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Abstract: To date, the grid-connected solar photovoltaic (PV) system has drawn consideration from
researchers and academicians due to the speedy improvement and the declining price of solar
panels. The proficiency and dependability of a grid integrated PV system rest mainly on the power
conversion unit and the proper controlling mechanism. This paper introduces a novel asymmetric
hexagonal-shaped fifteen-level inverter designed to feed a grid-integrated solar PV system. First, it
aims to reduce the number of components and thereby decrease the installation space and cost of the
multilevel inverter. Moreover, it has a low total blocking voltage (TBV) and total device rating (TDR)
and uses few switching devices for generating per level of output voltage. The proposed topology
utilizes only eight switching devices for generating fifteen levels at the output, which is lower than
conventional multilevel inverter topologies. Here, a low-frequency modulation scheme using the
half-height (HH) method generates switching pulses to minimize the complexity. The proposed
multilevel inverter topology is also validated through the simulations in the MATLAB SIMULINK
environment. The proposed inverter need for filters is illustrated according to different grid codes
for integrating PV systems to the grid.

Keywords: photovoltaic system; asymmetric; hexagonal-shaped; total blocking voltage; total device
rating; half-height method; grid code

1. Introduction

Global energy demand is increasing day by day due to the strong global economic
growth and higher heating and cooling demand. Due to the rise in fossil fuel expenditure,
humankind is currently facing two critical worldwide crises: the energy crisis and the
environmental climate crisis. In recent times, global energy-related carbon dioxide (CO2)
emissions grew an estimated 1.7% [1]. For this reason, there is a worldwide focus on
renewable energy sources to produce electricity with clean power generation to meet the
increasing power demand [2]. Many countries such as Iceland, Costa Rica, Norway and
others, are now turning to 100% green energy and showing a high penetration level of
renewable energies in their national and regional power grids, as illustrated in Table 1 [3].
Several renewable energy sources such as solar, wind, wave, and geothermal energy are
currently available. Among them, solar and wind energy will dominate future power
production worldwide, as seen in Figure 1 [3]. Although the preferred renewable source
for electricity generation is the solar PV cell, as Figure 1 suggests, surprisingly, the interest
in it has decreased steadily while the presence of wind power has grown day by day.
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Table 1. The penetration level of renewable energies in different countries.

Country Penetration Level of Renewables (%)

Iceland 100
Costa Rica 99.7
Norway 99

Upper-Egypt region in Egypt 100
Kenya 70
Brazil 70

Canada 60
Worldwide 23
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Table 1 shows that the world is now moving towards depending on renewable energy
completely. The main challenge, however, is to design a system that successfully integrates
renewable energies and the power grid. Most renewable sources produce direct current
(dc) power, while the power grid runs alternating current (ac). Thus, an inverter system is
needed to produce ac power from dc power generated by renewable sources.

The first invented inverter topology applied only to low-level systems, producing
square voltage from renewable energy sources [4]. However, the grid required the ac
voltage; thus, a filter circuit was needed to convert a square wave into a sinusoidal wave.
Moreover, the proposed two-level inverter had a high dv/dt ratio, high total harmonic
distortion, poor output voltage quality, minimum conduction, switching losses, etc. [5]. For
solving these problems, in 1970, the first multilevel inverter was proposed for generating
three levels of output voltage and further designed to n levels of output voltage [6]. The
most common multilevel inverter (MLI) topologies are diode clamp multilevel inverter
(DC MLI), flying capacitor multilevel inverter (FC MLI) and cascaded H-bridge (CHB)
multilevel inverter [7]. Among all topologies, the cascaded multilevel inverters are the
most popular because they provide a simple circuit layout and a modular structure and
avoid unbalanced capacitor voltage problems [8].

Currently, researchers are focusing on compact weight and cost-effective topologies
with fewer semiconductor devices and fewer voltage sources. The cascaded H-bridge topol-
ogy has failed to attract their attention because it still uses many semiconductor switches
and voltage sources. The problem of many voltage sources can be minimized by applying
a magnetic link-based isolated transformer; however, it produces more switching losses
due to the leakage of the transformer with a low switching frequency [9]. Several reduced
switch MLI topologies that have been introduced are mainly of two types: symmetric
and asymmetric MLI topologies [10]. The symmetric multilevel inverter contains two
parts: the level generation unit and the polarity generation unit. The level generation unit
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has the same number of voltage sources as the cascaded H-bridge MLI topology, while
the polarity generation unit is the full H-bridge configuration. The complete design uses
fewer switching devices than conventional DC MLI, FC MLI, and CHB MLI topologies.
Although the symmetric multilevel inverter has partially solved the problem of using a
large number of semiconductor devices, it still faces the same difficulty as the cascaded
multilevel inverter, namely the use of a large number of dc sources [11]. Recently, this
problem has been overcome by applying asymmetric MLI configuration. In the asymmetric
configuration, different values of voltage sources are used to generate the required voltage
level. This configuration uses fewer semiconductor devices and voltage sources than the
symmetric configurations and the conventional cascaded H-bridge topologies.

Anoop proposed a fifteen-level inverter topology in 2018, which employs sixteen
semiconductor devices, sixteen diodes, and three capacitors in generating the fifteen levels
of output voltage. This topology still uses a large number of components, and due to
the presence of capacitor devices, suffers from ripple voltage problems [12]. Another
asymmetric fifteen-level inverter was proposed by Anand [13] that utilizes a relatively
lower number of switching devices than that of [12] but still contains a large number
of components. An asymmetric multilevel inverter topology with the lowest number of
components had been introduced to solve the current issues, but it uses many voltage
sources that not only increase the cost but also increase the size of inverter topology. For
developing a fifteen-level output voltage with optimal switching devices and voltage
sources, a novel multilevel inverter topology was presented by Rohit in 2018. Though
this proposed topology uses only seventeen components, this number can be further
reduced [14]. Subsequently, two more multilevel topologies were introduced [15,16], but
they still use large components. Thus, developing a topology that produces fifteen-level
output with minimal cost, size, and losses is still a challenge.

In this regard, a novel hexagonal-shaped fifteen-level inverter is introduced in this
paper as a solution to the current problems discussed above. The proposed topology
has the merit of a lesser component requirement: It consists of eight switching devices,
three voltage sources, and a diode for generating fifteen output levels. Furthermore, this
topology can be extended to n number of levels. The low-frequency half-height method
is used for calculating the firing pulse of the proposed topology because of its simplicity,
easy generation procedure, and fewer total harmonic distortion (THD). The performance
of the proposed topology has been verified by comparing several dc voltage sources, the
number of switching devices, total blocking voltages, total cost, size, and efficiency, with
other topologies. The following list summarizes the paper’s major contributions:

• The proposed modulating signal reduces the total number of components required for
generating a fifteen-level inverter.

• The proposed system has a reduced total blocking voltage (TBV) and total device
rating (TDR) compared to other conventional topologies.

• It ensures the lowest system cost and size.
• It also reduces the maximum number of active switches for generating per level

output voltage.

2. Proposed Hexagonal Shaped Fifteen Level Converter

This paper proposes a novel hexagonal configuration of a multilevel inverter that can
generate fifteen-level output voltage by using eight switching devices, one diode, and three
dc-link voltages (Figure 2). The operating principle, grid-connected configuration, and the
calculation of blocking voltage have been discussed briefly in this section.
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2.1. Operating Principle

In this subsection, the operating principle of the proposed topology is illustrated. The
proposed topology has fifteen modes: a single zero mode, seven positive modes, and seven
negative modes. To generate these fifteen modes, the proposed topology uses only eight
switching devices along with three voltage sources. The values of the voltage sources are
selected so that the value of V2 must be twice the times of V1, and the value of V3 will be
four times that of the supply voltage V1. The switches (S1, S2) and (S3, S6) are turned on
simultaneously to avoid the short circuit of dc sources. The operation of this proposed
topology is illustrated in Table 2. Some voltage generation procedures are illustrated
in Figure 3.

Table 2. Operating principle of the proposed topology.

Voltage Level Active Switch Current Path

V1 S4, S3, S2 V1-D1-S4-Load-S3-S2-V1
V2 S4, S3, S2, S7 V2-S4-Load-S3-S2-S7-V2

V1 + V2 S8, S4, S3, S2 V1-S8-V2-S4-Load-S3-S2-V1
V3 S2, S1, S6 V3-S2-S1-Load-S6-V3

V1 + V3 S2, S4, S6 V3-S2-V1-D1-S4-Load-S6-V3
V2 + V3 S2, S7, S4, S6 V3-S2-S7-V2-S4-Load-S6-V3

V1 + V2 + V3 S2, S8, S4, S6 V3-S2-V1-S8-V2-S4-Load-S6-V3
0 S4, S5, S6 S4-Load-S6-S5-S4

−V1 S5, S6, S1 V1-D1-S5-S6-Load-S1-V1
−V2 S7,S5, S6, S1 V2-S5-S6-Load-S1-S7-V2

−(V1 + V2) S5, S6, S1, S8 V1-S8-V2-S5-S6-Load-S1-V1
−V3 S3, S4, S5 V3-S3-Load-S4-S5-V3

−(V1 + V3) S5, S3, S1 V1-D1-S5-V3-S3-Load-S1-V1
−(V2 + V3) S5, S3, S1, S7 V2-S5-V3-S3-Load-S1-S7-V2

−(V1 + V2 + V3) S5, S3, S1, S8 V1-S8-V2-S5-V3-S3-Load-S1-V1

2.2. Grid Integration of Proposed Topology

This subsection deals with the detailed circuit diagram of grid integration of the
proposed multilevel inverter shown in Figure 4. The multiple winding magnetic link-
based multilevel inverter eliminates the problems associated with the common magnetic
link, such as high leakage current that reduces the efficiency of the multilevel inverter.
First, the maximum power point tracking extracts the maximum power from the PV array.
Second, a boost converter is used to increase the dc-link voltage, which is then converted
into ac voltage by using a high-frequency H-bridge inverter. Finally, the output from
the high-frequency H-bridge inverter is connected to a high-frequency multiple-winding
transformer and produces several pulse voltages at secondary winding, which are applied
to the inverter through the bridge rectifier circuit, as shown in Figure 4.
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2.3. Calculation of Blocking Voltage

The calculation of blocking voltages on the switching devices plays an essential role
in designing multilevel inverters. Because of this, the issues around blocking voltage
greatly influence the cost and size of multilevel inverters. The blocking appears across a
switch when it is reverse biased, and the total blocking voltage is the sum of the individual
blocking voltages required for each switch of a topology. The equation of total blocking
voltage for the proposed topology can be obtained as follows:

Vblocking = Vs1 + Vs2 + Vs3 + Vs4 + Vs5 + Vs6 + Vs7 + Vs8 (1)

From Equation (1), the calculated total blocking voltage is 28 × V, where V is the
minimum dc-link voltage.

3. Low-Frequency Modulation Technique

Generally, low-frequency and high-frequency modulation techniques are used for gen-
erating the firing pulses of the modular multilevel inverter. However, the high-frequency
modulation technique generates high total harmonic distortions resulting in high switching
losses that reduce the efficiency of the modular multilevel inverter. Thus, a lower frequency
modulation technique would be the optimal choice for generating fewer switching losses
and lower total harmonic distortion [17]. Newton–Raphson is a very low-frequency modu-
lation technique used to generate the firing pulse of proposed fifteen-level inverters. The
Fourier series expansion of the output of the multilevel inverter is given by:

van(wt) =
∞

∑
k=1,3,5 ....

4Vdc
kπ

(cos(kα1) + cos(kα2) + . . . . . . . . .+ cos(kαs)) sin(kωt) (2)

where s = (n − 1)/2, n is the level of the multilevel inverter, and k is the order of harmonic
components. For the calculation of fundamental output voltage, the firing angles must be
calculated, and for the calculation of the firing angle, the Newton–Raphson method is used.
From Equation (2), the fundamental peak of output voltage in terms of switching angles
can be written as shown in Equation (3).

4Vdc
π

(cos(α1) + cos(α2) + . . . . . . .+ cos(αs)) = V1 (3)

From Equation (1), the expressions for fundamental voltage in terms of m, and lower
order harmonic components, when they are eliminated, can be written for 15-level proposed
topology as:

cos(α1) + cos(α2) + . . . . . .+ cos(α7) = 7m cos(5α1) + cos(5α2) + . . . . . . .+ cos(5α7) = 0
cos(7α1) + cos(7α2) + . . . . . . .+ cos(7α7) = 0

cos(11α1) + cos(11α2) + . . . . . . .+ cos(11α7) = 0
cos(13α1) + cos(13α2) + . . . . . . .+ cos(13α7) = 0
cos(17α1) + cos(17α2) + . . . . . . .+ cos(17α7) = 0
cos(19α1) + cos(19α2) + . . . . . . .+ cos(19α7) = 0

(4)

This topology, however, still produces high total harmonics distortion. For this
reason, the low-frequency half-height method, which produces not only low total harmonic
distortion but also generates high inverter losses, is used in this paper [18]. The switching
angle is calculated using this method by:

ai = sin−1
(

2j − 1
K − 1

)
(5)

Here, j = 1, 2, . . . . . . . . . , K−1
2 . K is the number of levels of output voltage. With

Equation (5), the calculated switching angles for the proposed fifteen-level inverter are
tabulated in Table 3.
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Table 3. Main switching angle for the proposed fifteen-level inverter.

Switching Angles

Output level α1 = 4.096◦ α2 = 12.37◦ α3 = 20.92◦ α4 = 30◦

Fifteen α5 = 40◦ α6 = 51.79◦ α7 = 68.21◦

4. Simulation Results

The total simulation has been performed in the MATLAB Simulink environment. Here,
for the generation of firing pulses of the proposed inverter, a low-frequency modulation
scheme is used and was generated by the low-frequency half-height algorithm. The
switching patterns of the proposed topology for phase A, phase B and phase C are shown
in Figures 5–7, respectively. The simulation parameters are illustrated in Table 4. The
output of three high-frequency rectifiers is depicted in Figure 8. The phase voltage, and the
frequency spectrum of the proposed topology, are shown in Figure 9a,b. It is seen from
Figure 9a that the proposed topology has fifteen levels in output voltage, and in Figure 9b
that it generates only 5.56% of the THD. Figure 10a,b show the output line voltage and its
harmonics spectrum. The output line voltage produces only 3.8% of the THD, displayed in
Figure 10b. The line voltage and its harmonic spectrum at the load terminal are illustrated
in Figure 11a,b. The results show that only 0.25% of the THD is found.
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Table 4. Simulation parameters.

Parameters Values

Level fifteen
Line voltage 11 kV(rms)

Phase voltage 8.1 kV
DC link voltage V1 = 1150 V, V2 = 2300 V, V3 = 4600 V

Grid voltage 11 kV (rms)
Modulation Technique Half Height low-frequency modulation technique

Filter LCL type
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5. Comparative Analysis

This section deals with the comparative analysis of the proposed hexagonal-shaped
three-phase fifteen-level inverter with recently published topologies. Here, the comparison
parameters are presented based on the number of components, total blocking voltage, the
overall cost, weight, and size of the device, the total rating, and the maximum number of
active switches per level. Based on these factors, it has been decided which topology is
more suitable for specific applications.

5.1. Number of Components

The total number of components bears a direct correlation to the cost, size, and weight
of the inverter. With that in mind, a comparison is made among the proposed topology
and other recently published topologies based on a total number of components and is
shown here in Table 5. It is evident from Table 5 that the proposed topology has utilized
the minimum number of IGBT‘s and power diodes in producing single-phase fifteen-level
output voltage. Component reduction considering conventional cascaded H-bridge fifteen
level inverter (CHB) is around 65.7%, which is higher than other mentioned topologies and
suggests its superiority in that respect.

Table 5. Components comparison of different asymmetric fifteen-level inverter.

Topologies No. of
TotalDC-Link Capacitor IGBTs Diodes

Anoop in [12] 1 3 12 12 28
Anand in [13] 3 0 12 0 15
Rohit in [14] 7 0 11 0 18

Chaitanya in [15] 3 0 7 3 13
Azad in [16] 3 0 10 0 13

Proposed 3 0 8 1 12

5.2. Total Blocking Voltage (TBV)

Another parameter in the comparison relates to the issue of total blocking voltages.
Blocking voltage relates directly to the cost and size of the switches, and the minimum
total blocking voltage ensures the lowest cost and size of a switch. Therefore, for designing
an optimal multilevel inverter, the lowest blocking voltage must be ensured. The pie-
chart shown in Figure 12 presents the amount of used total blocking voltage of different
asymmetric multilevel inverters. Overall, variation of used total blocking voltage among
different topologies is quite noticeable. Figure 12 shows that the proposed topology offers
lower blocking voltages than other mentioned topologies. Therefore, it can be concluded
that the proposed topology performs better in terms of total blocking voltages.
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blocking voltage.

5.3. Overall Cost, Weight, and Size

Another point of comparison between the proposed topology and the others is the
estimate of the cost, weight, and size of the device. The cost, weight, and size of the
multilevel inverter relate directly to the quantity of its segments, for example, switching
devices, dc voltage sources, and the voltage rating of IGBTs. With this in mind, and to
compare the proposed topology to different topologies, from the perspective of the cost
and size, the G coefficient is defined as follows [19]:

G = Nsw∗Nsource∗Vpu
sw (6)

The calculated G-coefficient is presented in Figure 13. From this figure, it can be seen
that the value of coefficient G is lower in the proposed typology than the other mentioned
in this article. Therefore, it can be speculated that the proposed topology offers low weight
and small size with the lowest cost.
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5.4. Total Device Rating (TDR)

The last element of the comparison in this study is the total device rating. Each switch
of the proposed topology carries a load current. Thus, the current stress is equivalent to the
load current. Again, their voltage stress will be equal to the blocking voltage. Therefore,
total device rating (TDR) can be calculated as follows [19]:

TDR =
sw

∑
i=1

TDRsi (7)

TDRsi =
sw

∑
i=1

(Vsi∗Isi) (8)
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where TDRsi is the device rating of the switch (si). For designing a multilevel inverter
topology, it is imperative that the total device rating of a multilevel inverter is at a minimum.
This low value will ensure that the requirements for the cost, weight and size of the designed
topology stay minimal. A comparison with other topologies was carried out based on the
value of TDR per power and is presented in Figure 14. It is clear from Figure 14 that the
proposed topology utilizes the minimum value of TDR/power, a ratio lower than that of
the other topologies mentioned in this paper. Therefore, it can be summarized that the
size, weight, and cost of the proposed topology will be reduced from the point of view of
TDR/power.
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5.5. Maximum Number of Active Switches Per Level

This subsection examines recently published topology performance relating to the
maximum number of active switching devices. The highest number of active switching
devices leads to the large size of semiconductor devices and increased size and cost of
the inverter. Thus, in designing an inverter, the number of active switching devices must
be calculated to ensure the proposed inverter uses the lowest active switching device. A
comparison with different topologies discussed in this study was conducted based on
the maximum number of active switches per level and is presented in Figure 15. The bar
diagram in Figure 15 indicates that the newly proposed topology utilized the minimum
number of active switches.
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6. Compliance with Grid Code

With the increased penetration level of PV power plants and distributed generators,
compliance with grid codes has attracted much attention. Complying with the grid code
rules while keeping the cost and the number of devices low is now a popular topic of
research. The harmonics in the power systems can be considered as a power quality
problem usually produced by the inverters and converters of renewable energies and loads.
The harmonics lead to the following effects on the power systems [20]:

i. Reduction in the functionality of power system protection devices
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ii. Additional losses in the power grids
iii. Reduction of the lifetime of some types of loads feeding on the grid.

The total harmonic distortion in voltage or the current is considered a remarkable
indicator for the harmonics in the power system. The acceptable THD differs from one
voltage level to another and from one country to another. Table 6 illustrates the acceptable
limits of THD for each voltage level in different countries [20–25].

Table 6. Acceptable THD in different countries and standards.

Country/Standard THD in % According to Voltage Level
<1 kV 1 kV–69 kV 69 kV–161 kV ≥161 kV

Australia 8 5 2.5 1.5
China 8 5 2.5 1.5
Egypt 8 5 2.5 1.5

Malaysia 8 5 2.5 1.5
UK Not mentioned 3 2.5 1.5

IEEE 519 8 5 2.5 1.5
IEC 6100-3-2 Not mentioned 5 2.5 1.5

The proposed inverter, unlike many others, can work without filters in two levels
of voltage, which leads to the reduction in the total cost of the PV grid-tied system of up
to more than USD 7000. Table 7 shows the need for filters in the grid-tied PV systems
according to the voltage level in different countries. The study shows that according to
most of the grid codes integrating PV systems to the grid in low voltage, below 1 kV
does not require filters for the proposed inverter, which is widely used in roof-top and
houses. For the voltage level between 1 kV and 69 kV, in most countries and according
to IEEE 519 and IEC6100-3-2 standards, no filters are required for the proposed inverter
except for the UK power grid. For voltage levels higher than 69 kV, a filter is required to
achieve the grid code requirements according to all countries’ grid codes and different
standards. This illustrates that, generally, the proposed inverter will achieve the grid code
requirements in small-scale and medium-scale grid-tied PV systems without the need for
filters. The proposed inverter is the most applicable one in many applications, including
floating PV [26].

Table 7. Need for filters for the proposed inverter according to the grid code requirements.

Country/Standard Need for Filters
<1 kV 1 kV–69 kV 69 kV–161 kV ≥161 kV

Australia No need No need Need Need
China No need No need Need Need
Egypt No need No need Need Need

Malaysia No need No need Need Need
UK Not mentioned Need Need Need

IEEE 519 No need No need Need Need
IEC 6100-3-2 Not mentioned No need Need Need

7. Conclusions

This paper introduced a new hexagonal-shaped fifteen-level inverter for the grid-
integrated solar photovoltaic system as an alternative to the conventional multilevel invert-
ers. The proposed topology reduced the number of components to around 58%, compared
to the state-of-the-art topologies. In addition, it curtails almost 57% of the TBV level and
TDR/power than the state-of-the-art topologies. Moreover, it ensures the lowest cost for
implementation on hardware. The low-frequency modulation technique, which generates
the switching pulses for controlling the proposed inverter topology, provides the lowest
total harmonics distortion. The results show that, at small and medium scales PV systems,
the proposed inverter does not require a filter to achieve the grid code requirements for PV
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integration. Thus, the proposed inverter topology makes the solar photovoltaic systems
more compact, efficient, and reliable in the future power world.
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