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Abstract: Supply chain optimization concerns the improvement of the performance and efficiency of
the manufacturing and distribution supply chain by making the best use of resources. In the context
of supply chain optimization, scheduling has always been a challenging task for experts, especially
when considering a distributed manufacturing system (DMS). The present study aims to tackle the
supply chain scheduling problem in a DMS while considering two essential sustainability aspects,
namely environmental and economic. The economic aspect is addressed by optimizing the total
delivery time of order, transportation cost, and production cost while optimizing environmental
pollution and the quality of products contribute to the environmental aspect. To cope with the
problem, it is mathematically formulated as a mixed-integer linear programming (MILP) model.
Due to the complexity of the problem, an improved genetic algorithm (GA) named GA-TOPKOR is
proposed. The algorithm is a combination of GA and TOPKOR, which is one of the multi-criteria
decision-making techniques. To assess the efficiency of GA-TOPKOR, it is applied to a real-life case
study and a set of test problems. The solutions obtained by the algorithm are compared against the
traditional GA and the optimum solutions obtained from the MILP model. The results of comparisons
collectively show the efficiency of the GA-TOPKOR. Analysis of results also revealed that using the
TOPKOR technique in the selection operator of GA significantly improves its performance.

Keywords: genetic algorithm; supply chain; scheduling; sustainability; multi-criteria decision-
making; mathematical model; TOPKOR

1. Introduction

A supply chain is composed of independent organizations such as suppliers, logistics
providers, manufacturers, and distributors who all work in an integrated system to add
value to a product [1]. Nowadays, applying a distributed manufacturing system (DMS) has
attracted the attention of many supply chain managers [2]. The DMS suggests scattering
production units in different regions rather than establishing one central production unit
in one region [3]. Applying the multi-site strategy may provide the manufacturers with
several advantages such as less transportation costs in the supply chain, the possibility of
using the environmental potentials such as cheap workforce or materials, and reducing
the risk of production cease due to natural disasters such as earthquakes or floods [3].
Despite the advantages of DMS, scheduling a supply chain network that consists of several
production units is a challenging task for most companies. It gives rise to a problem known
as supply chain scheduling problem (SCCP).

The SCCP concerns allocating capacity, resources, equipment, orders, activities, etc., to
customers or manufacturers to optimize the fellow in the supply chain network. Generally,
in SCCP studies, every manufacturer or supplier is considered a single machine environ-
ment while other popular production environments such as job-shop, flow-shop, etc., have
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received less attention. Moreover, the existing studies on SCCP mainly concentrate on
the optimization of time and cost issues. However, in real cases, some aspects such as
quality and environmental pollution may have higher importance than time. A customer
as a critical member of the supply chain may suffer a delay in the delivery of orders, but
if the quality of the received order is not adequate, severe dissatisfaction may occur, and
the organization’s reputation might be destroyed. Moreover, poor-quality products might
need to be discarded, which is strongly against the suitability goal.

Given the above explanations, to tighten the gap between the scientific literature and
the real-world needs, this study addresses the SCCP with the following characteristics:

• A supply chain network consists of a manufacturer with multiple sites scattered in
different regions and its customers;

• Each production unit has a Flexible Job-Shop (FJS) environment, which is one of
the most general production environments. It is worth noting that other production
environments such as job-shop, flow-shop, parallel-machines, and single-machine are
specific cases of FJS [4];

• Some orders should be processed at several separate manufacturing units of a factory
and then delivered to a predetermined customer.

Additionally, this study has a significant emphasis on the environmental aspect of
suitability besides the economic aspect. To comply with this ambition, five objectives
are considered to be optimized when dealing with the SCCP. The considered objectives
are minimizing the total orders’ delivery time, transportation cost, production cost, pol-
lution level, and maximizing the quality of completed orders. The first three objectives
mainly contribute to the economic aspect, while the last two are concerned with the
environmental aspect.

To cope with the explained SCCP, a novel algorithm named GA-TOPKOR is proposed
in this study. The GA-TOPKOR is a product of combining the TOPKOR method, which is a
multi-criteria decision-making (MCDM) method, and the well-known Genetic Algorithm
(GA). The solution process of the proposed GA-TOPKOR is similar to the traditional GA,
with one important difference in the selection of the chromosome to be transferred from
one generation to another. In the GA-TOPKOR, chromosomes are selected to transfer to
the next generation using the TOPKOR method by considering each objective function as a
criterion and chromosomes as alternatives.

Considering the above explanations, the main research question of this study can be
expressed as follows.

How to optimize the total delivery time of orders, transportation and production costs,
environmental pollution, and the quality of products in a supply chain network while
considering the distributed manufacturing system?

To find an answer to the main research question, it has been divided into some
sub-questions as follows:

• How to assign each order to manufacturing units?
• How to assign operations of each order to machines in the related manufacturing unit?
• What is the best sequence for assigning operations to each machine?

Figure 1 illustrates the research steps that are taken to address the presented questions.
The remainder of the paper is organized as follows. Section 2 gives a brief overview

of the research background. Section 3 focuses on explaining the problem and presenting
the mathematical model. The proposed algorithm is elaborated in Section 4. Numerical
experiments are presented in Section 5. Finally, conclusions and suggestions for further
studies are discussed in Section 6.
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2. Literature Review

To date, different studies have been conducted on the scheduling problem in the
supply chain context. Most of the existing studies integrated the production and scheduling
problems. A review of the most relevant studies is provided below.

Averbakh [5] investigated the online scheduling in a supply chain network consisting
of a factory and some customers aiming to minimize the load of orders. Four heuristic
algorithms were proposed to solve the problem and competitive analysis was performed to
study their worst-case performance. Rostamian Delavar, Hajiaghaei-Keshteli [6] presented
a genetic algorithm to integrate production scheduling and air transportation. Two genetic
algorithms for solving the problem were proposed after presenting a mathematical model.
In another study, Scholz-Reiter, Frazzon [7] focused on the production and transportation
in a general supply chain. The authors developed a mathematical model to cope with
the problem. Kabra, Shaik [8] used mathematical programming to solve the scheduling
problem in a pharmaceutical supply chain, considering multi-stage, multi-product, and
multi-period environments. The authors extend a previous study by adding some limita-
tions such as sequence-dependent changes, multiple delivery times, expiration date and
defective products, and cost of late deliveries. Ullrich [9] integrated machine scheduling
and vehicle routing considering time windows in a supply chain and proposed a genetic
algorithm to solve the problem. Sawik [10] analyzed the relationship between scheduling
and selecting the suppliers in case of disruption risks and presented a mixed-integer pro-
gramming model for the problem. Han, Zhang [11] studied the scheduling of an online
supply chain considering several customers and vehicles with limited capacity. The authors
also minimized the total operation time and delivery cost in scheduling the online supply
chain in the cases of single and parallel machines in a transportation system with one
customer. Pei, Pardalos [12] solved the production and transportation scheduling problem
in a two-stage supply chain in which the processing time is a linear function of its starting
time. They considered two special cases and proposed two optimal algorithms to solve
the problem. Beheshtinia, Ghasemi [13] used a modified version of the RGGA to solve
the supply chain scheduling problem while considering a multi-site production system.
Frazzon, Albrecht [14] presented a hybrid approach by combining mixed-integer linear
programming, discrete event simulation, and a genetic algorithm to solve an integrated
production and scheduling problem. Borumand and Beheshtinia [15] presented a new
hybrid algorithm by mixing the genetic algorithm and an MCDM method for solving
the integrated production and transportation supply chain problem. Beheshtinia and
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Ghasemi [16] presented a metaheuristic algorithm called multiple league championship
algorithm (MLCA), including two operators of practice and tournaments to address the
supply chain scheduling problem. Najian and Beheshtinia [17] presented an improved
genetic algorithm called RGGA to solve the same problem while simultaneously cross-
dock and vehicle routing methods were applied for transportation. Sarvestani, Zadeh [18]
presented a heuristic algorithm to tackle the scheduling problem in a supply chain network
considering several cases such as accepting the order, determining the delivery date, and
selecting the supplier. Taheri and Beheshtinia [19] studied the integration of production
and transportation scheduling in a two-stage supply chain to minimize total earliness
and tardiness simultaneously. In this study, a time window due date for each order is
considered. The authors developed a GA considering traveling chromosomes between
various generations of GA to solve the problem. Gharaei and Jolai [20] discussed the
integration of production and scheduling problems in a supply chain composed of a manu-
facturer and its customers. To cope with the problem, the authors proposed two heuristic
algorithms based on the decomposition approach. The considered objective functions were
to minimize total tardiness and transportation cost. Ying, Pourhejazy [21] discussed the
distributed assembly permutation flow-shop scheduling problem with flexible assembly
and sequence-independent setup times. The authors presented an original mixed-integer
linear programming model and proposed a heuristic and an Iterated Greedy Algorithm
(IGA) to cope with the problem’s complexity.

Beheshtinia, Salmabadi [22] considered a two-layer transportation system in a three-
echelon supply chain. The authors integrated production and routing problems and
proposed a mathematical model to minimize production costs, transportation, inven-
tory holding, and expired drugs treatment. Furthermore, they proposed a possibilistic
model and a robust possibilistic model corresponding to the initial model to consider
the uncertain nature of the problem. Bank, Mahdavi Mazdeh [23] proposed two mixed-
integer linear programming models to optimize four objective functions in an integrated
production–distribution system considering lot-sizing decisions. The considered objective
functions were total sequence-dependent setup costs, holding costs, delivery costs, and
delay penalties. Furthermore, a hybrid genetic algorithm is proposed to solve the problem
in large-scale problems. Purnomo, Anugerah [24] discussed a collaborative supply chain
in the furniture industry and tried to minimize material, processing, transportation, and
holding costs. They developed a mathematical model and proposed a genetic algorithm
to solve the problem. Pourhejazy, Cheng [25] integrated the production scheduling and
distributed manufacturing operations. They addressed the distributed two-stage assembly
flow-shop with sequence-dependent setup times. To tackle the problem, they proposed
a mixed-integer linear programming model and an iterated greedy algorithm to mini-
mize the makespan. Aminipour, Bahroun [26] studied the cyclic production scheduling
problem in a two-stage closed-loop supply chain while assuming that material shortage
is not allowed. The considered optimization objective was to minimize the sum of hold-
ing and setup costs. After proposing the mixed-integer linear mathematical model of
the problem, a heuristic algorithm is proposed to solve large-scale problems. Moghimi
and Beheshtinia [27] discussed the integration of production and scheduling problems
in a supply chain considering the multi-site manufacturing system. They considered
two objective functions of minimizing total tardiness and environmental pollution and
proposed a genetic algorithm with multiple parallel populations two solve the problem.
Wang [28] investigated the integrated production and transportation scheduling problem
in a three-stage supply chain composed of a set of heterogeneous suppliers at the first stage,
a set of capacitated manufacturers at the second stage, and a set of retailers at the third
stage. The authors proposed a nonlinear mathematical model and a hybrid particle swarm
optimization (PSO) algorithm to tackle the problem. The considered objective functions
were to minimize the total shipping and penalty costs. Rahman et al. [29] discussed the
integration of production and transportation scheduling problems in a two-stage supply
chain composed of a manufacturer in the first stage and a set of customers in the second
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stage. They considered sequence-dependent setup times and permutation flow shop envi-
ronment. After presenting a nonlinear mathematical model of the problem, the authors
proposed three metaheuristic algorithms, namely Differential Evolution (DE), Moth Flame
Optimization (MFO), and Lévy–Flight Moth Flame Optimization (LFMFO), to optimize
the total cost of tardiness and batch delivery.

The literature review shows that the existing studies in terms of integration level can
be divided into three groups: (1) integration of suppliers and manufacturers, (2) integration
of manufacturers and distributors, and (3) integration of suppliers, manufacturers, and
distributors, which is known as a hybrid. Moreover, the studies are also classified into
two groups in terms of time consideration. Some studies considered the time a continuous
parameter, while others considered it several discrete periods.

In terms of the objective function, the existing studies are either single-objective or
multi-objective. Although many studies in the literature claimed to be multi-objective, most
of the studies converted all the objective functions into cost and merged them. Therefore,
the effect of the proposed solutions on each objective function has been rarely investigated.

As for the solution method, a mathematical model was proposed in most studies as
the primary solution method. However, most of the studies have resorted to a heuristic
algorithm, mainly GA, to cope with the complexity of the problem. The literature review
also shows that most previous studies considered the suppliers or manufacturers as a single-
machine environment. Some other production environments, such as assembly flow-shop,
parallel machines, flexible flow-shop, and flexible job-shop, received less or no attention.
A summary of the reviewed studies is provided in Table 1. To complement the existing
literature on SCCP, in the current research, each production unit is assumed to have an FJS
environment, one of the most general production environments, and other environments
are reduced versions of FJS. The current research also differs from the previous studies
by addressing the SCCP while integrating transportation and production scheduling
and considering multiple objectives, namely minimizing the total orders’ delivery time,
transportation and production costs, pollution levels, and maximizing the quality of
completed orders.

Table 1. Summary of the reviewed studies.
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[5] Single machine Heuristic X X X
[6] Single machine X GA X X X
[7] Flexible flow shop X X X X
[8] Single machine X X X X
[9] Single machine X GA X X

[10] Single machine X X X X
[11] Parallel machines Heuristic X X X
[12] Single machine X Heuristic X X X
[13] Single machine X GA X X X
[14] Single machine X GA X X X
[15] Single machine X GA X X X
[16] Single machine X MLCA X X X
[17] Single machine X GA X X X
[18] Single machine X Heuristic X X X
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Table 1. Cont.
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[19] Single machine X GA X X X
[20] Single machine X Heuristic X X X

[21] Assembly
Flowshop X

Heuristic
and IGA X X X

[22] Single machine X X X X
[23] Single machine X GA X X X
[24] Single machine GA X X X

[25] Assembly
Flowshop X IGA X X X

[26] Single machine X X X X
[27] Single machine X GA X X X
[28] Single machine X PSO X X X

[29] Flowshop X
DE, MFO
& LFMFO X X X

Current
research Flexible job shop X GA X X X

The contribution of this study can be summarized as follows:

• Investigating the scheduling in the supply chain by considering a distributed manu-
facturing system and multiple objectives;

• Considering each manufacturer as an FJS environment;
• Presenting a mathematical model for the problem;
• Introducing an efficient algorithm by combining GA and TOPKOR method (GA-TOPKOR).

3. Definition of the Problem

The problem explanation, including its assumptions, parameters, and the mathemati-
cal model of the problem, is presented in this section.

3.1. Problem Specifications

The present study assumes that a factory including several separated manufacturing
units should process orders and deliver them to customers. Each manufacturing unit has a
flexible job-shop (FJS) environment. It is assumed that a set of n orders O = {O1, O2, . . . , On}
should be processed by a set of u manufacturing units U = {MU1, MU2, . . . , MUu} which
are scattered in different regions. Every order should be processed by just one single
manufacturing unit. Each order is composed of a set of operations in which the number of
the operations of the ith order is shown as noi. As the technology of each machine may be
different in each manufacturing unit, it is assumed that the number of operations for each
order in some manufacturing units may be different. In other words, the orders’ process
route may be different (i.e., this is a generalized form of the case in which the production
process does not depend on the manufacturing unit and is the same in all units). Each man-
ufacturing unit has a set of f s production machines Ms = {Ms,1, Ms,2 . . . , Ms,j, . . . , Ms, f s

}.
After assigning an order to one manufacturing unit, the order’s operations can be processed
on a set of allowed machines. Orders should be delivered to the related customer after
they are completed. Thus, one transportation time and one transportation cost should be
considered for each order. Figure 2 shows a schematic view of the considered supply chain.
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Other assumptions are as follows:

• The processing time and production cost of each operation depend upon both the
selected manufacturing unit and the selected machine;

• The transportation time, transportation cost, level of pollution, and quality of com-
pleted orders are predetermined, and they may be dissimilar in different manufactur-
ing units;

• The delivery time of an order equals the completion time of its last operation and the
time of transportation from the assigned manufacturing unit to the related customer;

• All operations and all machines in all manufacturing units are available at the time zero;
• Each machine in every manufacturing unit can only process one operation at a

specific moment;
• Each order should be assigned to only one manufacturing unit. If an order is assigned

to a manufacturing unit, all of its operations should be processed inside that unit;
• Disruptions are not allowed. In other words, each operation should be processed

without interruption once its process starts;
• Some manufacturing units may not be able to process some orders. Moreover, some

machines may not be able to process some operations.

It is worth mentioning that some parameters like operation cost can be altered. In this
study, operation cost is related to the machine and manufacturing unit that each operation
is assigned. This means that changing the assigned manufacturing unit and machine of
each operation changes its operation cost.

Figure 3 shows an example with three manufacturing units and five orders in which
orders 1 to 5 have 3, 2, 3, 1, and 2 operations, respectively. Manufacturing units 1 to 3 have
3, 3, and 2 machines, respectively. In some cells, two numbers are shown, the top number
displays time, and the bottom one is the cost. The data (i.e., transportation cost and time,
quality, and level of pollution) related to each order when it is assigned to a manufacturing
unit are also given in the figure. Allocating some orders to some manufacturing units
and some operations to some machines are not allowed, and these cases are shown as
“-” in Figure 3. In addition, one feasible solution is highlighted in which orders 1 to 5
were assigned to 1, 2, 1, 2, and 3, respectively. Further, O11, O12 and O13 are assigned
to M12, M11 and M13, respectively. Accordingly, to obtain the final solution, the priority
of processing the orders assigned to a machine should be determined. For instance, two
operations of O13 and O33 were assigned to M13 and their processing should be prioritized.
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3.2. Mathematical Model

In this section, the mathematical formulation of the problem is presented. The pre-
sented model is an extension of the model proposed by Ziaee [30]. The original model
only addresses production scheduling and does not consider transportation scheduling.
However, in the current study, the integration of production and transportation problems
is investigated. Consequently, some parameters, variables, and constraints related to
transportation time and cost are added to the model. Additionally, multiple objectives
are considered: minimizing the total orders’ delivery time, transportation and production
costs, pollution levels, and maximizing the quality of completed orders.

The parameters of the model are as follows:
Sets:
I: Set of orders
S: Set of manufacturing units
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J: Set of operations
K: Set of machines
Indices:
i: Order index (i = 1, . . . , n)
s: Manufacturing unit index (s = 1, . . . , u)
j: Operations index (j = 1, . . . , noi)
k: Machine index (k = 1, . . . , f s)
l: Sequence index of assigned operations to machine k (1, . . . , dsk)
Parameters:
dsk: Maximum number of operations that can be assigned to machine k of manufactur-

ing unit s
n: Number of orders
u: Number of manufacturing units
f s: Number of machines in manufacturing unit s
noi: Number of operations of order i
Aijsk: A zero-one parameter in which Askij equals 1, if Oik can be processed by the

machine k of manufacturing unit s; otherwise, it equals 0
Pijsk: Processing time of operation Oij on machine k of manufacturing unit s
TTimeis: Transportation time of order i if it is assigned to manufacturing unit s
TCostis: Transportation cost of order i if it is assigned to manufacturing unit s
OCostijsk: Operation cost of Oij if it is assigned to machine k of manufacturing unit s
Qis: Quality of completed orders i if it is assigned to manufacturing unit s
Polis: Produced pollution if order i is assigned to manufacturing unit s
M: A sufficiently large number
Decision variables:
RPij: Real processing time of operation Oij after choosing a machine
RTCosti: Real transportation cost of order i after being assigned to a manufacturing unit
RTTimei: Real transportation time of order i after being assigned to a manufacturing unit
ROCostij: Real operation cost of operation Oij after being assigned to a machine
Deli: Delivery time of order i
Yijsk: Equals 1, if machine k of manufacturing unit s is selected to process Oij; otherwise,

Yijsk = 0
Xijskl: Equals 1, if Oij is processed on machine k of manufacturing unit s with the

priority l; otherwise, Xijskl = 0
MUis: Equals 1, if order i is assigned to manufacturing unit s; otherwise, MUjs = 0
Tij: Start time of processing Oij
TMskl: Start of working time for machine k of manufacturing unit s in priority l
Considering the above notations, the problem can be formulated as the mixed-integer

linear programming (MILP) model presented below.

Min Z1 = ∑n
i Delj (1a)

Min Z2 = ∑n
i RTCosti (1b)

Min Z3 = ∑n
i ∑noi

j ROCostij (1c)
Min Z4 = ∑u

s ∑n
i polis ∗MUis (1d)

Max Z5 = ∑u
s ∑n

i Qis ∗MUis (1e)
Subject to:

∑u
s MUis = 1 ∀i (2)

∑u
s MUis × TTimeis = RTTimei ∀i (3)

∑u
s MUis × TCostis = RTCosti ∀i (4)

∑u
s ∑

f s

k Yijsk = 1 ∀i,j (5)
Yijsk ≤ Askij*MUis ∀i,j,s,k (6)

∑u
s ∑

f s

k Yijsk × OCostijsk = ROCostij ∀i,j (7)

∑u
s ∑

f s

k Yijsk × Pijsk = RPij ∀i,j (8)
∑n

i ∑noi
j Xijskl = 1 ∀s,k,l (9)
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∑u
s ∑

f s

k ∑
ds,k
l Xijskl = 1 ∀i,j (10)

Xijskl ≤ Xijsk(l+1) ∀i,j,s,k,l = 1, . . . , ds,k − 1 (11)

∑
dsk
l Xijskl = Yijsk ∀i,j,s,k (12)

TMskl+RPij ≤ TMsk(l+1) + M(1 − Xijskl) ∀i,j,s,k,l = 1, . . . , ds,k−1 (13)
TMskl≤Tij + (1 − Xijskl) ×M ∀i,j,s,k,l (14a)
TMskl + (1 − Xijskl) ×M ≥ Tij ∀i,j,s,k,l (14b)

Tij + RPij ≤ Ti(j+1) ∀i,j = 1, . . . , noi−1 (15)
Deli ≥ Ti,noi +RPi,noi + RTTimei ∀i (16)

Deli,RTCosti, RTTimei ≥ 0 ∀i (17)
ROCostij, RPij,Tij ≥ 0 ∀i,j

MUis∈{0,1} ∀i,s
TMskl ≥ 0 ∀s,k,l
Yijsk∈{0,1} ∀i,j,s,k
Xijskl∈{0,1} ∀i,j,s,k,l

Equation (1a–e) demonstrate the objective functions of the problem that are mini-
mizing total delivery time of orders, total transportation costs, total operation costs, total
created pollutions, and maximizing the quality of the total orders, respectively. Constraint
set (2) indicates that each order should be assigned to one manufacturing unit. The real
transportation time and cost of each order are determined by constraint sets (3) and (4),
respectively. Constraint set (5) ensures each operation is only assigned to one machine.
Constraint set (6) prevents assigning operations to unacceptable machines. Constraint sets
(7) and (8) determine the real operation cost and real processing time of each operation, re-
spectively. Constraint set (9) prevents assigning an identical priority to different operations.
Constraint set (10) indicates that each operation should be assigned to one machine and
one priority of this machine. Constraint set (11) prevents assigning zero values between the
priorities of a machine. Constraint set (12) guarantees that if an operation is not allocated to
a machine, it cannot be assigned to any priority of that machine. Constraint (13) indicates
that two operations cannot be processed by the same machine, simultaneously. Constraint
sets (14a) and (14b) links between the start time of each operation and the availability of
the machine to start processing it. The start times of Oij and Oi(j+1) are linked by Constraint
set (15). The delivery time of each order to its related customer is calculated by Constraint
set (16). The type and the sign of variables are defined by the Constraint set (17).

4. The Proposed Solution Algorithm

To solve the problem, a combination of TOPKOR (i.e., an MCDM technique) and the
genetic algorithm, called GA-TOPKOR, is proposed. An overview of the GA and TOPKOR
method is provided in Sections 4.1 and 4.2, respectively. Then, the proposed algorithm is
presented in Section 4.3.

4.1. Genetic Algorithm

The genetic algorithm (GA) is a widely used method for solving complex optimization
problems known as NP-hard problems [31]. The GA is inspired by the evolution mecha-
nisms of nature. In this algorithm, every answer is displayed as a chromosome [32]. As the
first step to solve a problem using GA, some chromosomes are generated randomly. Then,
new chromosomes are produced by crossover and mutation operators. Subsequently, some
chromosomes are transferred to the next generation by the selection operator. This process
is reiterated until the algorithm termination criterion is satisfied.

4.2. TOPKOR Method

The TOPKOR method, proposed by Sedady and Beheshtinia [33], is an MCDM method
that rates the alternatives based on a set of criteria. In the TOPKOR method, an alternative
gets a good rank if it has low values in two parameters of total difference with a positive
ideal solution, the maximum difference with the positive ideal solution in each criterion,
and a high value in the parameters of total difference with the negative ideal solution.
The steps of the TOPKOR method, when there are Nc criteria and Nm alternatives, are
as follows.
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Step 1: Present the scores of alternatives in each criterion as decision matrix X and the
vector of criteria weights as input (xac is the score of alternative a in criterion c and wc is the
weight of criterion). A sample decision matrix is presented in Equation (18).

X = [xac]Nm×Nc =

C1 C2 . . . CNc
A1
A2
.
.
.

ANm



x11 x12 . . . x1n
x21 x22 . . . x2n

. . . . . .

. . . . . .

. . . . . .
xm1 xm2 . . . xVm,Nc


, W = [w1, w2, . . . , wNc] (18)

Step 2: Normalize the decision matrix arrays (nac is the normalized score of alternative
a in criterion c) as presented in Equation (19).

nac =
xac

∑Nm
a=1 x2

ac
∀a, c (19)

Step 3: Calculate the weighted normalized matrix (vac is the weighted normalized
score of alternative a in criterion c) using Equation (20).

vac = xacwc ∀a, c (20)

Step 4: For criterion j obtain the Positive Ideal Solution (PIS) and Negative Ideal
Solution (NIS) as presented in Equation (21).

PISc = Max
a

vac and NISc = Min
a

vac i f c ∈ B

PISc = Min
a

vac and NISc = Max
a

vac i f c ∈ C
(21)

In which B represents the set positive criteria such as benefit, and C represents the set
of negative criteria such a cost.

Step 5: Obtain the total distances of each alternative from PIS and NIS using Equation (22).

d−a =

√
Nc
∑

c=1
(vac − NISc)

2 a = 1, . . . , Nm

d+a =

√
Nc
∑

c=1
(vac − PISc)

2 a = 1, . . . , Nm

(22)

where d+a is the total distance of alternative a from PIS (utility index) and d−a is the total
distance of alternative a from NIS (inutility index).

Step 6: Calculate the maximum distance between each alternative and PIS in each
criterion (Regret index) using Equation (23).

Ra =
Nc

max
c

d(vac, PISc) , a = 1, 2, . . . , Nm

d(vac, PISc) =|PISc − vac| (23)

Step 7: Obtain VIKOR index (Qa) using Equation (24).

Qa = v×
[

d+a − DMIN+
a

DMAX+
a − DMIN+

a

]
+ (1− v)×

[
Ra − RMIN

RMAX− RMIN

]
(24)

where DMIN+
a = minad+a , DMAX+

a = maxad+a , RMIN = minaRa, RMAX = maxaRa
and v is a parameter of the TOPKOR method whose value is between 0 and 1. It indicates
the relative weight of the normalized utility index against the normalized regret index. In
this research, to obtain identical weights to both indices, v is considered as 0.5.

Step 8: Calculate the closeness coefficient index for the alternative Aa, indicated by
CCa, using Equation (25). The alternative with a higher value for CCa is more desirable.
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CCa =
d−a

d−a + Qa
, a = 1, 2, . . . , Nm (25)

4.3. GA-TOPKOR Algorithm

The structure of GA-TOPKOR is the same as that of a conventional genetic algorithm
but with a significant difference in the selection operator when transferring solutions
from one generation to another. To transfer the chromosomes to the next generation
in the selection operator of GA, the chromosomes should be compared with each other.
Considering a problem with two objective functions, in each comparison, one chromosome
may obtain a better value in an objective function and a worse value in the other one. In
this case, choosing the better chromosome may be challenging, and it is more complicated
when the number of objective functions increases.

The GA-TOPKOR uses the TOPKOR method to select the superior chromosomes
and transfer them from one generation to the next. In this regard, chromosomes and
objective functions are considered as alternatives and criteria, respectively. The main septs
of GA-TOPKOR are presented below and also depicted in Figure 4 for better clarification.

Step 0: Determine the weights of the objective functions and set parameters of GA-
TOPKOR.

Step 1: Produce random chromosomes as the initial population, called Pop_size.
Pop_size indicates population size and it is one of the GA-TOPKOR parameters.

Step 2: Select two random chromosomes and perform a crossover operator. Repeat this
step [Pop_size × Cross_rate] times and add the new chromosomes to the current population.
Cross_rate indicates crossover rate and it is one of the GA-TOPKOR parameters.

Step 3: Select a random chromosome and perform the mutation operator. Repeat this
step [Pop_size ×Mut_rate] times and add the new chromosomes to the current population.
Mut_rate indicates mutation rate and it is one of the GA-TOPKOR parameters.

Step 4: Consider chromosomes as alternatives and objective functions as criteria
and perform the TOPKOR method to rank the chromosomes. In this case, the closeness
coefficient index related to each chromosome is considered as its fitness function.

Step 5: If the best fitness value of chromosomes is not changed after a certain number
of successive generations, represented as Ter_Num in the proposed algorithm, terminate
the algorithm. It should be noted that Ter_Num is a parameter of the algorithm and should
be determined in the parameter setting of the algorithm.

Step 6: Transfer Pop_size chromosome with better rank to the next generation and go
to Step 2.

To better clarify the solution procedure, the pseudocode of the GA-TOPKOR is pre-
sented in Figure 5. In this pseudocode, Iter is a counter that shows the number of successive
generations that the best fitness value of chromosomes has not been changed.
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4.3.1. Solution Representation

Each solution should be represented in the form of chromosomes. Therefore, chromo-
somes should include some information such as the manufacturing unit assigned to each
order, the machine assigned to each operation, and the sequence of orders assigned to the
same machine. Three strings were used to encode each solution to one chromosome. These
strings are as long as the total number of orders’ operations. Each array (gene) of the string
corresponds to one operation. The first string shows the assigned manufacturing unit to
process the related operation (order). Since all the operations related to one order should
be assigned to one manufacturing unit to create random numbers for the first string, just
the first operation of each order is given the random number and this number is replicated
for other operations of that order. The numbers within the second string show the machine
number in the manufacturing unit related to that operation. The string numbers are ran-
domly selected considering the unit assigned to the mentioned order in the first string and
among the allowed machines. The third array numbers include a real number between 0 to
1 and are used for prioritizing the operations assigned to each machine.

Accordingly, if in the second string, two operations are assigned to the same manufac-
turing unit and machine, the order with a lower decimal number will be given a higher
priority. To better illustrate the proposed solution representation, a feasible chromosome
for the example presented in Figure 3, is shown in Figure 6.
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After allocating the orders to manufacturing units, operations to machines, and deter-
mining operations sequences for each machine, the solutions can be scheduled to calculate
each objective function. Figure 7 displays the Gantt chart of the solution correspond-
ing to the presented chromosome. Table 2 shows all the objective functions related to
this solution.
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Table 2. Details of objective functions.

Quality of
Orders Pollution Transportation

Cost
Production

Cost
Delivery

Time Order

5 3 5 17 10 O1
5 4 4 15 10 O2
4 3 4 25 12 O3
4 4 4 7 9 O4
4 3 9 16 9 O5

22 17 26 80 50 Total

4.3.2. Crossover and Mutation Operators

In this study, two crossover operators, namely double-cut point and single-cut point
operators, were used. Furthermore, the swap operator was used for the mutation operation.
To find more about the crossover and mutation operators mechanism, interested readers
may refer to [34]. Suppose operations related to a certain order are assigned to different
manufacturing units as a result of a crossover operator in a child chromosome. In that case,
a modification procedure will be initiated in which all the operations will be assigned to
the manufacturing unit related to the order’s first operation. If the operations assigned to a
machine are not feasible in the second string, the machine number will randomly change
to a feasible machine using a modification procedure.
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5. Numerical Experiments

In this section, GA-TOPKOR is compared with a classical genetic algorithm named
CGA. The structure of the CGA is the same as GA-TOPKOR, but no MCDM method is used
for selecting and transferring the solutions. To test the performance of the GA-TOPKOR,
a set of generated problems and a real case taken from a sofa manufacturer are solved.
The proposed GA-TOPKOR is also compared with the optimal solutions obtained by a
commercial solver for small-size problems. The algorithm is coded in MATLAB and run
on a computer with a 1.90 GHz CPU and 4 GB RAM.

To determine the best value of the algorithm’s parameters Taguchi method is em-
ployed. More details about the Taguchi method can be found in [35]. The main parameters
of the GA-TOPKOR are Pop_Size, Cross_rate, Mut_rate, and Ter _Num. Table 3 shows the
considered levels for each parameter to perform the Taguchi method. Figure 8 indicates
that based on the signal-to-noise (SN) ratio, the value of 100 for Pop_Size, 0.7 for Cross_rate,
0.3 for Mut_rate = 0.3, and 10 for Ter_Num result to better performance.

Table 3. Levels considered for the algorithm’s parameters.

Level 1 Level 2 Level 3

Pop_Size 50 75 100
Cross_rate 0.5 0.7 0.9
Mut_rate 0.1 0.3 0.5
Ter_Num 5 8 10
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5.1. Case Study

In order to evaluate the performance of GA-TOPKOR, it was examined by a real
data set collected from a sofa manufacturer. The result of the GA-TOPKOR was then
compared with that obtained from the current situation. The manufacturer’s production
and distribution system information were collected for one month (from 8 October 2018 to
9 November 2018).

The furniture company has three manufacturing units in different regions. There
are 19 related orders which should be assigned to these three manufacturing units. Each
order belongs to a specific customer. Each of these orders needs some operations to be
completed, such as cutting, forming, assembling the wooden skeleton, polishing, painting,
putting upholstery, assembling mattresses, and packaging. The orders are of six types of
furniture, namely wooden, modern, corner, chair, L-shape, and three-seater with different
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designs and different production routes. Additionally, the weight of each objective function
was determined based on the opinion of experts and the analytic hierarchy process (AHP)
technique. The weights obtained for the objective functions of the sum of delivery times,
transportation costs, production costs, pollution level, and quality of completed orders
were 0.44, 0.27, 0.02, 0.09, and 0.18, respectively.

Comparing the results obtained from GA-TOPKOR with those from the current
situation suggests a 42% improvement in delivery times, 38% in total transportation cost,
25% in production costs, 3% in quality of completed orders, and the level of pollution
remained unchanged (Table 4).

Table 4. Comparison of GA-TOPKOR and baseline situation.

Objective Function Delivery
Time

Production
Cost

Transportation
Cost Pollution Quality

GA-VIKOR 266 22,810 6840 38 61
Baseline 378 28,510 9440 38 63

Relative improvement 0.42 0.25 0.38 0 0.03

5.2. Comparison of GA-TOPKOR and CGA

In this section, GA-TOPKOR is compared to CGA. The structure of CGA is the same
as that of GA-TOPKOR, with the only difference being that TOPKOR is not used in the
selection operator. To find which chromosome is better in CGA, Equation (26) is used as
the fitness function of the jth chromosome in each generation.

Fitness valuej = ∑4
i=1 Wi

objmax
i − objj

i
objmax

i − objmin
i

+ W5
objj

5 − objmin
5

objmax
5 − objmin

5
(26)

where Wi, objj
i , objmax

i and objmin
i represent the weight of the ith objective function, the

value of the ith objective function in chromosome j, the maximum value of the ith objective
function, and the minimum value of the ith objective function for the chromosomes of the
current generation, respectively. The first and second terms of fitness value presented in
Equation (26) are related to minimizing the four first objective functions and maximizing
the fifth objective function (the quality of completed orders), respectively.

After obtaining the final solution of both algorithms, the index presented in Equation (27)
is used to compare the quality of the solutions.

Normalized total objective function = ∑5
i=1 Wi

∣∣∣objj
i − objideal

i

∣∣∣
objideal

i
(27)

objideal
i indicates the ideal value for the ith objective function. The ideal value for each

objective function was obtained by applying the genetic algorithm and placing 1 for the
weight of that objective function and 0 for the weight of others and using a relatively large
population size (10,000 in this study). The solution with a lower value for normalized total
objective function has better quality.

To evaluate the performance of the GA-TOPKOR, a set of test problems have been
generated and solved by both the GA-TOPKOR and CGA. Four parameters were consid-
ered to generate the test problems, including the number of orders, operations for each
order, manufacturing units, and manufacturing machines. As shown in Table 5, different
levels were determined for each parameter. In Table 2, U [a,b] means that one integer value
in the range of a to b is randomly selected for the parameter.
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Table 5. Values considered for the test problems.

Level Down Level Average Level Up

Number of orders 5 10 20
Number of operations U[1,5] - U[6,10]

Number of MUs 2 - 4
Number of machines U[1,5] - U[6,10]

Using the information given in Table 5, 24 (3 × 2 × 2 × 2) random problems were
generated as presented in Table 6. For other parameters of the problem, only one level
was considered. The orders’ process times and the costs and times of transportation
were randomly selected from a uniform distribution of U[20,40] Parameters of quality
of completed orders and pollution are selected randomly from a uniform distribution of
U[1,5] with regard to the Likert spectrum. In addition, the weights of objective functions
are considered equal to the same weights obtained from the case study.

Table 6. Test problems.

Problem Number of Orders
Number of

Operations of
Each Order

Number of MUs
Number of

Machines in
Each MU

1 5 U[1,5] 2 U[1,5]
2 10 U[1,5] 2 U[1,5]
3 20 U[1,5] 2 U[1,5]
4 5 U[1,5] 4 U[1,5]
5 10 U[1,5] 4 U[1,5]
6 20 U[1,5] 4 U[1,5]
7 5 U[6,10] 2 U[1,5]
8 10 U[6,10] 2 U[1,5]
9 20 U[6,10] 2 U[1,5]
10 5 U[6,10] 4 U[1,5]
11 10 U[6,10] 4 U[1,5]
12 20 U[6,10] 4 U[1,5]
13 5 U[1,5] 2 U[6,10]
14 10 U[1,5] 2 U[6,10]
15 20 U[1,5] 2 U[6,10]
16 5 U[1,5] 4 U[6,10]
17 10 U[1,5] 4 U[6,10]
18 20 U[1,5] 4 U[6,10]
19 5 U[6,10] 2 U[6,10]
20 10 U[6,10] 2 U[6,10]
21 20 U[6,10] 2 U[6,10]
22 5 U[6,10] 4 U[6,10]
23 10 U[6,10] 4 U[6,10]
24 20 U[6,10] 4 U[6,10]

Considering the random nature of GA, the results may be different in each perfor-
mance. Therefore, each test problem was solved 30 times by GA-TOPKOR and CGA, and
the following hypothesis was tested. Since the number of samples for each test problem is
30 (for each test problem, the sample size is 60 = 30 samples from GA + 30 samples from
GA-TOPKOR), the T-student distribution with degree of freedom 58 (i.e., 30 + 30 − 2) is
used for statistical hypothesis testing.

Hypothesis 0 (H0). The average of normalized total objective function from GA-TOPKOR is
equal to this average for CGA.

Hypothesis 1 (H1). The average of normalized total objective function from GA-TOPKOR is
smaller than this average for CGA.
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The results of the comparison between GA-TOPKOR and CGA are presented in
Table 7. The results given in Table 4 show that P-value is less than 0.05 for all the problems
solved except for one case. Thus, H0 is rejected, and H1 is accepted. This means that
GA-TOPKOR outperforms CGA.

Table 7. The results of the comparison between GA-TOPKOR and CGA.

Problem
GA_TOPKOR CGA

p-Value
Average CPU Time Average CPU Time

1 0.2122 7.68 0.2929 5.3 0.03
2 0.2262 8.64 0.3347 8.24 0.00
3 0.3082 24.88 0.3992 24.24 0.04
4 0.3705 6.4 0.534 5.56 0.00
5 0.3407 12.68 0.3996 12.02 0.01
6 0.2619 48.32 0.3442 45.62 0.00
7 0.2751 22.5 0.3021 20.46 0.03
8 0.2516 35.14 0.2929 34.68 0.01
9 0.1773 128.82 0.2593 120.38 0.00

10 0.4839 20.42 0.5311 20.36 0.00
11 0.3491 45.84 0.3946 43.18 0.00
12 0.2454 144.86 0.2713 145.7 0.08
13 0.2238 7.68 0.2547 7.5 0.00
14 0.2377 14.2 0.3039 11.8 0.00
15 0.2018 20.52 0.2871 21.14 0.00
16 0.2469 12.02 0.2996 11.6 0.00
17 0.2036 18.34 0.2922 15.78 0.00
18 0.2814 36.32 0.3629 33.78 0.00
19 0.1523 22.72 0.1806 20.92 0.00
20 0.1442 38.28 0.2132 38.56 0.00
21 0.1487 105.36 0.2691 104.96 0.00
22 0.3062 32.14 0.3846 30.8 0.00
23 0.3364 76.28 0.4898 73.18 0.00
24 0.1959 156.66 0.2358 149.5 0.00

The comparison results also revealed that using TOPKOR in the genetic
algorithm’s selection operator improves the algorithm’s results in this multi-objective
optimization problem.

5.3. Comparison with the Optimum Solution

To evaluate the performance of GA-TOPKOR further, the results obtained from this
algorithm for the small-size problems were compared with the optimal solution obtained
from the mathematical model. The values considered for the parameters of the small-size
test problems are shown in Table 8. Moreover, the obtained results by solving these test
problems by GA-TOPKOR and the optimum solution are presented in Table 8.

The optimal solutions were obtained using GAMS software. The comparison results
indicated that GA-TOPKOR found the optimal solution for most solved instances in much
less CPU time than the GAMS software. It is also worth noting that the difference was
insignificant for cases in which GA-TOPKOR could not find the optimal solution.
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Table 8. Comparison of GA-TOPKOR and optimal solution for small size problems.

GA_TOPKOR Optimum Solution

Problem n noi * u fs ** Result CPU Time Result CPU
Time

1 1 2 2 2*2 0.397667 2.07 0.397667 248.85
2 2 1*2 2 2*2 0.393857 1.93 0.393857 333.83
3 2 2*1 2 2*2 0.393857 1.93 0.393857 384.36
4 2 2*2 2 2*2 0.391199 3.21 0.391199 1042.62
5 1 3 2 3*3 0.389064 4.74 0.389064 2266.36
6 2 1*3 2 3*3 0.385918 3.33 0.385918 2385.13
7 2 3*1 2 3*3 0.385918 3.33 0.385621 2266.67
8 2 2*3 2 3*3 0.384257 4.61 0.384257 4730.56
9 2 3*2 2 3*3 0.384257 4.61 0.384021 4837.02
10 2 3*3 2 3*3 0.382596 5.88 0.382596 9131.62

* The first (second) number indicates the number of operations in the first (second) order. ** The first (second)
number indicates the number of machines in the first (second) manufacturing unit.

5.4. Discussion

This section provides a discussion on the algorithm features and the implications of
the conducted study.

5.4.1. Algorithm Features

CGA and GA-TOPKOR have similar structures, but their selection operators are differ-
ent. CGA gives a higher chance of being selected to chromosomes with a low normalized
distance from a PIS in each generation. However, GA-TOPKOR considers three parameters
of the total distance from PIS (d+a ), maximum distance from PIS in each criterion (Ra) and
total relative distance from NIS (d−a ). GA-TOPKOR gives a higher chance of being selected
to chromosomes with low values for (d+a ), and Ra, and high value for d−a . In other words, a
chromosome may not have a short total distance to the PIS, but it has a low value for regret
index or a long distance to the negative ideal solution.

For example, consider a problem with four minimization objective functions in which
the weights of all objective functions are equal to 0.25. Indeed, the fitness function of CGA
calculates the distance of each chromosome from NIS. If there are five chromosomes, as
shown in Figure 9, then the fitness values of the chromosomes are the same in CGA. In
this particular case, a random selection operator has the same performance as the selection
operator of CGA. While in GA_TOPKOR, the chromosomes have different fitness values.
The reason is that GA-TOPKOR considers three parameters of the maximum distance
of each chromosome from PIS in each criterion, its total distance from PIS, and its total
distance from NIS, while CGA considers only the distance of each chromosome from NIS.
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5.4.2. Implications of the Study

This research may serve researchers active in the supply chain optimization field by
proving knowledge on the importance of selection mechanisms when using population-
based algorithms. This also provides insight into the usefulness of employing MCDM
methods in intelligent algorithms when dealing with multiple objectives. In practice,
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managers often deal with multiple conflictive objectives when optimizing their supply
chain network. This means that optimizing one objective may negatively affect other
objectives. For instance, minimizing the delivery time can affect other criteria such as
cost or quality. In this case, choosing the best solution might be challenging, and MCDM
methods could assist the decision-makers. This study showed how MCDM methods could
be combined with an optimization algorithm to improve the solution quality.

Considering the promising performance of the proposed algorithm in dealing with
SCSP, it can aid decision-makers and supply chain managers to optimally design their sup-
ply chain networks while satisfying both economic and environmental concerns. Consider-
ing the possible opportunities for energy sustainability discussed in the recent literature
(e.g., [36]), this study may also allow managers to get one step closer to the resource and
energy-efficient supply chain concept.

This study also contributes to sustainable supply chains by considering two essen-
tial sustainability aspects (i.e., environmental and economic) as the main optimization
objectives. The economic concerns are addressed by optimizing the total delivery time of
order, transportation cost, and production cost. The environmental concerns are handled
through optimizing the environmental pollution, and the quality of products contributes
to the environmental aspect. The results of the computational student and the considered
real case showed the effectiveness of the proposed algorithm in efficiently improving the
economic and environmental aspects.

6. Conclusions and Future Research Directions

This study investigates the scheduling problem in a supply chain network consisting
of a manufacturer with multiple sites scattered in different regions and its customers. Each
production unit is assumed to have a Flexible Job-Shop environment. A new algorithm
named GA-TOPKOR that uses TOPKOR as an MCDM technique in the selection operator
of the genetic algorithm (GA) was proposed to solve the problem.

The performance of the GA-TOPKOR was compared with the conventional GA for
large-scale problems and with the optimum solution for small-size problems. The results
showed that including TOPKOR as an MCDM technique in the GA’s selection operator
enhances the performance of the GA. The proposed algorithm was also applied to a real-
life case study and significantly improved the process compared to the current situation.
Overall, all the comparisons collectively showed that the proposed GA-TOPKOR is efficient
in finding a good solution to the supply chain scheduling problem.

Despite the effort made to make the problem compatible with the real-world need,
some important parameters such as time windows or ready time for orders are ignored in
this study. Moreover, only the integration of supplier and manufacturer is considered in
this study, while including the distributors could make the study more solid and applicable
for more complex supply chains. Additionally, this study only benefits from one real case
that limits the performance evaluation of the proposed algorithm.

Since the Flexible Job-Shop environment considered in this study is a generalized
environment for several types of production (e.g., job-shop, flexible flow-shop, flow-shop,
parallel-machines, and single-machine), the proposed algorithm can also be employed to
address other environments to assign orders and operations to the manufacturing resources.
Moreover, other studies can be conducted by applying the proposed GA-TOPKOR to solve
other optimization problems. Combining other MCDM techniques with GA or different
metaheuristic algorithms and analyzing their effect on the algorithm’s performance can
also be interesting for future research. The problem can also be extended in future studies
by considering some assumptions such as time windows or ready times.
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