased relative abundance of Aphelidiomycota was observed at
both sites (Figures 10C and 11C). For the autumn treatment rounds, 4 weeks post treatment
the relative abundance of fungi present Vermont South showed to have a higher proportion
of Chytridiomycota (Figure 10D).
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Figure 10. Effects of weed management strategies on relative abundance of fungi phyla 4 weeks post treatment at Vermont
South (heavy clay soil profile) for (A) winter, (B) spring, (C) summer and (D) autumn treatments.

3.6. Cumulative Effect of Weed Management Strategies on Soil Properties

The cumulative effects of the different weed management strategies on soil physical
and chemical properties were assessed 12 weeks after the final treatment round in autumn.
Generally, there was no discernible changes in soil physical and chemical properties
associated with the different treatments (Supplementary Tables S9 and S10). At Vermont
South, higher levels of nitrogen (N) were measured in soils treated with glyphosate and
imazapyr (70 ppm and 131 ppm respectively; see Supplementary Table S10). Higher levels
of cobalt (Co) were measured in soils treated with steam (3.02 ppm; see Supplementary
Table S10). For samples from Aspendale, higher nitrogen (N) levels were measured in soils
treated with imazapyr (31 ppm; see Supplementary Table S9).
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4. Discussion

Herbicides are classified based on their mode(s) of action including inhibition, inter-
ruption, disruption, or mitigation of plant growth [53–55]. The weed management strate-
gies trialled here, and their respective classifications were: glyphosate, Group 9 (formerly
M); glufosinate, Group 10 (formerly N), imazapyr, Group 2 (formerly B); MCPA + dicamba,
Group 4 (Formerly I); prodiamine, Group 3 (formerly D); clove oil, pine oil and acetic acid
+ hydrochloric acid are most likely classified as “Group Z” contact-based herbicides with
largely unknown and probably diverse sites of action; while steam is a physical heat treat-
ment. Weed coverage and impacts on soil properties and biota varied for the different weed
management strategies; with only the glyphosate, glufosinate and imazapyr treatments
significantly reducing weed coverage at both sites across all seasons after 12 weeks. The
difference in impact on weed coverage between the different products trialled here were
largely attributed to the difference in modes of action.
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4.1. Glyphosate and Glufosinate Consistently Reduced Weed Coverage

Glyphosate and glufosinate significantly reduced weed coverage 4 and 12 weeks
post application across all seasons, and at both sites. Glyphosate is a Group 9 herbicide;
aromatic amino acid inhibitor. Specifically, glyphosate kills plants by inhibiting the enzyme
5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, in-turn blocking the synthesis of
three essential amino acids, phenylalanine, tyrosine and tryptophan, of the shikimate
pathway [56]. This ultimately stops exposed plants from producing essential compounds
for growth, development, defence and environmental responses [56,57]. The efficiency of
glyphosate and its low cost have resulted in it being the most commonly used herbicide
(globally) [9].

The mode of action for glufosinate is via glutamate synthase inhibition (Group 10
mode of action) [58]. Whilst glufosinate significantly reduced weed coverage compared to
untreated controls, its efficacy was less consistent compared with glyphosate, imazapyr
and in some cases, steam. Glufosinate has been shown to be inconsistent in its effects
on plants, due to factors including environmental conditions, application method, time
of application, varying susceptibility/resistance, and being highly hydrophilic [58–61].
Glufosinate is inefficiently translocated in plants and being a light-dependant herbicide, is
typically 40% more effective when applied before midday [58,59]. In the trials described
here, all treatment applications were completed between the hours of between the hours of
9:00 and 12:00.

4.2. Imazapyr Effectively Reduced Weed Coverage by 12 Weeks after the Initial Treatment
and beyond

Imazapyr did not have any obvious impact on weed coverage 4 weeks post first
application at either site. This was attributed to the time for imazapyr to be metabolised
and having a longer-term effect on weed coverage due to its pre-emergent effects [59,62].
Imazapyr is a systemic broad-spectrum herbicide that is absorbed by plants roots and fo-
liage, then transported via phloem and xylem throughout the plant’s meristems and active
growing sites [63,64]. The mode of action for Imazapyr is enzyme inhibition responsible
for the biosynthesis of the three branched-chain aliphatic amino acids valine, leucine, and
isoleucine [63,64]. Imazapyr is a slow acting herbicide with impact times for plant death
previously being described as taking up to several weeks post application [64,65]. After
12 weeks post first application, imazapyr significantly reduced weed coverage compared
to the control and most other treatments at both sites across all seasons. There were ob-
vious signs of lateral movement of imazapyr through the soil profile, particularly at the
Aspendale site, where it could easily diffuse through the highly permeable sandy loam.
Imazapyr is readily absorbed in soils with high organic and/or clay contents, with a half-
life of 14–28 days, but depending on soil physicochemical conditions and organic biomass
content can persist beyond 120 days [59,62]. Microbial loading in the soil plays a key role
in the breakdown of residual imazapyr. It has been shown previously under laboratory
conditions that the half-life of imazapyr in unsterilised soils (containing microbes) were
almost four times lower at approx. 136 days, compared to sterilised soil (no microbes) at
365 days [66]. After the four seasonal treatments of imazapyr at both sites, off target plant
death impacts occurred approx. 0.5 m beyond the 1 m2 quadrat boundaries. Any minimal
regeneration that was observed was attributed to aerial seeds establishing. The mobility of
imazapyr is well documented [67] and could have negative off target effects on sensitive
native vegetation, with careful consideration for post application land use advised.

4.3. Steam Offers Instant Reductions to Weed Coverage and Has a Cumulative Longer-Term Effect

Steam significantly reduced weed coverage immediately after treatment (and for up
to 4 weeks post treatment). It failed to reduce weed coverage 12 weeks post treatment in
winter, however showed a longer-term cumulative effect, with significantly lower weed
coverage after 12 weeks compared to the control for spring summer and autumn treatments.
Compared to glyphosate and imazapyr, steam was inconsistently effective in suppressing



Sustainability 2021, 13, 11454 18 of 24

weeds for up to 12 weeks. Steam has been reported as being 100% effective at killing plants,
as long as the exposure time is adequate [68]. Steam treatment efficacy has previously
been linked to time of exposure, growth stage and plant species [69]. For the mixed
populations of weeds at the two trial sites, steam generally reduced weed coverage by
>90% for up to 4 weeks and 20–80% after 12 weeks. The longer-term variation in efficacy,
or lack of efficacy, observed was attributed to existing seed bank regeneration, aerial seeds
establishing and/or runners extending in from the treated quadrat boundaries.

4.4. Selective Herbicides MCPA + Dicamba and Prodiamine Have Minimal Impacts on Reducing
Overall Weed Coverage

At Vermont South four weeks post initial application, the selective herbicides MCPA
+ dicamba and prodiamine significantly reduced plant coverage compared to the control.
This once off reduction was attributed to these selective herbicides impacting the broad
leaf weeds and grasses including: (Solanum nigrum (Black Nightshade), Brassica rapa L.,
Paspalum dilatatum (Paspalum), Poa anua (Winter Grass), Medicago polymorpha (Burr Medic),
Vicia sativa (Common Vetch), Sonchus olerachus (Milk Thistle), Taraxacum officinale (Dande-
lion), Plantago laceolata (Lambstongue), Rumex Crispus (Curled Dock), Rumex obtusifolius
(Broad-leaf Dock), Rumex conglomeratus (Clustered Dock), Oxalis pes-caprae (Sour Grass) and
Nothoscordum inodorum (Onion Weed) [35–37]. Beyond the initial impact, weeds resistant
to these selective herbicides rapidly established and there was no further impact on plant
coverage observed for these products, nor were any impacts to soil physicochemical or
disruptions to soil biota observed. MCPA (Phenoxy-carboxylate) + dicamba (Benzoate)
are classified as Group 4 (formerly Group I) selective herbicides that mimic auxins in
select plants, disrupting growth at certain stages of post emergent growth; efficacy can
vary on time of application with regards to plant development [70,71]. Prodiamine is a
dinitroaniline herbicide, which disrupts mitosis in susceptible plants [72,73]. This prevents
tubulin polymerizing to form microtubules required for cell division [73,74]. It is the likely
the limited impact observed for both MCPA + dicamba and prodiamine was due to their
selective effect on certain types of plants and certain stages of growth.

4.5. Contact-Based Nonanoic Acid, Pine Oil, Clove Oil and Acetic Acid + Hydrochloric Acid
Products Have Short Term Impacts on Weed Coverage in Areas with Low Plant Density

For all seasonal treatments (winter, spring, summer and autumn), the contact-based
plant oil-based and organic acid-based products (nonanoic acid, pine oil, clove oil and
acetic acid+ hydrochloric acid) did not have any significant impact on weeds at the Vermont
South site. This lack of efficacy for the contact-based products was likely due to the thick
dense weed coverage at the Vermont South site. At the Aspendale site, there was a lower
weed density, meaning the contact acting herbicides covered most of the plant material,
resulting in effective destruction of the leaves, shoots and stems. For all seasonal treatments,
despite initial reductions of weed coverage observed 4 weeks post treatment, 12 weeks
post application the contact-based products did have a significant effect on reducing or
suppressing weeds at the Aspendale site. Interestingly, in spite of organic acid based
products (acetic acid and hydrochloric acid) and plant oil (essential oil) based products
(clove oil and pine oil) being established as disinfectants, pesticides or herbicides (by either
chemical burning or blocking oxygen access) no impacts to arthropods, bacteria or fungi
relative abundance was observed in our study [74–78]. This is likely due to the large
dilution of the products across the surface area of the treatment sites, rainfall events and/or
within the soil profile.

4.6. Weed Management Strategies Had Little or No Effect on Soil Physicochemical Properties

The two trial sites represented two different soil types with a clay soil type at Vermont
South and a sandy loam soil type at Aspendale. After the four seasonally administered
treatments of the different weed management strategies, only minimal alterations to soil
nutrient profiles were observed across the two sites for the various treatments. Nitrogen (N)
content in imazapyr treated soils at both sites increased (Supplementary Tables S9 and S10).
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This could be due to the prolonged reduced plant coverage; where no plants are growing
and actively taking mineralised N out of the soil and the decaying plant biomass and
soil microorganisms are still generating N [79,80]. At Vermont South, higher levels of
cobalt (Co) were measured in soils treated with steam (3.02 ppm) (Supplementary Table S9).
This is most likely an anomaly in the background Co level occurring in the soil at the
steam treatment site and is attributed to historic and current land use (close proximity
to a decommissioned land fill and major roadways, as well as a storm water catchment).
Steam treatment of soils has previously been shown to have minimal or no impact on soil
physicochemical properties [81], as per our general findings here.

4.7. Seasonal Variation and Weed Species Composition and Density Impacted Biota More Than
Weed Management Strategies Trailed

Seasonal changes directly impact soil microbial populations, where dry conditions,
acidity, salinity, soil compaction and lack of organic matter cause fluctuations in diversity
and abundance [82–84]. Based on count data, a general seasonal increase was observed
for summer and autumn where CFU per gram of soil increased by 10-fold at both sites,
compared with winter and spring count data. Likewise, seasonal variation was observed to
impact the bacterial and fungal community composition more than any treatment, where
summer relative abundance was typically lower.

Glyphosate effectively reduced weed coverage consistently and aside from the spring
treatment (that showed to have increased relative abundance of cyanobacteria), did not
have any discernible impact on soil physicochemical properties or biota. Cyanobacteria are
well-established as being early beneficial colonisers of cleared or disturbed soils, with a
high capacity to scavenge and increase the bioavailability of nutrients [85,86]. This increase
in cyanobacteria could be due to the clear ground, spring weather and available nutrients
(namely available N) providing an opportunistic increase in their abundance [87]. This lack
of impact on biota for low level applications is consistent with previous studies, with much
higher applications rates only accounting for 2-log reductions in CFU for select orders of
bacteria [56,88].

Glufosinate was first discovered as a natural product with herbicidal properties
produced by the actinomycetes Streptomyces hygroscopicus and S. viridochromogenes [58,89].
Generally, glufosinate toxicity for bacteria is low, where exposure to concentrations of 1 mM
to >3 mM in minimal nutrient medium inhibited growth [90]. In certain cases, inhibition
of growth due to glufosinate can be offset by supplementation of glutamate, which in
the rhizosphere may be available to bacteria via plant root exudates; potentially reducing
bacterial growth inhibition from the glufosinate [90,91].

Like glyphosate and glufosinate, imazapyr activity is reduced in soils by microbial
activity [92]. The data presented here shows soil bacterial and fungal relative abundance
was minimally (if at all) impacted by imazapyr treatment, which is consistent with previous
investigations [92–94].

Steam treatment generally reduced the relative abundance of bacteria and fungi alike.
Steam treatment of weeds and soil has been established as a way to kill weeds, as well as a
soil sterilisation technique to eliminate a range of soil organisms including bacteria, fungi,
protozoa, nematodes, worms, ants and other insects [69,81,95–98].

Herbicides have been reported as having a wide range of effects on arthropods,
both direct and indirect (increased predatory insect numbers, loss of habitat or food
source) [99,100]. Generally, our findings show herbicides including glyphosate, glufosinate,
imazapyr, MCPA + dicamba and prodiamine had minimal effect of arthropod diversity or
relative abundance. On average, Hymenoptera was the most abundant order at both sites
across all seasons, with the order mostly represented by various ants. Relative abundance
of Hemiptera was higher at Aspendale compared to Vermont South, particularly within
the treatment sites for prodiamine, clove oil, imazapyr and steam treatments. In these
trials, the increased relative abundance of Hemiptera associated with these treatments at
Aspendale was attributed to a cluster of Lycium ferocissimum (African Boxthorn) that were
next to these small plots and attracted these species [101].
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5. Conclusions

The different weed management strategies had varied impacts on weed coverage, and
minimal impact on the soil profile, soil microbial diversity and arthropod diversity. Of the
10 different weed management strategies trialled, glyphosate, glufosinate, imazapyr and
steam were the only treatments that effectively and reproducibly reduced weed coverage at
the two trial sites. Steam treatment showed to have the most impact on soil biota compared
to the other weed management strategies. Imazapyr was found to be the most effective at
killing weeds and preventing weed recovery due to its preemergent and residual activities,
however, was also found to be highly mobile and pose potential significant off-target
risks. Overall, glyphosate provided the most consistent and controlled reduction to weed
coverage at both sites over 12 weeks, without any marked impacts to soil biota. Ultimately,
glufosinate, imazapyr and steam may be considered glyphosate alternatives for use in
urban environments. However, careful considerations of appropriate situations to replace
glyphosate with these alternatives is essential for optimal weed reduction and minimization
of deleterious off-target effects.
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