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Abstract: Recently, bitcoin-based blockchain technologies have received significant interest among
investors. They have concentrated on the prediction of return and risk rates of the financial product.
So, an automated tool to predict the return rate of bitcoin is needed for financial products. The recently
designed machine learning and deep learning models pave the way for the return rate prediction
process. In this aspect, this study develops an intelligent return rate predictive approach using
deep learning for blockchain financial products (RRP-DLBFP). The proposed RRP-DLBFP technique
involves designing a long short-term memory (LSTM) model for the predictive analysis of return
rate. In addition, Adam optimizer is applied to optimally adjust the LSTM model’s hyperparameters,
consequently increasing the predictive performance. The learning rate of the LSTM model is adjusted
using the oppositional glowworm swarm optimization (OGSO) algorithm. The design of the OGSO
algorithm to optimize the LSTM hyperparameters for bitcoin return rate prediction shows the novelty
of the work. To ensure the supreme performance of the RRP-DLBFP technique, the Ethereum (ETH)
return rate is chosen as the target, and the simulation results are investigated in different measures.
The simulation outcomes highlighted the supremacy of the RRP-DLBFP technique over the current
state of art techniques in terms of diverse evaluation parameters. For the MSE, the proposed RRP-
DLBFP has 0.0435 and 0.0655 compared to an average of 0.6139 and 0.723 for compared methods in
training and testing, respectively.

Keywords: blockchain; financial products; predictive model; deep learning; Adam optimizer;
LSTM model

1. Introduction

Recently, economic globalization has rapidly developed, and together, different as-
pects restraining industrial development have been overcome with the fastest-developing
resources. Rapid growth in economic markets has been observed [1,2]. The media of
economic development determine economic marketplaces. It controls the allocation of
the entire public and economic scheme while becoming an important part of economic
development [3,4] The global expansion of the internet has led to the growth of many
internet-based financial products such as Baidu Economic Management, Yu’EBao, etc.;
and this growth has an important impact on society. Recently, a new internet economics
scheme developed by world influences such as peer-to-peer (P2P), crowdfunding, digital
currency, and Blockchain may play a major part in developing the worldwide financial
marketplace [5]. Blockchain models are determined as a systematic advance where the
interference has greater impacts by transmitting the function of businesses from centralized
to decentralized forms. It also always changes the untrustworthy agent without needing
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entity-based modules. Instead [6], it alters the methods in which all transactions are identi-
fied and activates huge potential in various sectors such as Decentralized Autonomous
organizations (DAC) and Multi-Party Computation (MPC) in the government sector. It
consist of 3 evolutionary stages namely Blockchain (1.0, 2.0, & 3.0). In the beginning,
Blockchain 1.0 was determined to be the commercial application using digital payment,
money transfer, and remittance that acquired hugely-dispersed applications of deriva-
tives and Bitcoin. Later, Blockchain 2.0 is used by the contract, entire financial challenges,
markets, and financial fields that are extensively employed, not just for minor cash transac-
tions. Lastly, Blockchain 3.0 represents application through the marketplace and money,
particularly in the areas of health, science, government, etc. [7,8].

Blockchain technology uses decentralized storage to store massive amounts of data
linked to the current blocks for the initial blocks using intelligent contracts. InterPlanetary
File System (IPFS), BigchainDB, LitecoinDB, MoneroDB, Swarm, SiacoinDB, are used
through decentralized databases in everyday instances [9–11].The IPFS is a distributed, peer
to peer and decentralized database that is transmitted and linked standard file. IPFS is a
huge storage network that is exploited via blockchain method for IoTs software for maximal
efficacy. Now, some research is associated with the proposed method that was studied.
Using a method developed by the researcher, the writers in [12] used a fixed proportion
for different character traits. They utilize the support vector machine (SVM) method
for identifying and classifying tasks. Eventually, the experiment result shows that the
presented approach has attained greater performance. While in [13], the authors discovered
the Taiwanese stock marketplaces and applied SVM dependent genetic algorithm (GA)
method. The previous study used the POS system to solve the optimum privacy portfolio
method achieved by higher performances. Authors in [14] employed a group of ML
approaches to process the prediction assessment on the nikkei 225 indexes. Hence, the
result shows that SVM gained optimum results amongst these four modules.

The yield rate of bitcoin is the subject of [15], which collects data from 2 June 2016, to
30 December 2018, totaling 943 pieces. PSO least-squares vector approaches (PSOLSSVR)
are adapted to perform empirical analyses and model simulations on the collected infor-
mation and conclude that the PSO neural network (BPNN), SVM machine learning (ML),
and particle swarm optimization (PSO) least-square vector approaches have an optimal
appropriate effect. The generative adversarial network (GAN)-MLP model is used in [16] to
develop a new return rate forecasting approach for Blockchain financial goods. Blockchain
financial goods’ intelligent return rates can be predicted using the suggested system. Us-
ing the proposed method, stock price closings can be predicted with high accuracy by
providing historical stock price information.

In [17], price predictions are implemented by the two ML approaches such as Logis-
tic Regression (LR) and SVM, consisting of everyday ether cryptocurrency closing price
through a time sequence. Various window distances are employed in ether cryptocurrency
price predictions through the filter using different weights coefficients. In the training stage,
a cross-validated technique is employed to construct a better accuracy method autonomous
of the dataset based on daily collected data. The optimal least-square support vector
machine (OLSSVM) algorithm was used by Sivaram et al. [18] to develop an effective
return rate prediction strategy for Blockchain financial products. The LSSVM constraint
optimization was carried out by combining differential evolution (DE) with grey wolf opti-
mization (GWO), resulting in the OGWO strategy, the best one. Hybridization techniques
are used to eliminate GWO’s worst local problems while also increasing the diversity of
the population.

The authors in [19] show that Bitcoin prices demonstrate long-term memory, though
its trend gets reduced over time. It is observed that Bitcoin can be defined effectively using
a random walk, displaying the sign of market maturity emerging; contrastingly, other
cryptocurrencies such as Ethereum and Ripple offer evidence of increasing underlying
memory behavior. The authors in [20] employed a battery of statistical tests to determine
the price leadership among the two cryptocurrencies, namely Bitcoin and Ethereum.
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This study designs an intelligent return rate predictive approach using deep learning
for blockchain financial products (RRP-DLBFP). The proposed RRP-DLBFP technique
involves developing a long short-term memory (LSTM) model for the predictive analysis
of return rate. Adam optimizer is also used to fine-tune the hyperparameters of the LSTM
model so that it can make better predictions with more accuracy. In addition, the learning
rate of the LSTM model is adjusted using the oppositional glowworm swarm optimization
(OGSO) algorithm. To ensure the supreme performance of the RRP-DLBFP technique,
the Ethereum (ETH) returns are chosen as the goal, and various simulation results are
examined. In short, the paper contribution is listed here.

• Design a new return rate predictive model using RRP-DLBFP for blockchain finan-
cial product

• Develop an LSTM model for the predictive analysis of return rate
• Propose an Adam optimizer to adjust the hyperparameters of the LSTM model optimally
• Design an OGSO algorithm for the optimal adjustment of learning rate in the

LSTM model
• Validate the performance of the RRP-DLBFP technique under several aspects

The remainder of this paper is divided into five sections. Section 2 discusses the
related studies to the literature on return rate prediction models. Section 3 introduces and
summarizes the blockchain method, deep learning models, and Adam algorithm. Section 4
details the proposed RRP-DLBFP. Section 5 discusses the experiment’s results. Section 6
summarizes and concludes the paper.

2. Related Work

Using machine learning algorithms to predict Bitcoin’s price is a relatively new area of
research. It was possible to make an 89 percent profit in three months by employing the [21]
developed latent source model to predict Bitcoin’s price. Text data gleaned from social
media and other sources have also been used to predict Bitcoin’s price. Three studies looked
into sentiment analysis by combining support vector machines (SVMs) with Wikipedia
view frequency and hash rate (HashN). Authors in [22] looked into the connection between
Bitcoin’s price and the number of tweets and Google Trends searches for the term “Bitcoin”.
As in [23], the authors anticipated transaction volume rather than Google Trends views
for Bitcoin price in their analysis. The limitation of this study is the small sample size
and the propensity for misinformation to spread over many discussion boards, media
channels such as Twitter or, which artificially inflate and deflate prices. In [24], liquidity
is extremely scarce on Bitcoin exchanges. As a result, market manipulation is more likely.
As a result, opinions expressed on social media will be ignored. For the analysis of the
Bitcoin Blockchain, researchers in [25] employed support vector machines (SVMs) and
artificial neural networks. They found that traditional ANNs were 55 percent accurate in
forecasting the Bitcoin price. They concluded that Blockchain data on its own has limited
predictability. Prediction accuracy of above 97% was noted by [26], who used Blockchain
data with Random Forests, SVM, and Binomial Generalised Linear Model to make their
predictions. However, they did not cross-validate their models, which limited the findings’
generalization. It has been shown that network hash rate, search engine views, and mining
difficulty positively correlate with Bitcoin price using wavelets [27,28]. CoinDesk’s research
is based on these findings and incorporates data from the Blockchain such as hash rate and
difficulty into its study. Similar financial-based prediction jobs such as stock prediction can
be compared to Bitcoin price prediction. Several research groups have used the Multilayer
Perceptron (MLP) for stock price prediction [29]. The MLP can study a single observation,
but only in one step at a time [30]. A recurrent neural network (RNN) uses a context layer
to store the output from each layer before looping back to it. In contrast to the MLP, the
network now has some memory. The network’s length is referred to as the “temporal
window length” (TWL). This study finds that internal states play a considerable role in
the series’ temporal relationship, explicitly represented by [31]. Authors in [32] utilized
a genetic algorithm and an RNN for network optimization; they successfully predicted
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stock returns. However, there are other types of RNNs, such as (LSTM) the Long Short
Term Memory network. While Elman RNN can remember and retrieve data regardless
of the significance or weight of a feature, these models may also selectively remember
and forget data. In [33], for a time series prediction challenge, authors used an LSTM
and discovered that it worked just as well as an RNN. This kind of model is likewise
utilized in this instance. The large amount of computation required while training the RNN
and the LSTM is a drawback. In other words, training 50 individual MLP models with
a 50-day network is comparable. Since NVIDIA released its CUDA framework in 2006,
many applications have benefited from the GPU’s extraordinary parallelism, including
machine learning. Authors in [34] stated that using a GPU instead of a CPU accelerated
the testing and training of their ANN model three times. Similarly, in [35], authors found
that putting an SVM on a GPU was eighty times faster than using a CPU-based SVM
method for classification. In addition, the CPU implementation took nine times as long
to train. Training a deep neural network for image identification on a GPU instead of a
CPU resulted in forty times quicker training speeds for [36]. LSTM and RNN models use
both the CPU and GPU because of the obvious advantages of doing so. In the automotive
components supply chain, rough set theory (RST) and ABC analysis were proposed to
combine to verify inventory for demand forecasts and ordering decisions. In the initial
stage, the customer places a specific order with the reseller for specific spare parts. After
that, a classification is created using the ABC analysis of the demand projection for each
time. Next, the average weighted approach based on the mileage of the cars registered in
the workshops uses each period’s starting and ending mileage. This was accomplished by
performing an ABC analysis and then creating an RST model to forecast which ABC group
each element will belong to in the future. A method for controlling spare parts inventory
based on machine learning for demand forecasting has been proposed [37]. Pre-processing,
weight determination, and extraction are all parts of the strategy. It is necessary to train
historical forecasting examples for each subset corresponding to the effect mechanism
models before extracting the data using ELM and SVM learning methods. By equalizing
the accuracy of the two models, the prediction model is firm-minded. However, the upkeep
of weather-related spare parts is complicated. As mentioned in [38], a new hybrid model,
abbreviated as WT-Adam-LSTM, uses Adam and wavelet transforms to improve LSTM
neural network’s price predicting accuracy. When nonlinear electricity price sequences
are decomposed using a wavelet transform, the variance of the processed data will be
more stable. This will allow algorithms such as Adam, which is one of the most efficient
stochastic gradient-based optimizers, and LSTM to capture the behaviour of electricity
prices better.

3. Methodology
3.1. Blockchain

The term “blockchain” [39] refers to a data structure that sequentially records transac-
tions and facilitates them as a distributed record set. Then, it is divided into two sections:
header and transaction, and it stores information about transaction specifics. In these
data, you’ll find both the source and destination addresses included as well. Using a
cryptographic digest, each block generates its unique ID. The header stores the hash of
the opposing block and thereby links the blocks together. It is primarily for marketing
purposes that the structure is dubbed “Blockchain.” When this link is viewed differently,
it is denoted as a partial hash collision, which requires significant computing power to
determine the hash function. Since all block references are predecessors, a change in a
single bit could change the corresponding hash. It should be recalculated in the decreased
order at the end. The presence of a lengthy chain, when it grows as a block, is unchangeable
and ensures the security of preserved transactions, as is well-established.

The immutability, auditability, and nonrepudiation of transactions are all guaranteed
to be possible using blockchain technology. As a huge distributed ledger, this technology
ensures digital transactions are secure and private. It denotes the route to gaining consensus
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among disparate groups of individuals. Security of transaction data is generally the
responsibility of both banks and notaries, referred to as ‘trusted third parties’. As a result
of this model’s registries being viewed as public and furnished in a decentralized manner
via vast system applicants, such entities are eliminated.

As shown in Figure 1 [39], the bitcoin network keeps tabs on the major operations of
all the nodes in use at every level. As previously said, it is an overlay network built on top
of another one. It also creates new levels of network abstraction with innovative security
benefits that are then deployed.
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3.2. LSTM

RNN neural networks are effective models, and they differ from standard feed-
forward networks since their neuron connections are not limited to only one direction. In
other words, neurons in an RNN network can send information to a previous or the same
layer. Nodes between layers are disconnected in a typical neural network model since
the layers are all connected. This general neural network can’t solve numerous complex
problems. Predicting the next word in a sentence requires using the preceding word since
sentences do not contain independent words [40]. The RNN is a cyclic neural network,
which means that the current output is also linked to the preceding result. Because the net-
work remembers earlier information, it can use that knowledge in calculating the current
production, which will be connected to all of the nodes in the network. Thus, the hidden
layer’s input includes both the input layer’s output and the hidden layer’s output from an
earlier time.

As shown in Figure 2, this neural network chunk A receives the input values and
calculates the previous output at each step. It then outputs the result. It is like having many
copies of the same neural network in your brain. RNN can theoretically process any length
of sequence data. Memory blocks instead of neurons are used in LSTM networks, with each
memory block comprising gates that regulate the output and status of the block. It also
has a memory for the most recent sequence, as well as a smarter-than-classical-neuron-like
component. A sigmoid activation unit controls each gate in the block, which works with
the input sequence.
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3.3. Adam Optimizer

Adam [42] is a stochastic objective function first-order gradient-based optimization
technique based on adaptive estimations of lower-order moments. The method is easy
to implement, has excellent computational efficiency, requires little memory, and rescales
the gradient’s diagonal. It is also a good fit for problems with a lot of information or
parameters. Using Algorithm 1, we can see Adam’s pseudocode [11].

After finding the parameters, β1, α, β2, and the random objective function f (θ), we
must initialize the first-moment vector, the parameter vector, the time step, and the second-
moment vector as given in the procedure. In order to reach convergence of the parame-
ter, the loop iteratively updates the various components of the model until convergence
is reached.
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Algorithm 1. The proposed method for optimizing the LSTM model’s parameters. The
elementwise square gt2 is represented by gt � gt. Default machine learning settings that are
effective so far include β1 = 0.9, α = 0.001, ε = 10−8. and β2 = 0.999 and when working with
vectors, you must always do things element by element. With βt

2 and βt
1 we denote β2 and β1 to

the power t.

Inout: α : sizeOfstep, f(θ): Stochastic objective function uses parameters θ β2, β1 ∈ [0, 1):
Estimates with exponential decay rate for the instant, θ0 = Initial vector

m0 = 0 (initial value of first moment vector)
t0 = 0 (initial value of second moment vector)
t = 0 (initial timestep)

Output Üê, (Return parameters θt)

1. Start
2. loop θt not converged do
3. t = t + 1
4. gt = ∇θft(θt−1) (Gradients at time t of stochastic objective)
5. mt = β1 ·mt−1 + (1− β1) · gt (First moment estimate updated)
6. vt = β2 · vt−1 + (1− β2) · g2

t (Second raw moment estimate updated)
7. m̂t = mt/

(
1− βc

1
)

(New first moment estimate updated)
8. v̂t = vt/(1− β2) (New second raw moment estimate updated)
9. θt = θt−1 − α · m̂t/(

√
vt + ε) (Parameters updated)

10. End loop
11. Return θt (Resulting parameters)
12. Stop

4. The Proposed RRP-DLBFP Model Design

In this study, an RRP-DLBFP technique is designed to predict the return rate of
financial blockchain products. The LSTM learns the dependency that ranges amongst
arbitrary longer time intervals. An LSTM resolves the reducing gradient issue by replacing
a typical neuron with a challenging LSTM unit framework. The LSTM unit develops
in the application of related nodes. Necessary units of the LSTM framework [10] are
determined under:

Constant error carousel (CEC): A significant element with recurrent link of unit weight.
The recurrent link depicts a feedback loop at the time step as 1. The CEC’s activation is an
internal state which helps memory of prior information.

Input Gate (IG): The multiplicative units which protect the data secured from the CEC
in unwanted input interruption.

Output Gate (OG): The multiplicative units protect another unit in an interference
with the data stored in CEC.

An input-and-output-gates control activates the CEC. During the training stage, an
input gate proposes training to data inside the CEC. An input gate has been assigned with
a value of zero. Similarly, an output gate learns the time to release a data flow from the
CEC. If the gate is closed, activation is applied inside the memory cell. It activates the error
signals to flow over issues of the reducing gradient.

The structure of LSTM units contains a forget gate which is utilized for residual issues.
The fundamental element of LSTM units is given under.

Input: An LSTM unit executes the current vector demonstrated as xn, and the output
saved in the last step is signified as hn−1. The weighted inputs were summarized and
changed by tanh activation that was demonstrated in zn.

IG: This gate reads xn and hn−1, computes the weighted sum, and applies sigmoid
activation. So, the outcomes were improved with zn, and input flow has been given as the
memory cell.

Forget gate (FG): When the network introduces a new order, afterward, a forget gate
reads xn and hn−1 and applies the sigmoid activation to the weighted input. Lastly, fn is
improved as a cell state from the preceding time step, in which sn−1 has been stimulated to
forget the unimportant memory data.
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Memory cell: The CEC and recurrent edge can be included with unit weights. The
present cell state sn has been computed as removing unwanted data in the previous time
step and attaining the relevant data in the current input.

OG: This gate was utilized to the weighted sum of xn and hn−1 and executed sigmoid
activation to manage the LSTM blocks’ data flow.

Output: The simulation result of an LSTM unit hn is estimated by altering the cell
state cn with tanh and improving the output gate. The working rule of LSTM is defined as
the implemented function:

in = σ(Wi · [wn, hn−1] + bi) (1)

fn = σ(Wf · [wn, hn−1] + bf) (2)

on = σ(Wo · [wn, hn−1] + bo) (3)

cn = fn � cn−1 + in � tan h(Wc · [wn, hn−1] + bc) (4)

hn = on � tan h(cn) (5)

where i, f, and o represent the input, forget, and output gates, correspondingly. During this
technique, σ implies the sigmoid functions executed to manage every iteration. Afterward,
{Wi, Wf, Wo, Wc, bi, bf, bo, bc} signifies the attributes that exist learned in training.

For LSTM neural networks, Adam [38] optimizes the target function f (θ) (the mean
squared error was utilized in the proposed model), intending to find parameters that
minimize the mean squared error. Instead of using a stationary target, Adam uses sparse
gradients and accomplishes a form of step size annealing without any additional effort.

The Adam manner implements dynamic alteration of several parameters with com-
puting the gradient 1st-order moment estimation mt and 2nd-order moment estimation vt,
as illustrated in Equations (6)–(8), where β1 and β2 correspondingly represent the 1st-order
exponential damping decrement and 2nd-order exponential damping decrement. gt stands
for the gradient of parameters at time step t from the loss function Jsparse(W, b).

mt = β1mt−1 + (1− β1)·gt (6)

vt = β2vt−1 + (1− β1)·g2
t (7)

gt ← ∇θ Jt(θt−1) (8)

Computer bias-corrected to mt and vt:

m′t =
mt

1− βt
1

(9)

v′t =
vt

1− βt
2

(10)

Update parameters:

θt+1 = θt −
γ√

v′t + ξ
·m′t (11)

γ indicates the updating step size, ξ attains the small constant to prevent the denominator
that exists 0. In addition, the learning rate of the LSTM model is adjusted using the
OGSO algorithm.

GSO is assumed as an intelligence swarm optimized technique utilized for speeding
up the luminescent feature of fireflies. This GSO technique has shared the glowworm
swarm from the space solution and FF of all glowworm places [19]. The strong glowworm
was higher brightness, and an optimal place was developed for maximum FF rate. The
glowworm was conceived of the dynamic line of sight, for instance, the decision domain,
the range of density for neighboring nodes. Conversely, the decision radius has been
constrained if the glowworm travels near a similar type of robust fluorescence from the
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decision domain. Obtaining the maximum value of iterations, every glowworm is placed
from a better place. The process contained from the GSO techniques is demonstrated in
Figure 4 [43].
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It involves five stages as given as follows:

• Fluorescence in concentration
• Neighboring set
• Decision domain radius
• Moving possibility
• Glowworm location

The fluorescence from the concentration updating techniques are written in the
subsequent:

li(t) = (1− α)li(r− 1) + βf(xi(t)), (12)

But li(f) signifies the fluorescence from the concentration of ith glowworms in time
f,α refers to the fluorescence in volatilization coefficients, β represents fluoresce from
development factor, f(x) refers to the FF and xi(r) demonstrated the place of glowworms i
in f time is provided as:

Ni(t) =
{

j : ‖xj(r)− xi(t)‖ < ri
d; li(t) < lj(t)

}
, (13)
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whereas Ni(f) refers the neighbor group of ith glowworms in time r and ri
d(r) stands for

the radius of decision domains of ith glowworms in time f as follow:

ri
d(t + 1) = min

{
rs, max

{
ri

d(t) + γ(ni − |Ni(t)|)
}}

, (14)

Here rs refers to the attained radius of a glowworm, γ denotes the values of deci-
sion domains, and ni shows the neighboring threshold. The moving probabilities of an
upgrading technique were provided under:

pij(r) =
lj(t)− li(t)

∑k∈Nt
lk(t)− li(r)

, (15)

where pij(t) refers to the possibilities that glowworm i travels to glowworms j in r time
as follows:

xi(t + 1) = xi(t) + s(
xj(t)− xi(t)
‖xj(t)− xi(t)‖

), (16)

The OBL is the main aim in the effectual optimization technique to enhance the conver-
gences speed of distinct heuristic improving techniques. The productive execution of OBL
contributes to estimating the opposite and existing population from the similar generation
to recognize optimal candidate solutions of provided issues. The OBL techniques are
effectually utilized in distinct Meta-heuristics used to enhance convergences speed. The
methods of the opposite amount are explained in OBL.

Let N ∈ N[x, y] represent the real numbers. An opposite number N0 is provided as:

No = x + y−N (17)

In the d-dimensional searching region, the representation can be extended as follows:

No
i = xi + yi −Ni (18)

Here (N1, N2, ..Nd) defines the d-dimensional exploring area and Ni[xi, yi], i = 1, 2, . . . , d.
In the OBO, this technique of OBL has been utilized in this beginning process of the GSO
technique and in every iteration from the application of jump rate.

5. Experimental Validation

Ethereum (ETH) return rates are used as targets, and simulations are run to ensure a
more accurate forecast for time series data. This model has been shown to be more precise.
The Python tool simulates the proposed model. Data were collected from January 2018 to
December 2018 over 365 days to measure the return on bitcoin. It is possible to verify the
bitcoin return rate using model checking and experimental simulations. For this reason,
the dataset is split up into two parts: training data and testing data, with the training data
comprising 80% of the total.

The proposed model RRP-DLBEP is evaluated against a set of current and traditional
methods to validate its performance, such as GANMLP [16], PSOLSSVR [15], SVM [12–17],
BPNN [18], GA-SVM [13], ANN [18], and Random Walk. One of these methods is GAN-
MLP [16], which predicts the new return rate of Blockchain financial products. Using the
best most miniature square support vector machine for blockchain financial product revenue
prediction, the SVM [18] is another approach. It is also tested against the conventional BPNN
and PSOLSSVR models.

Detailed predictive performance of the RRP-DLBFP technique takes place in this
section. Table 1 investigates the analysis of the results of the RRP-DLBFP technique in
terms of MSE and MAPE under the training and testing sets.
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Table 1. Comparison study of RRP-DLBFP under different aspects.

Models
Training Dataset Testing Dataset

MSE MAPE MSE MAPE

RRP-DLBFP 0.0435 2.9845 0.0655 3.9856

GANMLP 0.0698 3.1902 0.0962 4.2890

PSOLSSVR 0.0701 3.2126 0.0973 4.3531

SVM 0.1091 4.7237 0.1132 4.5721

BPNN 0.0712 3.2356 0.1021 4.7372

GA-SVM 0.0945 4.4697 0.1032 4.6938

ANN 0.0978 4.5860 0.1076 4.7139

Random Walk 0.1014 4.3146 0.1034 4.3154

Figure 5 showcases the MSE investigation of the RRP-DLBFP technique under the
applied training set. The figure illustrated that the SVM, GA-SVM, ANN, and Random
walk techniques have resulted in poor outcomes with the maximum MSE of 0.1091, 0.0945,
0.0978, and 0.104. Along with that, the PSOLSSVR and BPNN techniques have obtained a
somewhat better performance with the MSE of 0.0701 and 0.0712, respectively. In line with
this, the GANMLP technique has accomplished a moderately reasonable MSE of 0.0698.
However, the RRP-DLBFP technique has attained an effective outcome with a lower MSE
of 0.0435.
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Figure 6 illustrates the MAPE analysis of the RRP-DLBFP manner under the applied
training set. The figure demonstrated that the SVM, GA-SVM, ANN, and Random walk
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approaches have resulted in an unsuccessful outcome with a maximum MAPE of 4.7237,
4.4697, 4.5860, and 4.3146. Likewise, the PSOLSSVR and BPNN techniques have gained
somewhat optimum performance with the MAPE of 3.2356 and 3.2126, correspondingly.
Similarly, the GANMLP technique has accomplished a moderately reasonable MAPE of
3.1902. Lastly, the RRP-DLBFP methodology has attained an effective outcome with a
minimum MAPE of 2.9845.
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Figure 7 depicts the MSE analysis of the RRP-DLBFP approach under the applied
testing set. The figure exhibited that the SVM, GA-SVM, ANN, and Random walk tech-
niques have resulted in a worse outcome with the superior MSE of 0.1132, 0.1032, 0.1076,
and 0.1034, respectively. The BPNN and PSOLSSVR techniques have achieved somewhat
better performance with the MSE of 0.1021 and 0.0973, correspondingly. In addtion, the
GANMLP algorithm has accomplished a moderately reasonable MSE of 0.0962; but, the
RRP-DLBFP methodology reached an effective outcome with a lower MSE of 0.0655.

Figure 8 demonstrates the MAPE analysis of the RRP-DLBFP manner under the
applied testing set. The results outperformed that the SVM, BPNN, GA-SVM, and ANN
approaches resulting in ineffective outcomes with a higher MAPE of 4.5721, 4.7372, 4.6938,
and 4.7139. Along with that, the Random walk and PSOLSSVR techniques have obtained
slightly optimum performance with the MAPE of 4.3154 and 4.3531, correspondingly.
Next, the GANMLP methodology accomplished a moderately reasonable MAPE of 4.2890.
Finally, the RRP-DLBFP approach has obtained effective results with a lesser MAPE of
3.9856. Findings for all models in training and testing are shown in Figures 9 and 10, which
combine all MSE and MAPE results into one graph.
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6. Conclusions

This study has developed an RRP-DLBFP technique to predict the return rate of
blockchain financial products. The proposed RRP-DLBFP technique involves the design of
the LSTM model for the predictive analysis of return rate. In addition, Adam optimizer
and the OGSO algorithm are applied to adjust the hyperparameters of the LSTM model
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optimally, consequently increasing the predictive performance. The ETH return rate
is preferred to ensure the supreme performance of the RRP-DLBFP technique, and the
simulation results are investigated in terms of different measures. The simulation outcomes
highlighted the supremacy of the RRP-DLBFP technique over the current state-of-the-art
techniques in terms of diverse evaluation parameters. In the future, metaheuristic-based
hyperparameter tuning models can be devised to boost the predictive outcome further.
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