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Abstract: The progress of Indoor Environmental Quality (IEQ) research in school buildings has
increased profusely in the last two decades and the interest in this area is still growing worldwide.
IEQ in classrooms impacts the comfort, health, and productivity of students as well as teachers.
This article systematically discusses IEQ parameters related to studies conducted in Indian school
classrooms during the last fifteen years. Real-time research studies conducted on Indoor Air Quality
(IAQ), Thermal Comfort (TC), Acoustic Comfort (AcC), and Visual Comfort (VC) in Indian school
classrooms from July 2006 to March 2021 are considered to gain insight into the existing research
methodologies. This review article indicates that IEQ parameter studies in Indian school buildings
are tortuous, strewn, inadequate, and unorganized. There is no literature review available on
studies conducted on IEQ parameters in Indian school classrooms. The results infer that in India,
there is no well-established method to assess the indoor environmental condition of classrooms in
school buildings to date. Indian school classrooms are bleak and in dire need of energy-efficient
modifications that maintain good IEQ for better teaching and learning outcomes. The prevailing
COVID-19 Pandemic, Artificial Intelligence (AI), National Education Policy (NEP), Sick Building
Syndrome (SBS), Internet of Things (IoT), and Green Schools (GS) are also discussed to effectively
link existing conditions with the future of IEQ research in Indian school classrooms.

Keywords: classroom; ventilation; COVID-19; indoor air pollution; sick building syndrome; artificial
intelligence; thermal comfort; visual comfort; acoustic comfort; indoor air quality

1. Introduction

The prime aim of any building is to minimize the negative impacts of the outer
environment on its occupants by creating a healthy, comfortable, and productive indoor
environment [1]. The performance of the indoor environment is described as Indoor
Environmental Quality (IEQ) and depends upon external environmental factors such as
exterior air quality [2], outer temperature [3], wind speed, humidity [4], noise [5], outer
lux levels [6], etc. In 2020, nine out of the top ten most polluted cities were in India, and
thirty-five out of the top fifty world’s most populated cities were also in India. Out of one
hundred and six countries, India ranks third after Bangladesh and Pakistan in first and
second, respectively, for the worst air quality [7]. The United States Air Quality Index (US
AQI) value for India is 141 for the year 2020 [7], which is unhealthy for sensitive groups
such as children, people with respiratory diseases, and old people, as shown in Figure 1 [8].
Apart from poor air quality conditions not only India but worldwide, the whole world
is also facing problems associated with climate change and the temperature increase [9].
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Earth’s average temperature has increased about 1.02 degrees Centigrade during the 20th
century. The Intergovernmental Panel on Climate Change (IPCC) forecasts a temperature
rise of 1.4 to 5.6 degrees centigrade over the next century [10]. Interestingly, according to a
report by the National Programme for the Prevention and Control of Deafness (NPPCD),
it was estimated by the World Health Organization (WHO) that in India, approximately
63 million people (6.3%) are affected by noise pollution and suffer from significant hearing
impairment [11]. As per the 58th National Sample Survey (NSS), 291 persons out of every
lakh of population were found to have severe-to-profound hearing losses in India [12].
According to the national survey report, there was a large percentage of 0–14-year-old
children in the affected population. The survey revealed that there may be many more
cases of milder degree and unilateral (single-sided) hearing losses [13]. As per the 2011
Census, 425.9 people per one lakh of population had prevailing hearing problems [14].
All these facts point towards the increasing need to consider IEQ in Indian buildings, as
occupants tend to spend more than 90% of their time indoors [15].
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The assessment of IEQ in school classrooms is of prime concern as students and
teachers spend 4–8 h during weekdays in schools, which is one-third of their total time [16].
With increasing education levels, students require higher levels of concentration and more
thinking [17]. According to a report on school statistics by the Government of India
(GOI), the government is playing a major role in providing school education with approxi-
mately 55% of 1.4 million schools in the country [18]. The Indian “Right to Education Act,
2009” recommends 200–220 days’ academic year for school education with approximately
800–1000 teaching hours according to different grades [19]. Mandatory teaching hours in
different countries as mentioned by OECD [20] are presented in Figure 2.
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The average person spends the initial 14–15 years of his/her life, from 3 to 4 years
of age until 17 to 18 years, in school buildings irrespective of the country, as shown in
Figure 3. In India, according to the new National Education Policy (NEP), 2020 [21], school
education is divided into four categories. The new pedagogical and curricular structure
of India is 5-3-3-4; i.e., an initial 5 years at the age of 3–8 years in foundational education
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(preschool and class 1–2), then 3 years age 8–11 years in preparatory education (class 3–5),
then 3 years age 11–14 years in middle education (class 6–8), and lastly, 4 years at the age
of 14–18 in secondary education (class 9–12) as shown in Figure 3.
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Children are the most sensitive group severely affected by diseases as their immune
system is weaker than adults. They breathe a higher volume of air than adults according to
their body weight as their organs are in the development stage [22]. Children’s metabolic
rate is also different from that of adults. According to the United Nations Educational,
Scientific, and Cultural Organization’s (UNESCO) Institute for Statistics Data [23], the total
number of enrolled learners in the Indian education system is 320,713,810 (including higher
education), which is approximately 25% of the Indian population, in which 10,004,418
are at the pre-primary level, 143,227,427 are at the primary level, and 133,144,371 are
at the secondary level. Therefore, it is essential to study IEQ in school classrooms as
approximately one-fourth of the country’s population is related to this study area. The
classrooms can be classified according to Figure 4 for better understanding.
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Similarly, another reason for the focus on IEQ studies in Indian schools is due to
Building-Associated Illness (BAI) within them. BAI is classified into two types, namely Sick
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Building Syndrome (SBS) and Building-Related Illness (BRI) [24]. SBS is subjective in nature,
highly prevalent within the reported area, and reversible [25]. However, BRI is irreversible
and affects the occupant long even after leaving the corresponding sick building or area [26].
General SBS symptoms are mucous membrane irritation [27,28], neurotoxic effects [29],
asthma [30], skin-related symptoms and irritation [31], gastrointestinal complaints [32], etc.
The most common symptoms and related illnesses due to BAI are presented in Figure 5.
Alongside the prevalence of BAI, COVID-19 spread among students makes it important
to study IEQ in Indian school classrooms, especially Indoor Air Quality (IAQ) [1], for a
better understanding of the current and future demand of the building industry in the
education sector.
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Therefore, helping in the creation of a better and safer learning environment for
students and teachers in the present and future is the main motivation behind this review
of existing studies.

Objectives of the Study

According to the reviewed literature, there is no literature review regarding IEQ
parameter studies conducted in Indian school classrooms. However, various researchers
have tried to determine suitable limits of various individual IEQ parameters (TC, IAQ,
VC, AcC) [33]. The objectives of the current state-of-the-art review are threefold; (i) To
understand the existing knowledge based on real-time Indian studies of IEQ parameters
in school classrooms, (ii) to identify knowledge gaps to perform further research on IEQ
parameters in Indian schools, and (iii) to identify and integrate advanced research areas
with IEQ that can potentially increase the impact of IEQ research in school buildings.

2. Review Methodology

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
approach is used as the review methodology in this review of studies. Figure 6 shows
the adopted working methodology. Data were extracted from various databases based
on keywords, abstract, and conclusions, focusing on IEQ in Indian school classrooms and
related case studies. A few full review articles and some research articles on the basis of
title and abstract were considered for the final selection. After detailed analyses of the
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thirty-seven included articles, all the ideas generated through the understanding of existing
knowledge were organized and linked together to form a systematic review, which was
then followed by a detailed discussion, conclusion, and future directions.
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3. Indian Climatic Classification and Indoor Environmental Quality

India has about 1.35 billion people residing in a geographical area of 3,287,263 km2 [34,35],
making it the seventh most densely populated country in the world out of 195 coun-
tries [36,37]. Being a multi-seasonal country with a wide stretch from east to west and
north to south, temperature, humidity, and wind speed varied dynamically in India. The
National Building Code (NBC) 2016 [38] classified India into five climate zones, i.e., hot
and dry, warm and humid, temperate, cold, and composite. The percentage area of Indian
land under each climate zone is shown in Table 1 with the classification criteria based on
NBC 2016. The window-to-wall ratio and outer lux levels are also tabulated as per the
Energy Conservation Building Code (ECBC) 2017 [39] recommendations.
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Table 1. Indian climatic zones and associated data from NBC 2016 and ECBC 2017.

NBC 2016 [38] ECBC 2017 [39]

Climatic
Zone

Mean of Monthly Climatic Area
Widow to
Wall Ratio

Outer Lux
LevelsTemperature Relative

Humidity km2 %

Hot-Dry >30 ◦C <55% 545,686 16.60 20–30% 10,500
Warm-Humid >30 ◦C

>25 ◦C
>55%
>75% 1,160,404 35.30 30–40% 9000

Temperate 25–30 ◦C <75% 9862 0.30 40% 9000
Cold <25 ◦C All values 364,886 11.09 20–30% 6800

Composite When ≥6 months do not fall in
any of the above categories 1,206,426 36.70 40–50% 8000

3.1. IEQ and Its Parameters

IEQ is the built environment quality of any indoor space concerning the wellbeing and
health of the occupant using that space [40]. It is made up of several parameters, such as
Indoor Air Quality (IAQ), Acoustic Comfort (AcC), Thermal Comfort (TC), Visual Comfort
(VC), furniture orientation, electromagnetic waves, vibrations, etc. [41]. Four important
parameters, IAQ [42], AcC [43], TC [44], and VC [45], are considered under the scope of
this article and are depicted in Figure 7. This review paper contains four major sections.
The general equation (without weights) for overall IEQ is depicted in Equation (1) here:

IEQ = TC + VC + IAC + AcC, (1)

where IAC is the Indoor Air Comfort and is the combination of IAQ and Ventilation.
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IEQ parameters have various sub-parameters (or sub-factors) on which they depend,
and these parameters and sub-parameters are presented in Figure 7. Some of the sub-
parameters of IEQ parameters have a major impact and some have a minor impact, but
when two or more sub-parameters of similar or different parameters occur in combina-
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tion, the impact is greater, and it is critical to identify the exact sub-parameter primarily
responsible for that impact.

3.1.1. Thermal Comfort (TC)

Thermal comfort (TC) is an occupant’s mental status, which expresses the level of
satisfaction with the thermal surroundings. TC depends on four environmental factors,
Relative Humidity (RH) [46–50], Mean Radiant Temperature (MRT) [51–53], Dry Bulb
Temperature (DBT) [54–57], and air speed [58–61] along with two personal factors, cloth-
ing rate [62–66] and metabolic rate [63,67–72]. There are two well-accepted models for
predicting TC in any building, namely the Predictive Mean Vote (PMV) and the Adaptive
model for TC [1,73,74]. The PMV model is also known as the heat-balance model or the
Laboratory-based model. Povl Ole Fanger developed the PMV model in the 1970s [75]
and it works well with Air-Conditioned (AC) buildings. The International Organization
for Standardization (ISO) ISO-7730 [76] considers the PMV model as their thermal com-
fort model. The Adaptive model was created by Richard De Dear and Gail S. Brager in
1998 [77], and this model considers that the human body is adaptive in nature and can
modify itself according to the surrounding environment to an extent. This model works
well with Naturally Ventilated (NV) buildings. Most of the Indian school buildings are
naturally ventilated [1] so the adaptive approach is more suitable. The adaptive model is
presented in Equation (2) [78,79]. It is a linear regression of the indoor comfort temperature
(Tc) and the outdoor air temperature (Tpma(out)). For example, if the Tpma(out) is 40 ◦C, then
Tc will be perceived by the occupants at 30.2 ◦C according to the above adaptive model.

Tc = 0.31 Tpma(out) + 17.8, (2)

3.1.2. Indoor Air Quality (IAQ)

The quality of air inside and around the building is known as the Indoor air qual-
ity [80–82]. IAQ depends upon the humidity [83–87], ventilation rate [88–91], tempera-
ture [83,92,93], several gases [83–91], biological contaminants [94,95], and the presence
of particulate matter [96–99]. A combination of factors (physical, chemical, biological,
and particulate matter) and dynamic interactions among parameters make it challenging
for occupants to identify IAQ-associated problems [100]. Outdoor pollution significantly
impacts the quality of indoor air in naturally ventilated buildings [101]. SBS is primarily
associated with IAQ [25]. Ventilation affects IAQ as it is the process of replacing indoor
vitiated air with fresh exterior air and maintaining air motion inside the space [102].

3.1.3. Visual Comfort (VC)

Occupant wellbeing influenced by the surrounding visual environment inside the
occupied building space is considered the visual comfort of that space and it can be
subjectively accessed [103,104]. VC is affected by natural daylight [105–108], illumina-
tion level [109–111], uniformity of light [112,113], the color of light [114–116], etc. Dis-
comfort due to glare [117,118], non-uniform lighting [119,120], and lack of required lux
levels affect students’ performance in the classroom [121]. Symptoms such as frequent
headaches [122–126], eye strain [127–129], and weak eyesight [130] are related to VC
in classrooms. Circadian rhythms are directly affected by lighting, thus creating prob-
lems in biological processes and altering occupants’ mood [131]. The general circadian
rhythm [132–134] of a normal healthy person is presented in Figure 8, whereas Figure 9
shows both the interrelation and difference among the commonly used terms in visual
comfort that create a dilemma in early individuals interested in this area.
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3.1.4. Acoustic Comfort (AcC)

Acoustic comfort refers to the quality of the building and its ability to safeguard its res-
idents from surrounding noise and offer them a better, secure, and uninterrupted acoustic
environment in which they can communicate conveniently [135–140]. Sound pressure lev-
els [141,142], sound frequency [141–144], source distance [145,146], sound absorption [147],
insulation [62,65,143], and Reverberation Time (RT) [147–149] are some of the factors that
affect AcC in the occupied space. Noise can be classified as five types, namely steady,
fluctuating, tonal, intermittent, and impulsive noise [38]. Speech intelligibility depends
mainly upon the Reverberation Time (RT) and the Signal-to-Noise Ratio (SNR) [150]. Rever-
beration undesirably affects consonant and vowel perception [151]. However, consonants
have more adverse effects in perceiving speech meaning than vowels [152,153]. In general,
a significant part of the speech sound is made up of consonants. RT is determined by
Sabine’s formula presented in Equation (3) [154] where V is the room volume in cubic feet,
A is the total effective square footage of the absorption area, and T is the required time in
seconds for a 60 dB sound decay after the source has stopped.

T = 0.049 × (V/A), (3)
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Acceptable noise levels and the reverberation time recommended by various organi-
zations for different types of classroom conditions are presented in Table 2.

Table 2. Acceptable indoor noise levels and reverberation time in classrooms.

Standard (Year)
[Ref.]

Classroom
Specification

Noise
Level (dB)

Reverberation
Time (s)

WHO Guidelines [155] General 35 dB LAeq 0.6

NBC (2016) [38] General 40–45 dBA 0.6–1.1

ANSI S12.60 (2002) [156]

Volume < 283 m3 35 dB LAeq,1h 0.6

Volume = 283 m3 to
566 m3 35 dB LAeq,1h 0.7

Volume > 566 m3 40 dB LAeq,1h -

Building Bulletin 93 [157]

Primary School 35 dB LAeq,30min <0.6

Secondary School 35 dB LAeq,30min <0.8

Lecture Room
(>50 students) 30 dB LAeq,30min <1.0

Hearing Impaired Class 30 dB LAeq,30min <0.4

ISHRAE (2019) [158]

Area < 70 m2 40 dBA (max.) <0.6–<1.0

Area > 70 m2 35 dBA (max.) <0.6–<1.0

Large Lecture Rooms 35 dBA (max.) <0.6–<1.0

ASHA (1995) [159] Hearing Impaired Class 30 to 35 dBA
SNR > 15 dB < 0.4

IS 1950 (1962) [160] General 45–50 dB -

BATOD (2001) [161] Hearing Impaired Class

<35 dB(A)
SNR > 20 dB for 125 Hz to

750 Hz
and

SNR > 15 dB for 750 Hz to
4000 Hz

<0.4
(125 Hz to
4000 Hz)

When IEQ parameters are carefully balanced, a building can be both productive and
protective. In India, there are two public regulatory bodies, namely NBC and ECBC,
but neither of them specify any codes for IEQ in school classrooms. Therefore, for basic
knowledge on ‘until-now!’ and for future directions, ‘what is next?’, this review helps in
understanding the state of the art and tries to provide some comprehensive outcomes of all
the studies conducted in India regarding IEQ in school classrooms.

4. Indoor Environmental Quality in Indian School Classrooms
4.1. Thermal Comfort (TC) in Indian School Classrooms

Primarily, Indian school classrooms are Naturally Ventilated (NV), and their thermal
comfort is affected by the outside environment [1]. In India, the foundation work on
thermal comfort was conducted by the scientists M.R. Sharma and S. Ali [162] of CSIR—the
Central Building Research Institute (Roorkee)—in the 1980s. They proposed the Tropical
Summer Index (TSI) to determine thermal comfort in hot–dry and warm–humid conditions.
However, the TSI for other climates is still in the development stage. The TSI (◦C) depends
on the wet bulb temperature (tw) in ◦C, the globe temperature (tg) in ◦C, and the airspeed
(V) in m/s as presented in Equation (4) [38,162,163].

TSI = 0.308 × tw + 0.745 × tg − 2.06 ×
√
(V + 0.841), (4)

In NBC 2005 [164] and NBC 2016 [38], thermal comfort conditions (i.e., humidity
30–70%, temperature 25–30 ◦C, and air speed 0–2 m/s) are based on the TSI model. After
the development of TSI, for more than fifteen years the progress has been quite slow in this
domain in India. In the last two decades, the progress in this domain by Indian researchers
is quite commendable. However, most of the studies are performed in residential and
commercial buildings [1,165]. School buildings have been excluded from indoor comfort
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studies in the country until now [1]. While considering Indian school classrooms, a total of
six articles were published on thermal comfort in the last fifteen years, out of which only
two articles are based on real-time studies conducted in school classrooms and the other
four are review and informative articles.

Kala Choyimanikandiyil [166,167] explored thermal comfort and linked it to Indian
school classrooms in warm–humid climates through articles in 2013 and 2016. A real-
time TC assessment study in an Indian school classroom was performed in the composite
climate by Aradhana Jindal. Aradhana [168] examined the TC of NV school classrooms in
Ambala, India during the winter and monsoon season of 2015–2016. The study contains
both objective and subjective measurements. One-hundred and thirty students of the
10–18-years-old age group responded to this study. In this study, the neutral temperature
was recorded at 27.1 ◦C, with the comfort temperature ranging between 15.3 ◦C and 33.7 ◦C
for an 80% acceptance rate. The comfort temperature recorded in this study is significantly
different from International and National standards. The reason behind that is all the
standards are based on adult perceptions, and heat tolerance is higher in children. The
regression line for the slope is plotted between the thermal sensation (tsv) and the indoor
operative temperature (Top). The regression models obtained in this study are shown
below in Equations (5)–(7) [168].

tsv = 0.056 × Top − 1.53, R2 = 0.22 (combined), (5)

tsv = 0.19 × Top − 5.54, R2 = 0.18 (monsoon), (6)

tsv = 0.18 × Top − 3.52, R2 = 0.36 (winter), (7)

Aradhana conducted a similar type of yearlong research [18] in three naturally venti-
lated schools in Chandigarh, Ambala, and Panchkula (all are in the composite zone as per
NBC 2016), and the neutral temperature was explored for both winter and summer seasons.
The author found variation from her previous study where the neutral temperature was
27.1 ◦C. The neutral temperatures obtained for winter and summer were 19.4 ◦C and
28.2 ◦C, respectively, for Indian students. The study also explored the comfort temperature
ranging between 16 ◦C and 33.7 ◦C for students of NV classrooms in a composite climate
at the age of 10–18 years. The regression model for tsv and Top plotted in this study is
presented in Equations (8) and (9) [18].

tsv = 0.17 Top − 4.95, R2 = 0.19 (summer), (8)

tsv = 0.23 Top − 4.53, R2 = 0.51 (winter), (9)

A thermal comfort model obtained by linear regression is also proposed in this study
for an NV school classroom in a composite climate, which indicates a unit change in
neutrality with each variation of 1.85 degrees centigrade in the prevailing mean outdoor
temperature (Tpma(out)) as shown in Equation (10) [18].

Tn = 0.54 × Tpma(out) + 12.93, (10)

Manoj Kumar et al. [169] reviewed eighty-one articles based on a thermal comfort
study in classrooms globally. They determined that primary school children were least
affected by temperature changes as their body is more adaptive than adults and secondary
school students. Based on their findings, they proposed comfort equations for primary and
secondary students as presented in Equations (11) and (12) [169], respectively.

Tcop_pri = 0.28 × Tout + 17.02 (N = 17; R2 = 0.21), (11)

Tcop_sec = 0.46 × Tout + 14.33 (N = 16; R2 = 0.75), (12)
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Tcop_pri is primary school classrooms’ operative comfort temperature, Tcop_sec is sec-
ondary school classrooms’ operative comfort temperature, and Tout is the daily mean
outdoor temperature.

Manoj Kumar et al. [17] reviewed the last fifty years of literature on thermal comfort
in classrooms. The review paper is quite helpful in tracing the research conducted in TC
assessment in classrooms throughout the world. Based on the existing literature, adaptive
thermal comfort equations are proposed for primary and secondary classrooms as shown
in Equations (13) and (14) [17].

Tcop_pri = 0.22 × Tout + 18.01 (N = 21; R2 = 0.17), (13)

Tcop_sec = 0.47 × Tout + 14.11 (N = 18; R2 = 0.77), (14)

However, the previous studies are not sufficient for confirming any comfort tempera-
ture range. More real-time and data-driven research with both subjectivity and objectivity
is needed to find more precise results and prepare more reliable models that can predict
student’s perceptions in a given environment. Moreover, none of the studies consider the
effect of other IEQ parameters over TC. The Hawthorne effect and students’ TC at their
homes are not considered. However, in real time, these factors can significantly affect
students’ comfort perception in classrooms. The TC impact on students’ and teachers’
performance is also an important area to be considered as it has been excluded from the
past research in this country.

4.2. Indoor Air Quality (IAQ) in Indian School Classrooms

IAQ has been the most-researched parameter in Indian school classrooms over the
last fifteen years. IAQ research in India shows that factors such as CO2, particulate mat-
ter, Volatile Organic Compounds (VOCs), and other gases [16,22,170–184] are considered
important in school classrooms by researchers. The review reveals that much attention
was initially given to particulate matter study in classrooms. Research trends show that
the current focus of researchers is the CO2 concentration inside the classroom. However,
ventilation rates inside the classrooms need more attention. Ventilation is the main factor
to be considered for preventing airborne disease transmission inside the classroom. Class-
rooms have a generally high density and low ventilation rate due to space restrictions,
human capabilities, closed windows and doors, as well as the negative effect of other
IEQ parameters on students and teachers when balancing IAQ (such as noise from open
windows, particulate coming from open windows, fan noise, etc.).

Nilima Gadkari et al. [170] examined the source contribution of personal respiratory
particulate matter in school classrooms. Fifteen subjects (initially sixteen) from three
naturally ventilated higher secondary schools of Chhattisgarh were considered for this
study. The authors explored that ambient outdoor air conditions (mainly road traffic dust)
affect students in classrooms. Radha Goyal et al. [16] tested IAQ by the objective technique
in the school classroom of Delhi. Year-long objective testing in the naturally ventilated
junior school section (Class 1–8) was executed. The Respirable Suspended Particulate
Matter (RSPM) concentration was found higher than the prescribed limits, which shows
potential health hazards. The building envelope does not protect students from outer
pollution effectively because open doors and windows increase classroom permeability.
Ventilation rates and student activity inside the classroom also influence the concentration
of PM10 particles in the air due to the re-suspension mechanism. The authors observed
that meteorological factors significantly impact IAQ in classrooms.

Nilima Gadkari et al. [171] studied the indoor ambient Particulate Matter (PM) in
three naturally ventilated higher secondary schools at Bhilai and Durg. During the summer
of 2003, a combination of twenty-seven teachers, twenty-two students, and three office
staff, cumulatively fifty-two subjects, participated in the study by completing time/activity
diaries. A regression showed a significant relation between indoor and outdoor ambient PM
levels. The breathable PM level in all schools exceeds the limit (i.e., 60 µg.m−3) mentioned
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in Indian National Ambient Air Quality Standards (NAAQS) [185]. Two schools situated
near the industrial area show PM levels five to six times higher than the prescribed limits,
creating health hazards in these classrooms.

Mahima Habil et al. [172] evaluated IAQ and the ventilation rate in naturally ven-
tilated schools in Agra during the winter and summer seasons. Three hundred subjects
participated in a questionnaire survey to test health impacts (dry flaking skin, dizziness,
etc.) due to CO2 concentration and exposure to PM in the classroom. PM levels tested
higher in winters than in summer in all the classrooms. Indoor–outdoor (I/O) ratios were
higher in most of the cases except for one school situated in a residential area. A high I/O
ratio indicates prevailing poor IAQ conditions in those classrooms where schools are situ-
ated near busy roads. The I/O ratio decreases with particle size increment. Damaged walls,
dirty floors, old furniture, dirty dusting material, shoe dust, chalk dust, and resuspension
of old settled particles due to student activities are the main reason for higher indoor PM
levels. The main reason for a higher CO2 concentration inside the classroom is exhaled
breath, as more students results in a higher CO2 concentration.

Radha Goyal et al. [173] performed IAQ modeling for PM particles in a naturally
ventilated Indian school building. The IAQ model proposed in this study is based on the
mass-balance method, coded in C++ language, and named “HEMANYA”. The authors
reported high seasonal variation in indoor PM. In winter, PM levels were three to five times
higher than in summer due to poor dispersion and increased surface concentrations inside
the classroom. Deepanjan Majumdar et al. [174] tested settled chalk dust for the assessment
of fine particles in indoor air along with particle size distribution in the classroom during
the dusting and writing process. Three types of chalks were tested for PM1, PM2.5, PM5,
and PM10 size particles. Student’s activities severely affect the resuspension of fine particles
in the classroom. Long-duration low-level exposure to PM is also harmful to occupant
health. Middle-age teachers and primary students are prone to respiratory malfunctions
due to regular exposure to fine particulates.

V.S. Chithra et al. [175] investigated a naturally ventilated primary-level classroom in
a school situated near an urban road. Forty-three subjects from a single classroom were
tested in both summer and winter for IAQ testing. The analysis of the collected data shows
that both PM10 and PM2.5 exceed the NAAQS limit 60% and 27% of the time. respectively.
The occupied-classroom PM is found to be higher than the unoccupied classroom due to
the resuspension mechanism. The I/O ratio of PM particles decreases with reduced particle
size. The high I/O ratio of PM10 particles represents the high indoor activity of students
in the classroom. A low I/O ratio confirms the permeability of vehicular emissions from
the nearby road in the classroom. The relations among PM, meteorological parameters,
and student’s comfort inside the classroom are significant. Strong seasonal variability is
confirmed by determining that the winter season IAQ is poorer than the summer season.
However, the authors suggest to work on creating a management strategy for poor IAQ in
school classrooms.

Mahima Habil et al. [176] worked on identifying sources of PM and different metal
contamination in a naturally ventilated secondary school classroom in Agra. Ten schools
(five near the roadside and five in a residential area) were studied for two hundred days
considering summer, winter, and monsoon seasons. Schools situated in the residential
area had lower PM than non-residential-area schools. Incineration activities, chalk dust,
building materials, and paint emissions are the major sources of PM in residential area
schools. Similarly, vehicular emissions, windblown and soil-borne dust, and industrial
emissions are major sources identified near roadside schools in a non-residential area.

V.S. Chithra et al. [183] monitored PM particle concentrations of various sizes (PM10,
PM2.5, PM1) in NV school classrooms for 90 days alongside a roadway and in a forest area
in Chennai. Authors found that according to the particle size distribution, coarse particles
dominate over fine particles in working hours, and in non-working hours, fine particles
dominate over coarse particles in both the schools. However, the roadside school showed
3–4 times higher PM10 particle concentrations than the forest-area school due to traffic
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conditions. PM2.5 and PM1 were also 1.3 to 1.5 times higher in roadside school classrooms.
The authors developed an indoor air quality model based on the mass balance method. The
developed model accurately predicts the fine PM particles; however, human activities in
classrooms promote the sudden resuspension of coarse PM10 particles in indoor air, which
makes it difficult to predict accurate results for PM10 particles.

Sangita Goel et al. [177] tested two chalk types to understand dust generation scenar-
ios during writing and dusting actions on wooden and ceramic boards in the classroom.
Extruded calcium carbonate and molded gypsum-type chalks were tested for PM gener-
ation and particle size distribution analysis. Calcium carbonate chalk generates low PM
in comparison with gypsum chalk. The authors explored that dustless chalks made of
gypsum produce more PM and are equally as harmful as other chalks. Children of the
6–11-years age group are found to be the most susceptible group for developing health
problems due to the ill effects of poor-quality chalks in the classroom.

Mahima Habil et al. [178] investigated particle and ionic contamination affecting
students in school classrooms. Three hundred subjects participated in a questionnaire
study with a wide range of students from third class to ninth class. Factors inside and
outside the classrooms are equally responsible for poor IAQ. Chalk-dust, wall paint,
furniture paint, road dust, vehicular and industrial emissions, and soil dust are the major
sources generating PM. Asthma, coughing, dizziness, dry skin, eye irritation, shortness
of breath, and frequent headaches were reported as common symptoms in classrooms by
the subjects. Poor health is primarily responsible for school absenteeism. Studies show
14 million missed school days per year. The authors suggested simple measures to reduce
PM levels in classrooms. Cleanliness, less crowded classes, paved areas, high greenery
levels, and the selection of a low-pollution area during school construction are potential
measures to increase IAQ in the classroom.

N.L. Sireesha et al. [179] investigated the built environment spatial qualities and their
relation to IAQ in thirty secondary schools in Hyderabad. One-hundred and fifty subjects
responded to the questionnaire survey. The investigation was conducted in three phases.
The author relates IAQ to different activities and recommends that properly designed
and maintained schools can potentially reduce IAQ problems. Rohi Jan et al. [180] tested
four classrooms and two-hundred and thirty students at an elementary school in Pune
for PM and gaseous exposure assessment. PM levels were five times higher than the
NAAQS-recommended levels. All gases (O3, SO2, NO2) measured in the classroom were
within NAAQS limits except carbon dioxide, which is due to inefficient ventilation and
a higher number of students in the classroom. The subjective assessment showed that
coughing, a running nose, cold, eye irritation, and fever are the most common symptoms
among subjects in classrooms. Similarly, a cold, fever, and a cough were found to be the
main reason behind sickness absence.

Akshay Arun Bhalekar et al. [184] investigated outdoor and indoor air quality during
the winter season in two schools of Manipal town in Karnataka. The authors monitored
PM10, NO2, SO2, and CO2. Temperature, relative humidity, and classroom physical pa-
rameters are also considered in this study. The study reveals that there is high CO2 inside
the class as per ASHRAE standards, and by closing doors and windows the PM particles
entering the classroom can be controlled, but ventilation is affected. The authors suggested
incorporating mechanical ventilation and air-purifying plants in the classrooms to enhance
classroom IAQ.

Venu Shree et al. [22] investigated IAQ in eight naturally ventilated primary schools
at Hamirpur during the summer. The PM and CO2 levels inside the classroom were signifi-
cantly linked to outdoor conditions. A crowded classroom and low relative humidity create
the worst indoor air condition for primary school students as they inhale air at lower levels
(height) in the classroom. Small children are more vulnerable to eye irritation and airborne
disease. The author recommended performing more IAQ studies in primary schools.

S. Jayakumar et al. [181] performed analyses of eleven classrooms of six primary and
upper primary schools in Ahmedabad. Two government, two air-conditioned, and two
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naturally ventilated private schools were considered for the comparison and evaluation of
ventilation rates in specific Indian conditions. The steady-state mass balance method was
used to determine the ventilation rates in this study. Air-conditioned classrooms had a CO2
concentration that was too high and ventilation rates too low in comparison with naturally
ventilated classrooms. The ventilation rate and CO2 concentration in AC classrooms did
not meet ASHRAE 62.1 [186] and NBC, 2016 [38] standards. NV buildings consume low
energy than AC buildings; however, NV classrooms are the least efficient in protecting
students from heat and air pollution. Pratima Singh et al. [182] explored the impact of
classroom ventilation on student concentration and performance in four schools (two
NV and two AC) in South Delhi. Seven hundred and thirty-eight students participated
in the performance and concentration test. Winter and non-winter comparisons of the
ventilation rate and CO2 concentration showed that IAQ in winter months is poorer than
in non-winter months. The study revealed that the fresh air flow rate and occupancy level
of the classroom play a vital role in IAQ. Authors recommend the proper utilization of
windows and doors in all types of classrooms with increased break times in order to dilute
the accumulated carbon dioxide inside.

All the research conducted in Indian school classrooms mainly focuses on PM, CO2,
and I/O ratios of the PM and CO2. Only very few studies consider VOCs and other gases.
However, only one study [182] tried to determine the effect of IAQ on the performance and
concentration of students. One study found the effect of IAQ on sickness absence [180].
The transmission of viruses due to ventilation and airflow patterns inside the classrooms is
still unresearched in India.

Thus, there is a lot of scope in the research on IAQ and its factors, and long-term
research programs in Indian school classrooms are needed within a centralized open-
access database.

4.3. Acoustic Comfort (AcC) in Indian School Classrooms

In school classrooms, generally, occupants have less control over the acoustic environ-
ment [187]. Student sitting position, teacher position, adjacent classroom noise, equipment
noise, exterior noises, and interior noises can potentially influence student concentration
and thus learning [188–190].

N. Subramaniam et al. [150] reviewed thirty years of literature (until 2006) and com-
pared international standards for noise level limits and reverberation time. The authors
discussed the Signal-to-Noise Ratio (SNR), Reverberation Time (RT), noise levels, and ar-
chitectural factors in classroom conditions, mainly focused on enhancing Indian classroom
conditions. The authors recommended creating national codes for classroom acoustics and
considering sound scattering effects in classrooms. Jolly John et al. [191] examined acoustic
parameters, RT, and background noise levels in ten schools in Kerala and compared the
results with the Indian national standard NBC recommendation. The values of RT and
background noise levels were found to be higher than those recommended in codes. Poorly
insulated classrooms and noise intrusion through openings are the main reasons for high
background noise. The lack of good-quality absorber materials and less insulation in walls
are the main reasons behind higher RT, which affects speech intelligibility in classrooms. The
recommended sound insulation of 35 dB was also tested in this study and, very interestingly,
the insulation level was very low between classrooms with a value of 28.8 dB.

Naba Kumar Mondal et al. [192] evaluated the vulnerability of school students in
classrooms due to roadside vehicular noise. The noise pollution level (LNP), transport noise
index, equivalent noise level (Leq), and Noise Climate (NC) were studied to determine the
students’ vulnerability. The study reported that school’s distance from the road was much
lower in urban schools (9.4 feet) than rural schools (14.4 feet). The average traffic count
was also higher in urban areas than in rural areas. Noise intensity is inversely proportional
to the distance from the road. The study reported that not all schools, but rather those that
are near the road, are highly affected by noise and thus the teaching–learning process is
severely affected. Jolly John et al. [193] investigated the acoustical conditions of schools in
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the tropical warm humid climate of India. Background noise and RT were tested in Kerala
schools. Both of the tested acoustical components were found to be higher than the levels
recommended by the National Building Code (NBC) of India. Windows and ventilators
were found to be the main contributor to the intrusion of external noises. Low-insulation
classroom walls and a lack of absorbing materials are the main reason behind high RT. The
study recommended that acoustic deficiencies can be easily reduced by simple treatment
to walls and ceilings in classrooms for better acoustic comfort.

Veera Gupta [194] collected, analyzed, and presented policies on acoustics in Indian
classrooms. RT, SNR, and the distance between the teacher and student are the main factors
that influence the acoustic comfort of the classroom. Different standards are compared with
each other. The authors focused on teaching acoustic comfort and its impacts on teachers
in their training. The age factor also affects speech perception. The author suggests the
idea of performing multidisciplinary studies regarding acoustics in school classrooms in
India. Kenneth P. Roy [195] presented certain case studies around the globe for acoustic
comfort in classrooms. Speech clarity (i.e., RT), SNR, and the blocking of adjacent noise
(insulation) were discussed by various case studies. An Indian case study of a school from
Mumbai was presented in this paper. By installing a suspended ceiling, sound absorption
of the classroom was increased and brought down the RT of 1.1 s to 0.6 s. The authors
focused on increasing classroom acoustic quality through sound-absorptive measures.

Gayathri Sundaravadhanan et al. [196] evaluated the background noise of twenty-
three classrooms in four government primary schools. RT was calculated by Sabine’s
Formula. Teachers’ vocals and students’ speech perceptions are severely affected by
deteriorated acoustic conditions in classrooms especially in the case of younger children.
The average noise level was double the recommended noise levels by NBC, 2016. SNR
was 10.6 dB and RT was greater than 2.6 s, which is more than three times the prescribed
limits. Both occupied and unoccupied cases were not in accordance with the recommended
levels. The authors suggested performing more studies in the southern part of India to
create a better acoustic environment in school classrooms. Gomathi Saravanan et al. [197]
performed the SNR test in thirty-seven classrooms in Chennai. The acoustic comfort of
hearing-impaired students was considered in this study. RT was estimated for every
classroom in this study. This study finds that the average distance between students and
the teacher is 0.98 m and has a range of 0.46 m to 1.57 m. High RT was reported with
high background noise conditions and poor SNR in classrooms. The author recommended
various measures such as an absorptive ceiling, noise barriers, etc., to modify the classroom
for better acoustic conditions.

Almost all studies concluded that the acoustic environment in Indian school class-
rooms is not up to the mark and the limits of various acoustic parameters are out of the
prescribed comfort limits recommended by NBC and other regulations. However, most
students never report the problem as they have adapted to those conditions and modified
their behavior accordingly. Despite the highly adaptive behavior of Indian students and
teachers, it is necessary to provide them a better acoustic environment during their school
time. Most of the students and teachers do not know the existing negative impacts on
their learning and teaching behavior as they adapted to these conditions and have never
compared their performance in other conditions. This gap should be filled quickly as it
is degrading the education quality, and every teacher and student must be well informed
regarding indoor acoustic quality and comfort and its effects on them.

4.4. Visual Comfort (VC) in Indian School Classrooms

Visual comfort is the least-researched IEQ parameter in the Indian school classroom.
Visual comfort is defined as “perceived satisfaction of occupant with lighting condition,
levels, and views in occupied space while performing specific tasks” [198]. Research
shows that there is a significant influence of the visual environment on speed and ac-
curacy, student health, and psychological behavior [199]. Poor lighting can disrupt the
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circadian rhythm, influence blood pressure and heart rate, increase mood swings, and
reduce performance [200].

Pratima Singh et al. [201] studied classroom illuminance effects on the performance of
upper primary school students in the Delhi National Capital Region (NCR). One hundred
and twenty students of the 14–15-years age group from two schools (four classrooms)
participated in this research. The author selected one green-certified school and one
conventional school for comparison. By subjective, objective, and performance tests,
authors tried to determine the effect of lighting on students’ performance and concentration.
They suggested that there is a significant relation between classroom lighting and student
performance, but they found no significant correlation between classroom lighting and
student health. The green-school students reported excessive lighting whereas non-green
school students reported low lighting levels. The green school’s students faced certain
health symptoms such as blurring vision due to excessive glare, headaches, eye irritation,
and strain. On the other hand, students of the non-green school felt tiredness, sleepiness,
and excessive stress due to low lighting levels. Overall, green-school students were more
satisfied with the visual environment and performed better in performance tests than other
school students. They concluded that it is essential to maintain visual comfort inside the
classroom for better outcomes.

Pratima Singh et al. [202] performed a cross-sectional study in four schools of Delhi.
Seven hundred and thirty-eight students participated in this study. They aimed to explore
the relationship between lighting and students’ speed and accuracy in the classroom.
Subjective and objective assessment along with a d2 test for speed and accuracy were
chosen for the research. The authors stated that lighting levels greater than 250 lux and
below 500 lux gave the best outcomes. They recommended that providing more natural
daylight in the classroom will have the best results.

The National Building Code of India [38] recommended maintaining a minimum
lighting level of 200 lux in school classrooms with an upper limit of 500 lux. Excessive
artificial lighting can harm students as it contains ultraviolet rays. Similarly, daylight is
associated with large and sudden variations in lux levels. Therefore, proper integration
of daylight and artificial light is required in Indian school classrooms for maintaining
visual comfort with energy efficiency. Ashok Kumar et al. [203] have developed an android
application in the Council of Scientific and Industrial Research–Central Building Research
Institute (CSIR-CBRI) for integrating artificial lighting with natural daylight for India-
specific conditions. The authors are designing buildings using the App that are quite useful
at the initial/concept design stage.

5. Recommended Levels of IEQ Parameters according to Existing Indian Standards
and Codes

During the systematic review, important data from various public and private Indian
standards and codes were collected for an easy understanding of IEQ parameters’ suitable
levels. The recommended suitable limits of IEQ parameters along with their sub-parameters
are jotted down in Table 3 from different India-specific codes and standards.
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Table 3. Recommended levels of IEQ parameters and their components specific to Indian school
classrooms as per Indian standards.

IEQ
Parameters

Sub
Parameters

(Unit)
Lower
Limit

Middle
Value

Upper
Limit

Standard-Year
[Reference]

Indoor
Air Quality

(IAQ)
(including
Ventilation)

CO2
(ppm)

Ambient +
350 a

Ambient
+ 500 b

Ambient +
700 c ISHRAE-2019 [158]

PM2.5 (µg/m3)
<15 a - <25 c ISHRAE-2019 [158]

- <40{Y}
<60 {24 h} - NAAQS-2009 [185]

CO (ppm)

<2 a - <9 c ISHRAE-2019 [158]

- <2 mg/m3 {8 h}
<4 mg/m3 {1 h}

- NAAQS-2009 [185]

- <10 mg/m3 - GRIHA-2014 [204]

TVOC (µg/m3) <200 a <400 <500 c ISHRAE-2019 [158]

PM10 (µg/m3)

<50 a - <100 c ISHRAE-2019 [158]

- <60 {Y}
<100 {24 h} - NAAQS-2009 [185]

- <60 {Y}
<150 {STL} - NBC-2016 [38]

- < 20 - GRIHA-2014 [204]

CH2O (µg/m3) <30 a - <100 b ISHRAE-2019 [158]

SO2 (µg/m3)

<40 a - <80 b ISHRAE-2019 [158]

- <80 {Y}
<400 {STL} - NBC-2016 [38]

- <50 {Y}
<80 {24 h} - NAAQS-2009 [185]

NO2 (µg/m3)

<40 a - <80 b ISHRAE-2019 [158]

- <200 {Y}
<500 {STL} - NBC-2016 [38]

- <40 {Y}
<80 {24 h} - NAAQS-2009 [185]

O3 (µg/m3)

<50 a - <100 b ISHRAE-2019 [158]

-
<60 {24 h}
<100 {8 h}
<180 {1 h}

- NAAQS-2009 [185]

Lead (Pb)
(µg/m3)

- <0.5 {Y}
<1 {24 h} - NAAQS-2009 [185]

NH3 (µg/m3) - <100 {Y}
<400 {24 h} - NAAQS-2009 [185]

Benzene
(µg/m3) - 5 {Y} - NAAQS-2009 [185]

Arsenic (ng/m3) - <6 {Y} - NAAQS-2009 [185]

Benzo(a)pyrene
(ng/m3)

- <1 {Y} - NAAQS-2009 [185]

Nickel (ng/m3) - <20 - NAAQS-2009 [185]

Ventilation rate
per person

(l/s.person)
6.7 - 8.6 NBC-2016 [38]

Ventilation rate
(Cfm/Sqft) 5.0 7.5 10.0 IGBC-2015 [205]

Ventilation
(Air Changes per

Hours)

- 5–7 - NBC-2016 [38]

- 3–6 - SP-41 1987 [163]

Acoustic
Comfort

(AcC)

Indoor Noise
Level
(dB)

35 - 40 ISHRAE-2019 [158]

45 - 50 IS 1950–1962 [160]

40 - 45 GRIHA-2014 [204]

40 - 45 NBC-2016 [38]

RT (Second)
0.6 0.8 1.0 ISHRAE-2019 [158]

0.6 - 1.1 NBC-2016 [38]

Speech
Transmission

Index
- 0.5–0.6 - ISHRAE-2019 [158]
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Table 3. Cont.

IEQ
Parameters

Sub
Parameters

(Unit)
Lower
Limit

Middle
Value

Upper
Limit

Standard-Year
[Reference]

Thermal
Comfort

(TC)

Operative
Temperature (◦C)

25 27.5 30 SP-41 1987 [163]

19 d 34 d SP-41 1987 [163]

- <33 - GRIHA-2014 [204]

25 27.5 30 NBC-2016 [38]

19 d - 34 d NBC-2016 [38]

22.0 ± 3.0 - 24.5 ± 2.5 ISHRAE-2019 [158]

Relative
Humidity (%)

30 - 70 SP-41 1987 [163]

- <70 - GRIHA-2014 [204]

30 - 70 ISHRAE-2019 [158]

Vertical Air
Temperature

Difference (◦C)
- 4 - ISHRAE-2019 [158]

Visual
Comfort

(VC)

Illuminance (lux)

150 200 300 SP-41 1987 [163]

150 - 300 IS-7942, 1976 [206]

150 - 300 IS-8827 1978 [207]

150 - 300 IGBC-2015 [205]

200 300 500 NBC-2016 [38]

- 300 - GRIHA-2014 [204]

- 300 - ISHRAE-2019 [158]

Limiting Glare
Index

- 16 - SP-41 1987 [163]

- 3 - NBC-2016 [38]

Daylight Factor
(1DF = 80 lux)

- 2.5 - IGBC-2015 [205]

1.9 - 3.8 IS-7942, 1976 [206]

1.9 - 3.8 SP-41 1987 [163]
a Maximum limit for Class A type spaces having 90% occupant satisfaction rate. b Maximum limit for Class B
type spaces having 80% occupant satisfaction rate. c Maximum limit for Class C type spaces having less than 80%
occupant satisfaction rate. d Tolerable thermal environment limits, thermal comfort lies within this temperature
band. {Y} means yearly arithmetic mean of minimum 104 readings. The readings must be taken twice in a week
at a uniform time interval between 24 h. {24 h}/{8 h}/{1 h} means 24-hourly, 8-hourly, and one-hourly monitored
values sequentially. {STL} means short-term level, which cannot exceed once a year.

6. Discussion
6.1. Study Types and Publication Trends

After a critical search of the available literature focused on IEQ parameters in Indian
school classrooms, only thirty-seven articles were traced in the last fifteen years. Twenty-
nine articles were based on a real-time research study conducted on one or more IEQ
parameters in the Indian school classroom. Furthermore, eight review articles focused
on Indian school classrooms were considered for the formation of this article. Figure 10
represents an increased research trend (approximately six times) in school classroom IEQ
with frequent studies after the year 2010.

Table 4 presents the analysis of different IEQ parameter studies with Indian climatic
zones. The analysis determined that IAQ in the Indian school classroom is the most-
researched parameter, being present in seventeen studies. This is followed by AcC with
eight studies. Similarly, with six studies, TC remains at third position among the four
parameters. Visual comfort, with only two studies, is the least-researched parameter during
the fifteen-year span in the Indian school classroom.



Sustainability 2021, 13, 11855 19 of 43

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 46 
 

200 300 500 NBC-2016 [38] 
- 300 - GRIHA-2014 [204] 
- 300 - ISHRAE-2019 [158] 

Limiting Glare 
Index 

- 16 - SP-41 1987 [163] 
- 3 - NBC-2016 [38] 

Daylight Factor 
(1DF = 80 lux) 

- 2.5 - IGBC-2015 [205] 
1.9 - 3.8 IS-7942, 1976 [206] 
1.9 - 3.8 SP-41 1987 [163] 

a Maximum limit for Class A type spaces having 90% occupant satisfaction rate. b Maximum limit 
for Class B type spaces having 80% occupant satisfaction rate. c Maximum limit for Class C type 
spaces having less than 80% occupant satisfaction rate. d Tolerable thermal environment limits, 
thermal comfort lies within this temperature band. {Y} means yearly arithmetic mean of minimum 
104 readings. The readings must be taken twice in a week at a uniform time interval between 24 h. 
{24 h}/{8 h}/{1 h} means 24-hourly, 8-hourly, and one-hourly monitored values sequentially. {STL} 
means short-term level, which cannot exceed once a year. 

6. Discussion 

6.1. Study Types and Publication Trends 
After a critical search of the available literature focused on IEQ parameters in Indian 

school classrooms, only thirty-seven articles were traced in the last fifteen years. Twenty-
nine articles were based on a real-time research study conducted on one or more IEQ pa-
rameters in the Indian school classroom. Furthermore, eight review articles focused on 
Indian school classrooms were considered for the formation of this article. Figure 10 rep-
resents an increased research trend (approximately six times) in school classroom IEQ 
with frequent studies after the year 2010. 

 
Figure 10. IEQ parameters publications specific to Indian school classrooms in the last fifteen years 
(July 2006–March 2021). 

Table 4 presents the analysis of different IEQ parameter studies with Indian climatic 
zones. The analysis determined that IAQ in the Indian school classroom is the most-re-
searched parameter, being present in seventeen studies. This is followed by AcC with 

Figure 10. IEQ parameters publications specific to Indian school classrooms in the last fifteen years
(July 2006–March 2021).

Table 4. Distribution of studies based on IEQ parameters and their reported Indian climatic zone.

IEQ
Parameter

Climate Typology
Total

StudiesHot-Dry Warm-
Humid Temperate Cold Composite Mixed

IAQ 01 04 - - 12 - 17
AcC - 06 - - - 02 08
TC - - - - 02 04 06
VC - - - - 02 - 02
IEQ - 01 - - 01 02 04

Total 01 11 - - 17 08 37

Seventeen studies were performed in the composite climate of India, making it the
most-researched climatic zone for the study of IEQ parameters in the school classroom.
Eleven studies were performed in the warm–humid climate. One study was performed in
a hot–dry climate. The temperate and cold climates of India have been excluded to date
from IEQ parameter studies in school classrooms. Eight review articles were based on
mixed climate conditions.

Figure 11 indicates that IEQ parameter studies in Indian school classrooms are strewn
and inadequate. The absence of connection among different IEQ parameters in classroom
studies suggests that unorganized research was carried out in the past. In India, pre-
primary schools (now foundation) are neglected from IEQ studies and only one study [22]
is performed in class 1. Seven studies in preparatory-level schools, five studies in middle-
level schools, and thirteen studies in secondary-level schools were performed during
the last fifteen years in the country. Figure 12 depicts the strewn geographical spread of
different IEQ parameter studies in Indian school classrooms.
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6.2. Existing Gaps and Deficiencies

This review explored the current status of IEQ in Indian school classrooms by system-
atically reviewing existing studies for India-specific conditions. Fewer real-time research
studies were reported throughout India. More than 90% (to be precise, 92.5%) of existing
IEQ parameter studies in India were performed in naturally ventilated school classrooms.
To date, only two real-time studies [181,182] (7.5% of total) consider air-conditioned class-
rooms for their research, exploring a huge gap among different classroom operative modes.
Further, only one study [208] considers the relationship between IEQ and energy consump-
tion in Indian school buildings. Only one study [201] tested IEQ parameters in Green
School (GS) classrooms. However, the energy component is not considered in the GS study.
Despite having the most extreme conditions in cold and hot–dry climates, Indian school
classrooms in these climatic zones are overlooked for IEQ parameter research.

There is no study on testing IEQ parameters in the pre-primary classroom and only
one study [22] on IAQ in class 1. There is no Indian classroom-specific model for any of the
IEQ parameters that is well accepted. None of the studies consider the variation among the
students’ social, cultural, and economic status. During various tests, the Hawthorne effect
is neglected, which can potentially influence study results as subjects behave differently
when they know they are being observed. It is hard to compare studies with one another
as conditions and methods are different. Even in a single study, classroom conditions such
as dimensions, orientation, furniture setup, room openings, lighting conditions, student
strength, testing time, exterior conditions, etc., vary significantly. Thus, it is difficult to
produce firm comparisons.

Only a few studies [172,176,180,192,201,209,210] tried to test existing sick building
syndrome conditions in Indian school classrooms, which were not significant. The relation
among IEQ parameters with students’ and teachers’ health is not deeply researched until
now in India. To date, no study tested digital classrooms or hybrid classrooms in Indian
schools for their indoor environmental conditions nor the impact of advanced technolo-
gies on classroom IEQ. Further, there are fewer data available to standardize the testing
procedure, thus no specific public IEQ code or standard has been present in this country
until now. IEQ is excluded from the National Education Policy (NEP) 2020, which should
be part of the new NEP 2020. The inadequate awareness of the Indian public (students,
teachers, staff, parents, and other stakeholders) regarding IEQ in school classrooms and
other buildings is a huge gap that can be filled by proper training and information. Multi-
factor studies on IEQ are have not been performed to date in any Indian schools. Thus, it is
hard to explore the combined impact of IEQ parameters on students during any ongoing
session. Performance tests were considered within some studies [182,201,202] but most of
the studies neglected to assess students’ performance while measuring IEQ parameters in
the classroom. Therefore, there is a primary need to carry out further research on the effect
of all IEQ parameters simultaneously on students’ as well as teachers’ comfort and health
in Indian classrooms along with performance or efficiency tests of students and teachers.
Secondly, there is a need to develop an open-access, centralized database for the country,
and lastly, more research on factors that can potentially affect IEQ in Indian schools should
be conducted.

6.3. Factors Influencing Future Research on IEQ in Indian School Classrooms

The COVID-19 pandemic has created a terrible situation among researchers globally,
but it is now time to review the health and wellbeing aspects again in all types of build-
ings [211–214]. The density of occupants is much higher in school classrooms than rooms in
other types of buildings [215,216]. This makes school classrooms more prone to infections
and communicable diseases [217–219]. Research proves that the SARS-CoV-2 virus can be
transmitted through the air and can remain in the air as a micro-droplet or nuclei for hours
and can travel large distances [220,221]. Therefore, it is dangerous to continue studies in
AC classrooms as the air recirculation rate is higher than in NV classrooms and it is most
likely that the SARS-CoV-2 virus can infect classroom students [222–224]. Similarly, in
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AC classrooms, due to stagnant air inside, the possibility of the rapid spread of infection
increases due to the presence of an indoor infection source [225–229]. In general, there
are two routes of infection spread in closed spaces. First, aerosol droplets generated by
the infected person are directly inhaled by the exposed person. This occurs when the
distance between the infected person and the exposed person is less than 1.5 m. Second,
aerosols generated by the infected person’s activities are mixed with the room air and
airflow; the droplet nuclei travel and enter the system of the exposed person. This occurs
over large distances, generally greater than 1.5–2.0 m [230–233]. Figure 13 represents the
exposure distance effect on infection probability after inhaling the contaminated air where
viral shedding occurs due to the infected person’s activities (S) such as exhaling, speaking,
singing, shouting, sneezing, coughing, or yawning, etc. [234–236]. Individual 1 stands
near the infected person (S) in highly concentrated infectious air as shown below on the
right-hand side, whereas infection through airborne particle inhalation is shown on the
left-hand side of the image.
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The respiration rate of children is higher, and with an increase in age the respiration
rate decreases [237]; the respiration rate of different age groups is presented in Table 5. In
children, the respiration rate is higher; however, the volume inhaled is low as their organs
are small and still in the development stage [238]. Due to the fast respiratory cycle, they
are more prone to the virus infection suspended in the air as their breathing cycle is twice
that of adults [239,240]. Additionally, small children’s highly active nature cause dyspnea
resulting in abnormal breathing. Emotional state, physical fitness, internal temperature,
and health status are the four factors that affect the respiration rate of any individual.
During low metabolic activities such as sleeping, etc., the respiratory rate is low, and for
high metabolic activities such as exercise, sports, and heavy work, etc., the respiratory rate
is higher.

Table 5. Age-specific respiratory rate at rest.

Category Age Respiratory Rate
[Breaths per Minute (bpm)]

Newborn baby 0–1 month 40–60 bpm
Infant 1 month–1 year 35–40 bpm

Toddler 1–3 years 25–30 bpm
Preschooler 3–6 years 21–23 bpm
School-age 6–12 years 19–21 bpm
Adolescent 12–19 years 16–18 bpm

According to a comment report [241] available on ‘The Lancet’, it is quite evident that
COVID-19 is an airborne disease and SARS-CoV-2 is an airborne pathogen. This report
was prepared by six experts of the US, UK, and Canada and it advocates in the favor
of a hypothesis based on the aerial transmission of the SARS-CoV-2 virus. The authors
suggest that aerosols are more dangerous than respiratory droplets as they are smaller



Sustainability 2021, 13, 11855 23 of 43

in size and contain more viral concentrations in them. The other fact is that due to low
gravitational impact and having a smaller size, these aerosols can travel longer distances
than large droplets. Classrooms have more physical activity resulting in more resuspension
of fine particles creating worse conditions for students’ and teachers’ health. Ten points
that are presented in this report as proof include (i) super-spreading events of COVID-
19, (ii) long-range transmissions, (iii) asymptomatic or pre-symptomatic transmissions,
(iv) higher indoor transmission than outdoor, (v) nosocomial infections after using PPE
kits in hospitals, (vi) viable SARS-CoV-2 virus detection in the air for 3 h, (vii) SARS-CoV-
2 identification over the air filters and building ducts, (viii) animal experiments show
transmission through ducts by means of air, (ix) the unavailability of any scientific study to
oppose or refuse the hypothesis of airborne transmission of COVID-19 virus, and (x) limited
evidence to support other dominant routes of transmission (respiratory droplet or fomite).
A comparison of various possible IAQ-enhancing solutions for different types of buildings
in the COVID-19 pandemic situation was conducted in a previous study [242]. The study
concluded after a critical assessment of various indoor and outdoor air-related solutions
that more than one solution among different solutions will help in reducing the infection
spread probability. However, presently, there is no scientific technique or single solution
available that can completely safeguard occupants from SARS-CoV-2 and similar viruses.

As per the latest information provided on the UNESCO [23] website, currently, 60% of
the world’s students are severely affected by the lockdown conditions due to the COVID-19
pandemic. The school closure duration surpasses fifty weeks in India and the total af-
fected learners are around 320,713,810, which is approximately 25% of the current national
population [23]. Health and protection risks arise in continuing conventional education
process in schools without safety measures [243]. As a developing nation, household struc-
ture, resources, and socio-economic conditions severely affect Indian students [244,245].
Personal safety measures are not sufficient when dealing with densely populated class-
rooms [246,247]. The primary health concern among school administrations is to prevent
COVID-19 from spreading when students resume their studies, otherwise the spread of
the virus i.e., SARS-CoV-2 will increase rapidly again in India. Figure 14 illustrates the
probable infection spread cycle in the community via schools due to classroom teaching,
where red shows infected people and green represents healthy people.

Sustainability 2021, 13, x FOR PEER REVIEW 24 of 46 
 

in the COVID-19 pandemic situation was conducted in a previous study [242]. The study 
concluded after a critical assessment of various indoor and outdoor air-related solutions 
that more than one solution among different solutions will help in reducing the infection 
spread probability. However, presently, there is no scientific technique or single solution 
available that can completely safeguard occupants from SARS-CoV-2 and similar viruses. 

As per the latest information provided on the UNESCO [23] website, currently, 60% 
of the world’s students are severely affected by the lockdown conditions due to the 
COVID-19 pandemic. The school closure duration surpasses fifty weeks in India and the 
total affected learners are around 320,713,810, which is approximately 25% of the current 
national population [23]. Health and protection risks arise in continuing conventional ed-
ucation process in schools without safety measures [243]. As a developing nation, house-
hold structure, resources, and socio-economic conditions severely affect Indian students 
[244,245]. Personal safety measures are not sufficient when dealing with densely popu-
lated classrooms [246,247]. The primary health concern among school administrations is 
to prevent COVID-19 from spreading when students resume their studies, otherwise the 
spread of the virus i.e., SARS-CoV-2 will increase rapidly again in India. Figure 14 illus-
trates the probable infection spread cycle in the community via schools due to classroom 
teaching, where red shows infected people and green represents healthy people. 

 
Figure 14. COVID-19 spread cycle between community and school due to low safety measures in 
schools and community. 

Due to disrupted routines, less outdoor activity, confined indoor spaces, poor eating 
habits, stress, and anxiety increases the probability of obesity among students [248–252]. 
Obesity is a disorder in the human body due to the accumulation of excess fat, which is 
resultant of sedentary behavior [253–257]. Due to the lockdown and the use of more smart 
digital appliances, less physical work is achieved by students [258]. Good IEQ conditions 
in the classroom can motivate children to actively participate in different activities other 
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Due to disrupted routines, less outdoor activity, confined indoor spaces, poor eating
habits, stress, and anxiety increases the probability of obesity among students [248–252].
Obesity is a disorder in the human body due to the accumulation of excess fat, which
is resultant of sedentary behavior [253–257]. Due to the lockdown and the use of more
smart digital appliances, less physical work is achieved by students [258]. Good IEQ condi-
tions in the classroom can motivate children to actively participate in different activities
other than reading and writing activities, such as yoga, sports, group play, etc., which
can potentially help them to become physically fit [259,260]. Rapidly changing teaching
techniques and tools are also a considerable factor for determining and monitoring IEQ in
intelligent [261] and digitalized classrooms [262–264]. GS buildings are the future of sus-
tainable school buildings in India. Daylight autonomy, solar energy, and smart classrooms
will affect the research scenario and increase the demand for good IEQ in Indian school
classrooms [265,266]. Further, the demand for energy-efficient systems in school buildings
may also increase to achieve more than one sustainability goal. After the implementation
of NEP, the digital revolution in the education sector and Information and Communication
Techniques (ICT) will possibly gain more attention [267,268]. Rapidly advancing tech-
nologies such as Artificial Intelligence (AI) [269–274], Internet of Things (IoT) [275–283],
Big Data [284–287], Robotics [288–291], and Cloud Techniques [283,292–294] must be uti-
lized properly and effectively with IEQ research to develop innovative tech-gazettes for
monitoring, sampling, modeling, data accumulation, analyzing, and providing a safe and
comfortable Human–Building Interaction (HBI) [295]. Moreover, setting up a centralized,
open-access online database in India will enhance the quality and impact of research related
to IEQ parameters in the future.

6.4. Advances in IEQ with Artificial Intelligence (AI)

Artificial intelligence works like human thinking to solve complex problems that the
human brain cannot handle or are too tough to solve [296–298]. The introduction of AI
technology decreases the burden of manual calculations. The natural brain is only able to
compute calculations at a certain level, but computational technological methods solve
and process thousands of calculations within seconds at a rate impossible for the average
human brain [299–301]. The foundation of AI is based on several learning techniques
such as machine learning, deep learning, and reinforcement learning, etc. AI is applied
in several areas such as policymaking, energy efficiency, prediction, planning, economy,
management, and optimization. Figure 15 shows the application of AI in IEQ.
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Particularly in the area of IEQ, artificial intelligence plays an important role in the
prediction of energy consumption and model generation for TC, IAQ, VC, and AcC. The
details of the applications of AI in IEQ are as follows:

6.4.1. AI in TC

The role of AI in TC summarized by various researchers from the past few years
are tabulated in Table 6 [302–313]. The artificial Neural Network (ANN) model was
prepared by Moon et al. [302] to predict the temperature inside a residential building
during maximum occupancy. The maximum accuracy of this model was 99.99% in the
prediction of indoor TC, and the reduction in the energy was also considered in this
study. Mba et al., Irshad et al., Kim, and Thongkhome and Dejdumrong [303,308–310]
also used the ANN model to predict thermal comfort by using input parameters such as
indoor temperature, indoor humidity, wind speed, metabolic rate, and clothing, etc. A
few researchers used other AI techniques such as Reinforcement Learning, Fuzzy logic,
Multilayer Perception (MLP), Random Forest (RF), Deep-reinforcement leaning (FNN),
K-Neighbors Regression (KNR), Support Vector Regression (SVR), Tree Regression (TR),
Linear Regression (LR), Decision Tree, Naïve Bayes, Support Vector Machine (SVM), and
Deep ANN (DANN).

Table 6. Summary of AI research studies in TC.

Author
[Ref] Year Building Type Method TC

Parameter Input/Output Results

Moon et al. [302] 2016 Residential ANN

Indoor temperature,
temperature difference

and outdoor
temperature

TEMPIN,
TEMPOUT,
∆TEMPDIF

R2 = 0.9999

Mba et al. [303] 2016 Experimental
Building ANN Indoor temperature (IT),

indoor humidity (IH)

Indoor and outdoor
temperature, Sunshine and

relative humidity
monthly data

R = 0.9850 (IT)
R = 0.9853 (IH)

Valladares
et al. [304] 2019 Classroom and

Laboratory
Reinforcement

Learning
Thermal comfort and

indoor air control

Temperature, humidity and
CO2, Specifications of air

condition unit and
ventilation fan

PMV values within range
−0.1 to +0.07 and 10%

reduction in CO2 values
while saving 4–5% energy

Zhang et al. [305] 2021 Office Building Fuzzy logic Indoor temperature and
thermal comfort

Indoor air temperature,
indoor air relative humidity,

outdoor air temperature,
outdoor air relative humidity,

CO2 concentration, Skin
temperature and heart rate

Daily energy
consumption = 20.07%
(point-based control)

Daily energy
consumption = 10.73%

(feedback-based control)

Bienvenido-Huertas
et al. [306] 2020 Household

Building MLP, RF Thermal properties of
wall

Tint, max(Tint), min(Tint),
Text, max(Text), min(Text), q,

max)(q), min(q), thickness,
time, period

RF Model is good to estimate
the periodic thermal

variables

Gao et al. [307] 2020 Normal
Building

Deep
reinforcement

learning (FNN)

Energy efficient thermal
comfort

Temperature, Humidity,
Radiant temperature, Air

Speed, Metabolic rate,
Clothing insulation

Improved thermal comfort by
13.6% and reduce energy

consumption of
HVAC = 4.31%

Irshad et al. [308] 2020 Office Building ANN
Predication of thermal
comfort with installed

AC

Air temperature, relative
humidity, globe temperature,
wind speed, metabolic rate,

and clothing

MSE = 5.1789

Kim [309] 2020 Office Building ANN, DNN
HVAC system

optimization for thermal
comfort

Tt
z =

zone z at time t is
affected by the power inputs,
Pt of the HVAC system and
the thermal conditions, Et of
a multi-zone building during

the time from t − τ to t.

NMSEs = 0.9999

Thongkhome &
Dejdumrong [310] 2020 House

Building ANN
Thermal comfort
environmental

predication

Temperature and relative
humidity Accuracy = 99.54%
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Table 6. Cont.

Author
[Ref] Year Building Type Method TC

Parameter Input/Output Results

Zhou et al. [311] 2019 Office Building

Model-Driven learning
{K-Neighbors

Regression (KNR),
Support Vector

Regression (SVR), Tree
Regression (TR), and

Linear Regression (LR)}.

Dynamic thermal
comfort

Temperature, air velocity
and humidity

PMV model
predicting values

Rehman et al. [312] 2020 Commercial
building

Decision Tree, Naïve
Bayes, SVM, MLP, and

DANN
Personalized comfort Temperature and

humidity
Highest accuracy =

84.35%

Luo et al. [313] 2018 Normal room - Metabolic rate and
thermal comfort

Temperature, humidity,
BMI, Sex, age pregnancy
and menopause status

-

6.4.2. AI in IAQ

AI methodologies have been used in IAQ for different types of buildings and are
summarized in Table 7 [314–326]. Most researchers used CO2, particulate matter, VOCs,
and NOX as input parameters to predict and optimize the IAQ parameters in different
indoor scenarios. The various AI techniques used are the Adaptive Network-based Fuzzy
Interface System (ANFIS), Backward Progression (BP), Multiple Linear Regression Method
(MLRM), ANN, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), MLP-NN,
Deep RNN, Decision Tree Regression Method, Extended Fractional-order Kalman Filter,
Machine learning-based non-parametric forecasting, Multiple Linear Regression, Non-
Linear ANN, Time Slicer Method, PAD method, and Autoregressive Integrated Moving
Average (ARIMA). The work in this direction is growing rapidly.

Table 7. Summary of AI research studies in IAQ.

Author [Ref] Year Building Type Method IAQ Parameter Input/Output Results

Xie et al. [314] 2017 Commercial ANFIS, BP, MLRM NH3

Pit NH3 concentration, Room
temperature, Pit temperature,
Room humidity, Pit humidity,
Pig activities, Pit fan-E speed,

Pit fan-W speed, Room fan
14′’, Room fan 20′’, and Pig

manure

ANFIS, BP and MLRM
results in summer and winter

MSE = 0.0047 and 0.002,
R2 = 0.6483 and 0.6351;

MSE = 0.0137 and 0.0042,
R2 = 0.6066 and 0.5543;

MSE = 0.0174 and 0.0660,
R2 = 0.5957 and 0.702.

Challoner
et al. [315] 2015 Office ANN NO2, PM2.5

Time of day, barometer level
pressure (hPa), sea level

pressure (hPa), temperature
(◦C), relative humidity (%),
wind speed (knots), wind
direction (knots), Pasquill
atmospheric stability class,

global solar radiation (j. cm2)
and outdoor pollutant

concentrations

Location 1, 2 and 3:
For NO2,

R2 = 0.854, 0.870, 0.829;
For PM2.5,

R2 = 0.711, 0.760, 0.770.

Ahn et al. [316] 2017 Office Gated recurrent unit
LSTM PM2.5, CO2, VOCs

CO2, VOC, humidity,
temperature, light amount,

and fine dust

Prediction Accuracy:
GRU = 84.69
LSTM = 70.13

Adeleke et al. [317] 2017 Residential MLP NN PM2.5 Indoor PM2.5 concentration Precision up to 0.86,
Sensitivity of up to 0.85.

Liu et al. [318] 2018 Residential ANN CO2, PM2.5, and
PM10

Indoor PM2.5 and PM10
concentration, indoor
temperature, relative
humidity, indoor CO2

concentration

For PM2.5, R2 = 0.97
For PM10, R2 = 0.91
For Fungi, R2 = 0.68

Loy-Benitez
et al. [319] 2019 Waiting rooms Deep RNN PM2.5, PM10, CO2,

NO2, CO, NO xt (current input)
RMSE = 29.73 µg/m3,

MAPE = 29.52%
RMSE = 30.99 µg/m3,

MAPE = 31.10%

Vanus et al. [320] 2016 Residential Decision tree
regression method CO2

Internal and external
temperature, internal RH,

date and time
RMSE = 46.25 ppm
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Table 7. Cont.

Author [Ref] Year Building Type Method IAQ Parameter Input/Output Results

Ha et al. [321] 2020 Office
Extended

fractional-order
Kalman filter

H2, NH3, ethanol,
H2S, toluene, CO,

CO2, O2

CO2, CO, O2, H2, NH3,
ethanol, H2S, toluene,

temperature, humidity

MSE = 0.8612, 0.39993, 0.7082,
0.5122, 0.6103, 0.6761, 0.4738,

0.4262, 0.3601, 0.3007

Elhariri et al. [322] 2019 Office Gated recurrent unit CO2
Humidity, temperature and

CO2
RMSE = 4.0474125

Fang et al. [323] 2016 Residential

Machine
learning-based
non-parametric

forecasting

PM2.5, VOC Humidity, temperature,
VOCs, PM2.5

NRMSD = 7.5%

Maag et al. [324] 2018 Office and
residential

Multiple linear
regression,

non-linear ANN
O3, CO2, VOC O3, temperature, VOC

For O3:
RMSE = 7.4 ppb, R2 = 0.78

For CO2:
RMSE = 8.1 ppb, R2 = 0.88

Schwee et al. [325] 2019 Office Time slicer method,
PAD method CO2 CO2, temperature

PAD method has more
accuracy than time slicer

method

Xiahou et al. [326] 2019 Residential ARIMA
PM2.5, PM10, CO2,

tVOC,
formaldehyde

PM2.5, PM10, temperature,
CO2, tVOC, formaldehyde

Mean prediction error = 0
The model have high
prediction accuracy

6.4.3. AI in VC

The use of artificial intelligence in VC is tabulated in Table 8 [327–332]. The input
parameters used by various researchers are the orientation of the sun, illuminance levels,
glare level, opening of windows, and weather conditions, etc. The most-used computational
techniques in various studies are Fuzzy rule based, the Multi-Objective Genetic Algorithm
(MOGA), Multi-Objective Non-Dominated Sorting Genetic Algorithm (NSGA-II), Genetic
Algorithm (GA), Linear Regression (LR), and Support Vector Machine (SVM).

Table 8. Summary of AI research studies in VC.

Author [Ref] Year Building Type Method VC Parameter Input/Output Results

Rodriguez et al. [327] 2015 Office Fuzzy rule base Natural and
artificial Light

Sun position, illuminance
level, glare

Maintain visual comfort
with decreasing the use of

artificial light.

Penacchio et al. [328] 2015
Residential,
commercial,
office and
industrial

MOGA Visual discomfort

Spatial structure in scenes
from nature, and

sensitivity of the human
visual system, visual

discomfort

R2 = 0.810

Delgarm et al. [329] 2016 Office

Multi-Objective
Non-Dominated
Sorting Genetic

Algorithm
(NSGA-II)

Visual comfort

Building orientation,
Window length, Window

width, Overhang tilt angle,
Overhang depth

Final optimum
configuration leads to

23.8–42.2% decrease in the
annual total building
energy consumption.

Kim et al. [330] 2016 Office GA

Natural light
through window-

by-window
size

Azimuth angle, Outdoor
illuminance

GA optimized model
saved 11.7% energy.

Cen et al. [331] 2019 Residential,
Office LR, SVM Illuminance level

Eye pupil size, illuminance
levels, visual sensation and

visual satisfaction

Accuracy = 0.7086 for
visual sensation, and

Accuracy = 0.65467 for
visual satisfaction

Kar et al. [332] 2019 Office Python-based
method Visual comfort

Consumed energy for
maintain comfortable
visual environment

72% reduction in energy
consumption with

maintaining good visual
environment

6.4.4. AI in AcC

AI methodologies have been used in AcC for different types of buildings and are sum-
marized in Table 9 [333–335]. Most researchers used various acoustic comfort parameters
as inputs to predict and optimize the AcC in different indoor scenarios. The various AI
techniques used are ANN, Backward Progression (BP), the Feed Forward Network (FFN),
Support Vector Machine (SVM), Random Forest (RF), Gradient-Boosting Decision Tree
(GBDT), and Multi-Objective Non-Dominated Sorting Genetic Algorithm (NSGA-II).
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Table 9. Summary of AI research studies in AcC.

Author [Ref] Year Building Type Method AcC Parameter Input/Output Results

Zhong et al. [333] 2019 Institutional
Building ANN, BP, FFN Acoustic comfort Temperature, noise,

relative humidity and CO2
R2 = 0.469–0.928

Yeh and Tsay [334] 2021 Institutional
Building

SVM, RF, GBDT and
ANN Indoor Acoustic Indicators Details of Ceiling and wall

materials

ANN shows good
results (Except

reverberation time)

Khan and
Bhattacharjee [335] 2021 Normal Building NSGA-II Acoustic Performance

Total floor area, climatic
zone, number of storeys,

and
building envelope

parameters

Results changes
with wall and roof
material thickness

6.5. IEQ Demands in Indian School Classrooms

The following are the twelve remarks for future research studies and actions that are
drawn from reviewing the existing Indian studies to answer the challenge of IEQ:

• Studies on IEQ parameters in Indian school classrooms are inadequate, unorganized,
and unevenly geographically scattered. Therefore, more real-time subjective and ob-
jective studies are needed in India along with effective policies and well-drafted plans
to implement and enhance IEQ in school classrooms. There are various inconsistencies
in methods used by Indian researchers. Therefore, there is a need to standardize the
testing methods. This will finally help in creating India-specific public IEQ standards
for school buildings as there are no public codes for IEQ in school classrooms to date.

• There is a huge difference among various IEQ parameter studies. VC is the least-
researched parameter in Indian schools. Therefore, maximum IEQ parameters must be
considered during future objective and subjective surveys. Age variation also impacts
the results, hence education-level-specific studies should be conducted and all the
levels should receive proper attention.

• Interdisciplinary quality research based on the scientific approach is required on IEQ
in Indian school buildings. The energy and health domain should also be studied and
included in research along with IEQ performance in Indian school classrooms.

• Occupants’ social, economic, and cultural aspects should be considered properly for
more accuracy in results and accurate future predictions as all these aspects vary
largely among the student population in any class.

• The Hawthorne effect must be considered during real-time research execution in
school classrooms so that the results have less deviation due to psychological varia-
tions among subjects.

• Different authors adopt different methods for assessing the quality of the indoor envi-
ronment in school classrooms, so it is hard to compare the results of different studies
as outcomes vary significantly both in quantitative and qualitative terms. There-
fore, more empirical and data-driven research is essential for advancing classroom
IEQ research.

• Effective techniques for merging natural daylight with artificial lighting, effective
ventilation techniques, energy-efficient conditioning, and proper design interventions
for the acoustic environment are some steps that must be taken to increase IEQ in the
Indian school classroom.

• As none of the studies tried to determine the interrelation between different parame-
ters of indoor environmental quality in school buildings, it is very difficult to comment
on the combined effect of IEQ parameters on students and teachers in Indian school
classrooms. No real-time study considers all IEQ parameters in Indian school class-
rooms. Therefore, there is a need to study the interrelation and combined effect
of IEQ.

• As very scarce studies in the Indian climatic zones are carried out on single or multiple
IEQ parameters in the school classroom, more studies are needed in the future for
better understanding and climate-wise comparison.
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• Overcrowding must be avoided in classrooms with increased natural ventilation, as
stagnant air can create serious health conditions with spreading COVID-19 at a faster
rate. The recirculation of air must not be executed in school buildings. Openings
in the classrooms must be well supported with such a system/technology that can
destroy viruses suspended in the air. If possible, school authorities can temporarily
think about open-air classrooms with precautions.

• AI, IoT, Big Data, Robotics, and Cloud-like advanced technologies and techniques
should be used to innovate and create smart, efficient, technical gazettes as well as ap-
plications related to IEQ and HBI. Additionally, advanced techniques and technology
should be developed to face COVID-19-like situations in the present and future.

• Increasing air pollution and other factors that have higher probabilities of affecting IEQ
in buildings should be further explored, and it is essential to research these factors and
their impact on IEQ conditions so that existing and future codes and standard show
less deviation from the real-time indoor comfort conditions. Likewise, air-conditioned
school classrooms and other air-conditioned spaces in schools need more research
related to their indoor environment. Additionally, AQI should be updated and include
biological factors along with chemical and particulate matter.

7. Conclusions and Future Direction

Research on IEQ parameters has been blooming among Indian researchers in the
last decade. However, very interestingly, school buildings still leave much to explore
regarding their indoor environmental conditions. Requirements for good IEQ in Indian
school classrooms are the primary concern nowadays, which can further be given more
attention due to the pandemic situation. However, research in this area is inadequate and
unevenly scattered geographically throughout India. Indian school classrooms are bleak
and in dire need of energy-efficient modifications with good IEQ for better teaching and
learning outcomes. The performance of students, as well as teachers, is another area of
research directly linked to IEQ and the indoor comfort domain. The current state of the
art of Indian IEQ conditions in schools indicates that a standardized method is essential
for reliable studies and results. COVID-19 is the turning point in the direction of the
health and wellbeing of students in classrooms. Research in this area will have long-term
outcomes that help in reducing various communicable and respiratory diseases along
with the overall development of the nation. However, the seed of IEQ research in India is
well sown by researchers and academicians. It is now for stakeholders to see that the tree
flourishes. This paper has presented a systematic review of the current status of studies
conducted on IEQ parameters in Indian school classrooms to explore the difficult ‘IEQ
Conundrum’. Eventually, more studies that focus on IEQ assessment in Indian school
classroom/s are required to eliminate scant information in this area as well as some urgent
work to ensure students’ good health in the time of the COVID-19 pandemic are suggested
as the future direction.

Future Direction

The future directions are:

1. For the design, construction, and operation of new as well as existing buildings to
prevent them from the indoor transmission of SARS-CoV-2-like viruses, a special
publication as an annexure to the National Building Code or a separate document is
required. The authors are working on these guidelines.

2. All naturally ventilated schools, as well as naturally ventilated buildings, need an
economical retrofitting solution or device to tackle IAQ problems (virus transmission)
inside classrooms. The authors are researching this.

3. Air-conditioned schools, as well as spaces in schools such as libraries, computer labs,
auditoriums, digital classrooms, and other air-conditioned buildings, need an urgent
solution to decontaminate the air. Therefore, the authors are researching this direction



Sustainability 2021, 13, 11855 30 of 43

to prevent the SARS-CoV-2 or other similar airborne pathogens transmission through
devices installed in air-conditioned buildings.
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