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Abstract: For agricultural production and food safety, it is important to accurately and extensively
estimate the heavy metal(loid) pollution contents in farmland soil. Remote sensing technology
provides a feasible method for the rapid determination of heavy metal(loid) contents. In this study,
the contents of Ni, Hg, Cr, Cu, and As in the agricultural soil of the Suzi River Basin in Liaoning
Province were taken as an example. The spectral data, with Savitzky–Golay smoothing, were taken as
the original spectra (OR), and the spectral transformation was achieved by continuum removal (CR),
reciprocal (1/R), root means square (

√
R), first-order differential (FDR), and second-order differential

(SDR) methods. Then the spectral indices were calculated by the optimal band combination algorithm.
The correlation between Ni, Hg, Cr, Cu, and As contents and spectral indices was analyzed, and
the optimal spectral indices were selected. Then, multiple linear regression (MLR), partial least
squares regression (PLSR), random forest regression (RFR), and adaptive neuro-fuzzy reasoning
system (ANFIS) were used to establish the estimation model based on the combined optimal spectral
indices method. The results show that the combined optimal spectral indices method improves the
correlation between spectra and heavy metal(loid), the MLR model produces the best estimation
effect for Ni and Cu (R2 = 0.713 and 0.855, RMSE = 5.053 and 8.113, RPD = 1.908 and 2.688,
respectively), and the PLSR model produces the best effect for Hg, Cr, and As (R2 = 0.653, 0.603,
and 0.775, RMSE = 0.074, 23.777, and 1.923, RPD = 1.733, 1.621, and 2.154, respectively). Therefore,
the combined optimal spectral indices method is feasible for heavy metal(loid) estimation in soils
and could provide technical support for large-scale soil heavy metal(loid) content estimation and
pollution assessment.

Keywords: optimal spectral indices; spectral transformation; partial least-squares regression (PLSR);
multiple linear regression (MLR); random forest regression (RFR); adaptive neuro-fuzzy inference
system (ANFIS)

1. Introduction

Soil is an important resource in the natural environment and for agricultural produc-
tion; healthy soil is a basic requirement in realizing the goal of sustainable agricultural
development [1,2]. In the development and use of mineral resources, heavy metal(loid) pol-
lution of agricultural soil is one of the most serious problems caused by mining agricultural
production [3]. Soil heavy metal(loid)s have poor migration ability and easily accumulate
in the soil to form heavy metal(loid) pollution [4]. Heavy metal(loid) pollution can reduce
the activity of microorganisms in soils, affect the yield and quality of crops, degrade water
quality, and seriously endanger human health through the food chain [5], and further
affect the sustainable development of agriculture. Meanwhile, heavy metal(loid)s can
also damage water quality and seriously harm human health through the food chain. [5].
Therefore, it is necessary to monitor heavy metal(loid) pollution in agricultural soil [6].
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The traditional method for estimating heavy metal(loid)s in soils is the geochemical
method, which is highly accurate but inefficient, expensive, and only suitable for small-
scale monitoring [7,8]. Conversely, remote sensing technology is highly efficient, low-cost,
and is suitable for macro-monitoring [9,10]. Therefore, remote sensing technology provides
an effective alternative method to estimate heavy metal(loid) contents in soil.

At present, the remote sensing technology research methods are mainly applied using
the full bands, characteristic bands, and spectral indices [11,12]. When using full bands,
the integrity and continuity of information can be guaranteed, and the models have high
precision and strong objectivity, but the problem of data redundancy occurs because of the
high spectral resolution, and the results are strongly influenced by background noise [11].
The use of characteristic bands to estimate soil heavy metal(loid) contents involves finding
the direct relationship between characteristic bands and soil heavy metal(loid) content
for modeling. This method could effectively reduce redundant data, the impact between
spectral bands, and the calculation cost, but it could also easily lead to the loss of some
effective information [13]. Due to the low content of heavy metal(loid)s in soils, their
spectral signals are weak, and the characteristic bands are difficult to identify; so the
correlation between the characteristic bands and the heavy metal(loid) contents in soils is
weak and improving the estimation precision is difficult [14]. Estimating heavy metal(loid)
contents using a spectral index is a method of constructing a spectral index in the visible and
near-infrared region, and the model can be constructed based on this spectral index. This
method could effectively reduce the interference due to background noise, supplement the
information between different bands, and significantly strengthen the correlation between
spectral variables and soil heavy metal(loid) contents. The best bands for predicting soil
heavy metal(loid) content could be selected, which compensates for the shortcomings of
using the full bands and characteristic bands. However, accurate estimation could only be
achieved by establishing appropriate indices [15]. To summarize, it is important to choose
the appropriate research method when estimating soil heavy metal(loid) contents with
remote sensing.

The process of estimating heavy metal(loid) contents in soil is also strongly influenced
by the mathematical model [16]. At present, methods of estimating heavy metal(loid)
content in soils are usually based on empirical statistical methods, including linear and
nonlinear models [17]. Linear models mainly include multiple linear regression (MLR) and
partial least squares regression (PLSR) models, which have a simple structure, fast calcula-
tion speed, and a strong ability to deal with high-dimensional data; however, these models
are not effective in the simulation of nonlinear relations [18,19]. In recent years, nonlinear
mathematical analysis methods, such as random forest regression (RFR) and adaptive
neuro-fuzzy inference system (ANFIS) algorithms, have been gradually introduced into
the field of soil spectral research because of their high stability and robustness in nonlinear
relations. These models have some disadvantages such as a complicated structure and long
computation time [20,21].

Heavy metals are elements with a density greater than 4.5 g/m3 [22], such as nickel,
mercury, chromium, and copper. Metalloids are substances that are intermediates between
a metal and a nonmetal, and have similar properties to metals, such as arsenic [23]. Heavy
metal(loid)s have strong capacities to migrate, enrich, and contaminate, and may enter the
human body through a number of pathways, such as air, water, and the food chain [24].
Recent studies showed that the excessive human intake of heavy metals could lead to a
higher risk of cancer, as well as chronic adverse effects on the respiratory system, circulation,
and the nervous system [25]. For example, high levels of Cu in the body can cause
anemia, high cholesterol, bone changes, and damage to the capillaries, liver, kidneys, and
stomach [26]. One of the most dangerous metalloids found in the Earth’s crust and water is
As, and long-term drinking of water contaminated with As can cause various diseases, such
as cancer of various organs, cardiovascular problems, diabetes, and neurotoxicity [27–29].
Therefore, it is crucial to monitor the heavy metal(loid) contents in farmland soil and in
water conservation areas near mining areas.
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The Suzi River Basin is the main area upstream of the Dahuofang reservoir, which
supplies water to cities in Liaoning Province and is rich in mineral resources. During the
mining process, heavy metal(loid)s are gradually deposited into the soil, which leads to
heavy metal(loid) pollution of farmland soil. Among the common heavy metal(loid)s that
pollute soil, Ni, Hg, Cr, Cu, and As were used as examples in this study. Based on simple
spectral indices (addition, subtraction, and ratio), advanced spectral indices (normalized
difference indices) were introduced, which were used as independent variables of the
model. MLR, PLSR, RFR, and ANFIS were used for modeling, and the relationship between
the optimal spectral indices and the heavy metal(loid) contents in soil was discussed, thus
providing a scientific and effective basis for the selection of a method of estimating heavy
metal(loid) contents in soils, and providing a basis for water source protection in this area.

2. Materials and Methods
2.1. Study Area

The Suzi River is located between 124◦20′00′′ and 125◦16′00′′ E and 41◦56′00′′ and
41◦32′00′′ N (Figure 1). It is one of the first-class sub-basins in the upper reaches of the
Dahuofang Reservoir and the largest river in the Xinbin Manchu Autonomous County.
The Suzi River originates from the watershed in Xinbin Manchu Autonomous County. The
main river course is 119 km, and the annual average runoff is 519 million m3. The soil in
the study is mainly brown soil, dark brown soil, peat soil, paddy soil, white clay soil, and
swamp soil area, accounting for 85% of the total land area, with an average soil thickness
of 20–40 cm.
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Figure 1. Map of the study area.

The study area is mainly mountainous, with a large area of cultivated land around the
river, and industrial parks such as mining factories in some areas. At present, 11 kinds of
minerals are developed in the Suzi River Basin, with iron ore and gold ore being the main
ones. In the process of metal smelting, a large amount of acid mine drainage is discharged,
which contains pollutants such as Ni, Hg, Cr, Cu, and As [30,31]. The effluent, having
high heavy metal(loid) contents, enters the Suzi River and then the Dahuofang reservoir
through the Suzi River, which could have serious environmental and ecological impacts on
the water, farmland, and plants in these regions [32,33].

2.2. Data Acquisition
2.2.1. Soil Sample Collection and Chemical Analysis

The field surveys were carried out from late October until early November 2020. A
total of 92 farmland surface soil samples were collected, the depth of each soil sampling
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point was 20 cm, and the sampling information was recorded. The soil sample was placed
in a well-ventilated, lightproof place and then naturally air-dried. After the samples were
passed through a uniform 100 mesh nylon net, 300 g of each sample was taken. Half of the
physical soil sample (150 g) was used for chemical analyses and the other half (150 g) for
spectral measurements. According to the National Environmental Protection Standards
of the People’s Republic of China (HJ 781–2016, 2016) [34], Ni, Cr, and Cu contents were
determined in 92 samples via inductively coupled plasma mass spectrometry (ICP-MS).
According to the national standard of the People’s Republic of China (GB/T 22105.1–
2008, 2008) [35], the contents of Hg and As in 92 soil samples were determined by atomic
fluorescence spectrometry.

2.2.2. Spectral Pre-Treatment and Transformations

In this study, soil spectral reflectance was measured using an ASD FieldSpec®3
portable spectrometer (Analytical Spectral Device, Boulder, CO, USA). All the soil samples
were placed in wide circular containers 10 cm in diameter and 2 cm in depth. The instru-
ment was preheated for 30 min before the measurement began. To ensure accuracy, each
reflection measurement was calibrated using a standard plate with 100% reflectivity [36].
The information obtained ranged from 350 to 2500 nm, and the light source was a built-
in halogen lamp, the field angle of the probe was 25◦, and the sampling intervals were
1.4 nm (350–1000 nm) and 2.0 nm (1000–2500 nm). When measuring the spectrum of a soil
sample, the probe was placed in contact with the surface of the soil sample. From each
soil sample, we collected 10 spectral lines, and the average value of 10 spectral lines was
taken as the final reflectance (Figure 2). The average spectral reflectance was calculated
by ViewSpecPro V5.6 software. Due to instrument noise, spectral bands 350–399 nm and
2451–2500 nm were removed from the initial reflectivity spectra of the soil samples to
improve the signal-to-noise ratio (SNR) [37].
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The spectral data acquisition process is affected by the sample, instrument, experimen-
tal environment, and other factors, which may weaken the spectral signal [21]. To reduce
noise interference, enhance the differences, and highlight the spectral characteristics, it is
necessary to smooth and mathematically change the spectral data [12]. The breakpoints of
the spectrum were removed at approximately 1000 and 1900 nm using ViewSpecPro V5.6.
The Savitzky–Golay smoothing method (SG smoothing) of the second-order polynomial
fitting is usually used for spectral smoothing; with a window size of 13 points, this method
can effectively reduce the influence of random noise on the robustness of calibration mod-
els [38]. The SG-smoothed spectrum was taken as the original spectrum (OR), then the
SG-smoothed data were transformed by seven mathematical methods, i.e., the continuum
removal (CR), reciprocal (1/R), first-order differential (FDR), second-order differential
(SDR), and root mean square (

√
R). All of the transformations were implemented using

MATLAB (version 2018a) software and ENVI (version 5.3).
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2.3. Calculation of Optimal Spectral Indices

One of the most effective methods to analyze significant relationships between soil
heavy metal(loid) contents and spectral data involves using spectral indices as the indepen-
dent variables of the model, which effectively reduces the number of redundant messages
and avoids dimensionality disaster [14,39]. In the calculation of spectral indices, based
on the spectral reflectance after SG smoothing, all combinations were calculated in the
wavelength range of 400–2450 nm, and the correlation coefficients with the soil Ni, Hg, Cr,
Cu, and As contents were obtained. The combination with the largest absolute correlation
coefficient was selected as the best of the corresponding spectral indices. In this study, the
spectral indices mainly included the difference index (DI), ratio index (RI), the difference
between the inverse reflectance of two bands (DIV), sum index (SI), and simple normalized
difference spectral indices (NDSI and NPDI) [14,40]. The spectral indices are defined as:

RI
(

Ri, Rj
)
=

Ri
Rj

, (1)

SI
(

Ri, Rj
)
= Ri + Rj, (2)

DI
(

Ri, Rj
)
= Ri − Rj, (3)

DIV
(

Ri, Rj
)
=

1
Ri
− 1

Rj
, (4)

NPDI
(

Ri, Rj
)
=
(

Ri + Rj
)
× Rj, (5)

NDSI
(

Ri, Rj
)
=

(
Ri − Rj

)(
Ri + Rj

) , (6)

where R is the SG-smoothing spectral reflectance value and the subscripts i and j are
wavelengths in nanometers (nm).

2.4. Pearson Correlation Analysis

In order to analyze the relationship between the different soil spectral data pre-
processing techniques and Ni, Hg, Cr, Cu, and As contents, the correlations between
Ni, Hg, Cr, Cu, and As contents in agricultural soils and spectral indices were determined.
In this study, the Pearson correlation coefficient (r) was used to determine the linear corre-
lation between spectral reflectance and Ni, Hg, Cr, Cu, and As contents. The correlation
coefficient was calculated as follows:

r =
σ2

xy

σxσy
=

∑[(Xi − X)(Yi −Y)]√
∑(Xi − X)2

√
∑(Yi −Y)2

, (7)

where r is the correlation coefficient; X is the reflectance of the corresponding band; Y is the
Ni, Hg, Cr, Cu, and As content in agricultural soils; and σ2

xy is the covariance of X and Y.

2.5. Modeling Approaches
2.5.1. Multiple Linear Regression (MLR)

MLR is a statistical model with a simple structure and is easy to calculate and interpret.
It is one of the most commonly used estimation models in the field of soil science [41,42].
Like other regression techniques, it attempts to establish a relationship model between two
or more independent variables and response variables by fitting a linear equation to the
observed data. In this study, different spectral indices were taken as independent variables
and Ni, Hg, Cr, Cu, and As contents in the soil as dependent variables to establish an MLR
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model. Generally, the relationship between the dependent and the independent variables
is given as [43]:

Y = a +
n

∑
i=1

bixi + ε = b1x1 + b2x2 + · · ·+ bixi + ε, (8)

where Y is the response variable; xi (i = 1, 2, 3, . . . , n) are predictor variables; a is the
intercept, bi (i = 1, 2, 3, . . . , n) is the regression coefficient; and ε is the regression residual.

2.5.2. Partial Least-Squares Regression (PLSR)

PLSR is a multivariate data analysis method. Compared with the traditional mul-
tivariate regression method, PLSR integrates the characteristics of principal component
analysis, canonical correlation analysis, and multivariate linear regression analysis, which
is more conducive to the identification of spectral information and noise [44,45]. Therefore,
the PLSR model is widely used in the field of spectral inversion [46,47]. In this study, the
PLSR model was established by Python. In the PLSR model, the spectral reflectance values
under different spectral index processing methods were taken as the independent variable
and the Ni, Hg, Cr, Cu, and As contents in agricultural soil were the dependent variables.

The modeling principle is as follows: establish an m × n spectrum matrix X and n × l
heavy metal(loid) content detection matrix Y, where m is the spectral band number, n is the
number of samples, and l is the number of different spectral indices of metal(loid)s in the
soil of the same heavy metal(loid)s. X and Y can be decomposed as follows [37]:

X = TPT + E, and (9)

Y = UQT + F, (10)

where U and T are the score matrixes, P and Q are the loads, and E and F are residual
matrixes in the PLSR simulation. The linear regression of U and T, B is the correlation
coefficient matrix, U = TB. The prediction formula can then be expressed by:

Yprediction = TcalculationBQ = XmeasurePT BQ, (11)

2.5.3. Random Forest Regression (RFR)

RFR is a predictive modeling algorithm based on the regression tree (CART) and
bagging learning strategy first developed by Breiman [37]. In the process of model training,
a certain number of bootstrap samples were extracted from the original data set to train
each tree, and randomly selected features were split for each decision [48]. Due to the
introduction of randomness, over-fitting does not easily occur in RFR. The RFR model has
the advantages of high prediction accuracy, good performance on unbalanced data sets,
and robustness to noise [37,49]. In this study, an RFR model was developed in Python
software using the RFR software package, and 100 trees were used to train the RFR model
by correlating Ni, Hg, Cr, Cu, and As contents with spectral indices. When the smallest
sample in the tree was a sample with zero impurity, the model training was stopped. The
trained forest F̂K

RF(x) with K trees can be expressed as [50]:

F̂K
RF(x) =

1
K

K

∑
K=1

T(xs), (12)

where T(x) is a single tree, x is all the training samples, and xs is each tree’s training
sample data obtained with the bootstrap sampling method. Another parameter that is not
noted in Equation (12) is the number of subattributes selected from all the attributes with
bootstrap sampling.
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2.5.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy reasoning system (ANFIS) is a computational intelligence
modeling method that combines the learning ability of neural networks with the reason-
ing ability of fuzzy logic and is often used to model computational nonlinear complex
problems [51,52]. The structure of ANFIS includes an antecedent part and a conclusion
part, which are connected by fuzzy rules in the form of a network [53]. In this study, the
ANFIS algorithm embedded in the fuzzy reasoning toolbox of MATLAB was used to build
the model. The coverage threshold was fixed at 0.05 and the training stopped when the
error stabilized.

The ANFIS has five layers; the output of the first layer is shown in Equation (13):

Q1,i = µAi (x), (13)

where µA is a membership function, x is the input of node i, and Q1,i is a membership
value. The output of the second layer is an algebraic product of the input signals, as shown
in Equation (14):

Q2,i = ωi = µAi (x1)× · · · × µCi (xn), (14)

In the third layer, the ratio of the ith rule’s firing strength to the total summation of all
rules’ firing strength is calculated in each node, as shown in Equation (15):

Q3,i = ωi =
ωi

ω1 + · · ·+ ωn
, (15)

In the fourth layer, the output of each node is as shown in Equation (16):

Q4,i = ∑ ωi fi, (16)

where fi is the corresponding function of each node. The overall output is computed in the
fifth layer using Equation (17):

Q5,i =
∑n

i=1 ωi fi

∑n
i=1 ωi

, (17)

2.6. Model Validation

In this study, the samples were arranged in ascending order according to the contents
of the heavy metal(loid)s in the soil, and each metal(loid) element was divided into a
training set and verification set in a ratio of 3:1. The training set contained 69 samples
and the validation set contained 23 samples. These models were established by taking the
optimized spectral indices as the independent variables and Ni, Hg, Cr, Cu, and As content
as the dependent variables, and the determination coefficient (R2), root mean square error
(RMSE), and residual predictive deviation (RPD) were selected as accuracy indices to
measure the predictability of the model. The calculation formulae of R2, RMSE, and MAE
are as follows, respectively:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 , (18)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (19)

RPD =
σ√

∑n
i=1(yi − ŷi)

2/n
, (20)

where yi is the measured Ni, Hg, Cr, Cu, and As content in the soil; ŷi is the estimated soil
Ni, Hg, Cr, Cu, and As content; y is the mean of the measured soil Ni, Hg, Cr, Cu, and As
content; and n is the number of soil samples, σ is the standard deviation of the measured
reference values.
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3. Results
3.1. Descriptive Statistics of Ni, Hg, Cr, Cu, and As Contents in Agricultural Soil

The statistical characteristics of the Ni, Hg, Cr, Cu, and As contents in the study area
are shown in Table 1. Compared with the risk control standard for soil contamination of
agricultural land (GB 15618–2018), the contents of Ni, Hg, and As in agricultural soils were
lower than the screening value of soil pollution risk in agricultural land (70.00, 1.80, and
40.00 mg/kg, respectively), and some Cr and Cu values were higher than the screening
value of soil pollution risk (150.00 and 50.00 mg/kg, respectively). We found significant
differences in the minimum and maximum values of Ni, Hg, Cr, Cu, and As contents in
agricultural soil. The standard deviation, skewness, and kurtosis of Ni, Cr, and As are
small, whereas those of Hg and Cu are large, indicating that certain differences exist in
the contents of Ni, Cr, and As in the agricultural soil in different regions in the study area,
with significant differences in Hg and Cu. The coefficient of variation (CV) is an important
index reflecting the fluctuation in environmental variables: the CV of Cr is smaller than
that of Ni, Hg, Cu, and As, which reflects that human activities have a stronger influence
on the contents of Ni, Hg, Cu, and As than on Cr in agricultural soil [54]. In total, the
contents of copper and chromium are high, indicating they are seriously polluting the
agricultural soil. Although the contents of Ni, Hg, and As did not reach pollution levels,
some soil samples had high levels. Through proximity analysis (Figure 1 and Table 2),
we found that the samples with high heavy metal(loid) contents were all obtained near
mining areas and roads, indicating that the agricultural soil in this area is severely polluted
by heavy metal(loid)s due to the processes of mineral mining and transportation. In this
study, through the correlation analysis of Ni, Hg, Cr, Cu, and As contents, we found that
except for the general correlation between Ni and Cr, the Poisson coefficient is 0.642, and
no correlation was found between other heavy metal(loid) elements. Therefore, it was
feasible for estimating Ni, Hg, Cr, Cu, and As content in agriculture soils.

Table 1. Descriptive statistics of Ni, Hg, Cr, Cu, and As contents in agricultural soil.

Element Number Min
(mg/kg)

Max
(mg/kg)

Mean
(mg/kg)

SD
(mg/kg)

CV
(%)

Skew-
Ness Kurtosis

Ni 92 14.900 56.040 31.740 8.425 26.544 0.668 0.402
Hg 92 0.008 0.591 0.092 0.086 93.478 3.059 12.539
Cr 92 0.890 181.200 76.658 3.489 4.551 −0.033 0.349
Cu 92 3.600 133.400 40.346 15.216 37.714 2.550 14.969
As 92 3.680 21.680 8.682 3.684 42.433 1.463 2.160

SD: standard deviation; CV: coefficient of variation.

Table 2. Descriptive statistics of sampling point distance from mine and road.

Number Min (km) Max (km) Mean (km) SD (km)

Mining area 92 0.531 16.944 5.468 3.389
Road 92 0.005 1.323 0.165 0.214

3.2. Soil Spectral Characteristics Analysis

Figure 2 shows the original reflectance spectra (Figure 2A) and the reflectance spectra
after SG smoothing (Figure 2B) of the soil samples in the Suzi River Basin. The spectral
reflectance values of all the soil samples showed certain differences, but with an increasing
trend, and the spectral reflectance ranged from 0.05 to 0.8. The spectral differences among
soil samples were mainly caused by the different contents of each component, which led to
certain differences in spectral reflectance of the soil samples. In the range of 500–800 nm,
the reflectivity value increased rapidly, and the slope of the spectral curve was large, so the
spectral absorption peak could not be seen. From 800 to 2300 nm, the spectral reflectance
tended to rise steadily, with obvious spectral absorption peaks at 1000, 1415, 1910, and
2200 nm. In the range of 500–800 nm, the spectral curves showed a downward trend.
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In this study, to highlight the spectral characteristics of the band, SG-smoothing spectral
reflectance data as the original spectral reflectance (OR), and five spectrum transform meth-
ods (CR, 1/R, FDR, SDR, and

√
R) were established to conduct parallel background value

separation (Figure 3). These methods effectively extracted the spectral information that was
not easy to identify in the original band, and the position of the spectral characteristic band
was more obvious. The reflectivity changed rapidly in the range of 400–593 nm, and we
observed two weak absorption peaks near 430 and 490 nm. In the range of 594–1374 nm,
the slope of the soil spectral curve decreased, and the weak reflection peak appeared near
590 and 810 nm. We observed several characteristic absorption bands and reflection peaks
in the spectral curve from 1375 to 2450 nm, with an obvious adsorption valley near 1415 nm.
The spectral curve showed a V-shape from 1856 to 2129 nm. A visible absorption valley
was observed near 1910 nm. The spectral curves fluctuated from 2129 to 2450 nm, and two
absorption valleys appeared near 2200 and 2327 nm.
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3.3. Correlation Analysis between Soil Spectrum and Ni, Hg, Cr, Cu, and As Contents

By calculating the correlation between the contents of Ni, Hg, Cr, Cu, and As in the
agricultural soil samples and the transformation spectrum, the correlation coefficient curve
between the soil spectral variables and the contents of Ni, Hg, Cr, Cu, and As was obtained
(Figure 4). Compared with the original spectrum (OR), the correlation coefficient curves of
different transformed spectra are significantly different. The correlation coefficient curves
of 1/R and

√
R are relatively smooth, and the absolute value of the maximum correlation
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coefficient is less than 0.2. Among them, are the positive and negative correlation between
Ni and Cu contents and the spectra transformed at about 1200 nm; Hg and As contents
are positively correlated with the spectral curves after

√
R transformation, but negatively

correlated with the spectral curves after 1/R transformation; the correlation between Cr
content and the spectral curve after 1/R transformation changed at 1600 and 1900 nm, and
negatively correlated with the spectral curve after

√
R transformation. After CR, FDR, and

SDR transformation, the spectral correlation coefficients of the three heavy metals fluctuated
between positive and negative within the Vis–NIR range. The correlation coefficient
significantly increased compared with the original spectral correlation. Compared with
the visible spectrum (400–700 nm), the near-infrared spectrum (700–2500 nm) curve has a
more obvious range, which indicates that their spectral response is more obvious in the
near-infrared spectrum. The maximum correlation coefficients between the contents of Ni,
Hg, Cr, Cu, and As in agricultural soil and the spectra are shown in Table 3; the correlation
coefficient between the OR and soil Ni, Hg, and Cr contents is low. After the 1/R and√

R transformation, the spectral correlation slightly increased, by about 0.003, but the
correlation between the transformed spectra and As and Cu contents reduced. However,
after CR, FDR, and SDR transformation, the correlation between the spectrum and the
soil Ni, Hg, Cr, Cu, and As contents significantly increased compared with the original
spectrum. Among them, the correlation between FDR spectra and Ni content significantly
improved by about 0.5, and the correlation of other elements also significantly improved
by at least 0.1. Therefore, the findings show that although spectral transformation can
highlight hidden spectral information, it is not feasible to directly estimate heavy metal(loid)
content in agricultural soils using spectral data.
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Table 3. The maximum absolute value of the correlation coefficient between Ni, Hg, Cr, Cu, and As
contents and spectra.

Maximum Correlation OR CR 1/R FDR SDR
√

R

Ni 0.145 0.617 0.148 0.670 0.445 0.147
Hg 0.123 0.231 0.151 0.229 0.283 0.131
Cr 0.201 0.540 0.177 0.495 0.385 0.198
Cu 0.104 0.330 0.093 0.328 0.348 0.102
As 0.305 0.422 0.295 0.434 0.448 0.131

3.4. Correlation between Optimal Spectral Indices and Ni, Hg, Cr, Cu, and As Contents

In order to reduce the redundancy information in the spectrum using the optimal
band combination algorithm, the correlation coefficient between soil heavy metal(loid)
content and spectral indices was used. The spectral indices optimized by different spectral
conversion methods and the correlation coefficient are shown in Tables 4–8. The correlation
patterns between different spectral conversion methods are different. According to a
comparative analysis with Table 3, except for a few spectral indices, the correlation between
them and soil heavy metal(loid) contents decreased: most of the spectral indices were
higher than the single-band spectral correlation. The index of reduced spectral correlation
is NPDI, and it mainly occurred in the spectrum transformed by the original spectrum and√

R; however, after CR, FDR, and SDR transform, the correlation with NPDI significantly
improved compared with single bands. For other indices (DIV, RI, DI, NDSI, and SI),
regardless of the original spectrum or the spectrum after mathematical transformation
(CR, 1/R, FDR, SDR, and

√
R), their correlation coefficients with soil heavy metal(loid)

contents were higher than their correlation coefficients with a single band. To summarize,
the correlation between the optimal spectral indices and the contents of Ni, Hg, Cr, Cu, and
As in agricultural soils was significantly higher than that of the optimal single band, which
indicated that it is feasible to use spectral indices to study the contents of Ni, Hg, Cr, Cu,
and As in agricultural soils.

Table 4. The bands and correlation coefficients of optimal spectral indices for Ni.

Transform
Method Optimal Spectral Indices Correlation Coefficient 1

OR DIV2272,2271, NPDI408,408, RI2268,2269, DI2269,2271, NDSI2268,2269, SI408,408 0.613, 0.138, 0.701, 0.671, 0.701, 0.145
CR DIV2271,2269, NPDI2344,2256, RI2088,2272, DI2269,2271, NDSI2269,2271, SI2257,2358 0.709, 0.653, 0.711, 0.712, 0.710, 0.648
1/R DIV2269,2271, NPDI403,403, RI2269,2268, DI2272,2271, NDSI2269,2268, SI405,405 0.671, 0.143, 0.701, 0.613, 0.701, 0.148
FDR DIV2265,753, NPDI2268,2384, RI2269,735, DI2102,2268, NDSI734,2268, SI1732,2270 0.665, 0.636, 0.718, 0.704, 0.729, 0.714
SDR DIV1031,1485, NPDI2298,2293, RI1392,1918, DI2294,2267, NDSI2308,2294, SI2288,2295 0.496, 0.605, 0.538, 0.620, 0.527, 0.650√

R DIV2271,2268, NPDI408,408, RI2268,2269, DI2268,2269, NDSI2268,2269, SI406,406 0.661, 0.145, 0.701, 0.702, 0.701, 0.147
1 Correlation coefficient is the largest absolute value of the correlation coefficient.
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Table 5. The bands and correlation coefficients of optimal spectral indices for Hg.

Transform
Method Optimal Spectral Indices Correlation Coefficient 1

OR DIV2073,2071, NPDI407,2450, RI2065,2086, DI1762,1761, NDSI2065,2086, SI407,1915 0.285, 0.109, 0.273, 0.229, 0.273, 0.127
CR DIV455,456, NPDI1888,2315, RI456,455, DI456,455, NDSI456,455, SI1038,1427 0.370, 0.264, 0.377, 0.380, 0.377, 0.268
1/R DIV1762,1761, NPDI1915,1915, RI2086,2065, DI2073,2071, NDSI2086,2065, SI1915,1915 0.229, 0.162, 0.273, 0.285, 0.273, 0.151
FDR DIV1302,1734, NPDI2291,1762, RI1736,1308, DI1760,1804, NDSI2314,606, SI468,1373 0.671, 0.362, 0.661, 0.336, 0.678, 0.327
SDR DIV1628,1184, NPDI1042,615, RI700,1629, DI554,1767, NDSI2246,2413, SI680,1767 0.683, 0.558, 0.680, 0.405, 0.697, 0.383√

R DIV2078,2068, NPDI407,1516, RI2065,2086, DI1762,1761, NDSI2065,2086, SI407,1915 0.293, 0.123, 0.273, 0.199, 0.273, 0.136
1 Correlation coefficient is the largest absolute value of the correlation coefficient.

Table 6. The bands and correlation coefficients of optimal spectral indices for Cr.

Transform
Method Optimal Spectral Indices Correlation Coefficient 1

OR DIV2252,2233, NPDI761,761, RI2275,2229, DI2232,2252, NDSI2229,2266, SI756,756 0.511, 0.202, 0.562, 0.501, 0.561, 0.201
CR DIV2236,2275, NPDI2232,2443, RI2236,2275, DI2236,2275, NDSI2236,2275, SI2229,2443 0.552, 0.576, 0.552, 0.552, 0.552, 0.554
1/R DIV2232,2252, NPDI930,955, RI2229,2266, DI2252,2233, NDSI2266,2229, SI767,929 0.501, 0.167, 0.561, 0.511, 0.561, 0.177
FDR DIV2232,1622, NPDI2146,2251, RI1170,2424, DI1100,2251, NDSI2336,2238, SI1770,2240 0.481, 0.597, 0.576, 0.568, 0.535, 0.562
SDR DIV735,745, NPDI2241,1122, RI2191,2348, DI1397,2021, NDSI1921,1902, SI1012,1394 0.481, 0.553, 0.496, 0.528, 0.498, 0.529√

R DIV2251,2250, NPDI756,756, RI2266,2229, DI2232,2270, NDSI2229,2266, SI756,751 0.547, 0.201, 0.561, 0.545, 0.561, 0.198
1 Correlation coefficient is the largest absolute value of the correlation coefficient.

Table 7. The bands and correlation coefficients of optimal spectral indices for Cu.

Transform
Method Optimal Spectral Indices Correlation Coefficient 1

OR DIV2237,2137, NPDI670,670, RI2266,2252, DI2268,2269, NDSI2252,2266, SI670,670 0.336, 0.107, 0.394, 0.335, 0.394, 0.104
CR DIV2271,2252, NPDI2225,2315, RI2252,2272, DI2252,2272, NDSI2252,2272, SI2224,2325 0.422, 0.390, 0.423, 0.424, 0.423, 0.396
1/R DIV2268,2269, NPDI711,705, RI2252,2266, DI2237,2227, NDSI2266,2252, SI685,685 0.335, 0.087, 0.394, 0.336, 0.394, 0.093
FDR DIV2132,1834, NPDI2248,2229, RI2270,1834, DI1150,2229, NDSI468,2191, SI2148,2228 0.668, 0.396, 0.664, 0.416, 0.723, 0.416
SDR DIV1192,1479, NPDI911,1066, RI1147,1479, DI1217,825, NDSI911,2214, SI634,828 0.726, 0.618, 0.716, 0.436, 0.732, 0.428√

R DIV2264,2251, NPDI670,670, RI2252,2266, DI2261,2263, NDSI2252,2266, SI670,670 0.371, 0.104, 0.394, 0.375, 0.374, 0.102
1 Correlation coefficient is the largest absolute value of the correlation coefficient.

Table 8. The bands and correlation coefficients of optimal spectral indices for As.

Transform
Method Optimal Spectral Indices Correlation Coefficient 1

OR DIV1314,1141, NPDI954,954, RI2330,2346, DI2331,2334, NDSI2229,2266, SI2330,2346 0.440, 0.305, 0.445, 0.437, 0.445, 0.305
CR DIV2379,2396, NPDI2376,2418, RI2396,2379, DI2396,2379, NDSI2396,2379, SI2376,2419 0.572, 0.533, 0.573, 0.572, 0.573, 0.522
1/R DIV2331,2334, NPDI988,988, RI2346,2330, DI1413,1411, NDSI2346,2330, SI975,975 0.437, 0.285, 0.445, 0.440, 0.445, 0.295
FDR DIV1404,2264, NPDI2022,2415, RI2414,1535, DI2388,2414, NDSI2030,2332, SI1477,2414 0.413, 0.567, 0.603, 0.623, 0.569, 0.589
SDR DIV1941,1736, NPDI470,2354, RI1041,765, DI1451,1397, NDSI634,2182, SI1397,1548 0.525, 0.552, 0.584, 0.514, 0.563, 0.554√

R DIV2251,2250, NPDI756,756, RI2266,2229, DI2232,2270, NDSI2229,2266, SI756,751 0.445, 0.305, 0.445, 0.439, 0.445, 0.304
1 Correlation coefficient is the largest absolute value of the correlation coefficient.

3.5. The Establishment and Verification of the Spectral Prediction Model

In this study, these optimized spectral indices were selected as independent variables
and soil Ni, Hg, Cr, Cu, and As contents as dependent variables. MLR, PLSR, RFR, and
ANFIS were used to analyze the relationship between spectral data and soil Ni, Hg, Cr, Cu,
and As contents. The significance test was conducted at the 0.01 level, and the accuracy
of the model results is shown in Tables 9–13. The results of the models show that in the
estimation of different heavy metal(loid)s, the performance of the four algorithms varies
widely. In the Ni estimation model, the ANFIS algorithm failed to model the spectral data
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after SDR conversion, and no statistical data were obtained in this process. The accuracy of
the MLR and PLSR models was significantly higher than that of the RFR and ANFIS models,
and the PLSR model was more accurate than the MLR model, and the accuracy of the
model was R2 = 0.713, RMSE = 5.053, and RPD = 1.908. For Hg, the ANFIS algorithm failed
to model spectral data after OR, 1/R, and

√
R conversion. The RFR model accuracy of CR,

1/R, and
√

R was higher than that of MLR and PLSR, but it could not meet the modeling
accuracy requirement (R2 < 0.22). Among the FDR and SDR models, the PLSR model
of SDR produced the best effect, with a model accuracy of R2 = 0.653, RMSE = 74.244,
and RPD = 1.733. In the estimation model of Cr, the PLSR model of SDR also worked
best (R2 = 0.603, RMSE = 23.777, and RPD = 1.621), producing much higher accuracy
than other models. In the As estimation model, the prediction effect of MLR and PLSR
models was found to be better than that of RFR and ANFIS, and the PLSR model after SDR
spectral transformation produced the best prediction effect (R2 = 0.775, RMSE = 1.923,
and RPD = 2.154). In the model for estimating Cu, compared with Ni, Hg, Cr, and As, the
MLR model with FDR transformation had the best effect (R2 = 0.855, RMSE = 8.113, and
RPD = 2.688), and produced the best prediction effect among the five heavy metal(loid)s.
In conclusion, in the estimation models of soil Ni, Hg, Cr, As, and Cu contents, a better
model effect was produced by FDR and SDR mathematical transformation spectral indices
as model independent variables than by other spectral transformations used, and the
MLR and PLSR model accuracy was better than that of RFR and ANFIS, with R2 values
all above 0.6 and RPD values all above 1.5. These results show that this method could
accurately estimate samples and has strong predictive ability for soil Ni, Hg, Cr, Cu, and
As contents [55,56].

Table 9. The estimation models of Ni content and their evaluation indices.

Transform Method MLR PLSR RFR ANFIS

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

OR 0.585 6.077 1.586 0.506 6.634 1.453 0.498 6.685 1.442 0.284 7.094 1.208
CR 0.595 6.005 1.605 0.522 6.524 1.478 0.502 6.658 1.448 0.315 6.936 1.236
1/R 0.583 6.094 1.582 0.515 6.574 1.467 0.483 6.786 1.421 0.302 7.005 1.223
FDR 0.676 5.373 1.794 0.651 5.576 1.729 0.510 6.605 1.460 0.373 6.636 1.292
SDR 0.713 5.053 1.908 0.595 6.003 1.606 0.201 8.434 1.143 - 1 - 1 - 1
√

R 0.601 5.963 1.617 0.525 6.503 1.483 0.563 6.238 1.546 0.334 6.839 1.253
1 Model prediction failure.

Table 10. The estimation models of Hg content and their evaluation indices.

Transform Method MLR PLSR RFR ANFIS

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

OR 0.050 0.123 1.048 0.031 0.124 1.038 0.010 0.125 1.027 - 1 - 1 - 1

CR 0.084 0.121 1.068 0.080 0.121 1.065 0.214 0.112 1.152 0.235 0.079 1.151
1/R 0.005 0.126 1.024 0.019 0.125 1.031 0.059 0.130 1.012 - 1 - 1 - 1

FDR 0.013 0.125 1.028 0.507 0.088 1.455 0.083 0.121 1.067 0.280 0.060 1.205
SDR 0.638 0.076 1.697 0.653 0.074 1.733 0.519 0.087 1.473 0.282 0.060 1.206√

R 0.073 0.121 1.061 0.042 0.123 1.044 0.154 0.115 1.111 - 1 - 1 - 1

1 Model prediction failure.
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Table 11. The estimation models of Cr content and their evaluation indices.

Transform Method MLR PLSR RFR ANFIS

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

OR 0.216 33.423 1.153 0.265 32.362 1.191 0.229 33.145 1.163 - 1 - 1 - 1

CR 0.254 32.592 1.183 0.224 33.240 1.160 0.357 30.258 1.274 0.309 26.355 1.230
1/R 0.132 35.153 1.097 0.260 32.471 1.187 0.286 31.882 1.209 0.133 29.515 1.098
FDR 0.488 27.000 1.428 0.491 26.917 1.432 0.353 30.358 1.270 0.411 24.318 1.333
SDR 0.576 24.576 1.569 0.603 23.777 1.621 0.338 30.708 1.255 0.520 21.885 1.481√

R 0.258 32.511 1.186 0.250 32.694 1.179 0.448 28.036 1.375 0.101 30.057 1.078
1 Model prediction failure.

Table 12. The estimation models of Cu content and their evaluation indices.

Transform Method MLR PLSR RFR ANFIS

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

OR - 1 - 1 - 1 0.022 21.095 1.034 0.018 21.139 1.043 - 1 - 1 - 1

CR 0.019 21.125 1.032 0.032 20.981 1.039 - 1 - 1 - 1 - 1 - 1 - 1

1/R - 1 - 1 - 1 0.013 21.194 0.029 0.039 20.906 1.043 - 1 - 1 - 1

FDR 0.855 8.113 2.688 0.732 11.047 1.974 0.206 19.005 1.147 0.158 11.112 1.114
SDR 0.417 16.291 0.339 0.571 13.977 1.560 0.488 15.263 1.429 - 1 - 1 - 1
√

R - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

1 Model prediction failure.

Table 13. The estimation models of As content and their evaluation indices.

Transform Method MLR PLSR RFR ANFIS

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

OR 0.317 3.584 1.156 0.201 3.621 1.144 0.172 3.686 1.124 - 1 - 1 - 1

CR 0.412 3.106 1.334 0.365 3.229 1.283 0.249 3.510 1.180 - 1 - 1 - 1

1/R 0.211 3.599 1.151 0.213 3.594 1.153 0.116 3.809 1.088 - 1 - 1 - 1

FDR 0.565 2.672 1.550 0.528 2.782 1.489 0.554 2.705 1.531 - 1 - 1 - 1

SDR 0.723 2.312 1.943 0.775 1.923 2.154 0.371 3.214 1.289 0.531 2.285 1.493√
R 0.240 3.523 1.173 0.223 3.571 1.160 0.295 3.402 1.218

1 Model prediction failure.

The scatterplots of the optimal models of Ni, Hg, Cr, Cu, and As contents are shown in
Figure 5. The scatterplots diagram shows that the model has a good effect on the prediction
of soil Ni, Hg, Cr, Cu, and As contents. However, discrete points can be found in all of these
heavy metal(loid)s. The main reason for this is that the selection of modeling and validation
data sets in the modeling process, soil samples with the highest heavy metal(loid) contents
will inevitably be used in the validation set. A number of mining areas are located in the
study area, and mining and transportation cause heavy metal(loid) pollution in agriculture
soil. In the process of soil sampling, some sampling sites were close to mining areas and
transportation roads. Therefore, some soil samples had high heavy metal(loid) contents,
which shows that it is vital to monitor the heavy metal(loid) contents in agriculture soil
near mining areas.

The results of this study show that pre-treatment of soil spectral data is an effective
method to improve the accuracy of spectral modeling. Proper pre-treatment could effec-
tively highlight the spectral characteristic bands of soil heavy metal(loid)s and increase the
prominence of the reflection peak and absorption valley of the spectral. When establishing
models for estimation of Ni, Hg, Cr, Cu, and As contents, a strong linear relationship exists
between the optimized spectral indices and the contents of Ni, Hg, Cr, Cu, and As in soil.
Therefore, the simple MLR algorithm has a more accurate model prediction effect, and
the modeling process takes advantage of the benefits of the algorithm, such as simplicity
and speed. The PLSR algorithm, which organically combines the advantages of multiple



Sustainability 2021, 13, 12088 15 of 21

linear regression, principal component analysis, and canonical correlation analysis, pro-
vides advantages that other methods cannot when solving linear problems and achieves
accurate prediction results. Finally, the results also show that it is reasonable and feasible
to estimate heavy metal(loid) contents in soil based on the combined optimized spectral
indices method.
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Figure 5. Scatterplots illustrating the optimal accuracy of Ni, Hg, Cr, Cu, and As: (a) Ni, SDR partial
least-squares regression (MLR) model; (b) Hg, SDR partial least-squares regression (PLSR) model;
(c) Cr, SDR partial least-squares regression (PLSR) model; (d) Cu, FDR multiple linear regression
(MLR)model; and (e) As, SDR partial least-squares regression (PLSR) model. The solid line is the
regression line between the estimated and measured values, and the dashed line is the 1:1 line.

4. Discussion

Through the analysis of the original spectrum and the mathematically transformed
spectrum, we found that the spectral resolution and sensitivity of the transformed spectrum
were significantly improved, and many weak absorption peaks were amplified. These
transformations effectively eliminated the influence of the parallel background values
and extracted the spectral information. In these mathematical transformations, the first
derivative and the second derivative resulted in higher model accuracy. In this study, the
accuracy of Ni and Cu estimated using the first derivative was higher than that of the
second derivative model, whereas the estimation accuracy for Hg, Cr, and As was higher
using the second derivative. The main reason for this finding is that the first derivative
can enhance the spectral information while maintaining the continuity and integrity of



Sustainability 2021, 13, 12088 16 of 21

the spectral information [57,58]. For the second derivative, the optimal band combination
algorithm was used in this study to process the spectrum, which effectively removed the
influence of additional spectral noise caused by the higher derivative. According to the
spectral index calculation in Tables 4–8, 21 wavelengths were selected from the spectrum
of the five heavy metal(loid)s, including 468, 606, 734, 825, 1100, 1170, 1192, 1184, 1217,
1477, 1535, 1628, 1732, 2146, 2191, 2251, 2268, 2314, 2388, 2414, and 2424 nm. Some studies
showed that these wavelengths are close to the absorption characteristics of hematite,
ferrihydrite, Fe3+, goethite, illite, and organic matter [17,59,60], and are strongly correlated
with the spectral characteristics of N-H, C-H, O-H, CO2−

3 group, and -OH stretching
vibration of water molecules in agricultural soil [14,61]. The main reason for this is the
adsorption of heavy metal(loid)s by organic matter and iron/manganese minerals in soil,
which is mainly related to the electronic transition of metal ions [62]. In addition, the
chemical bond stretching, the stretching vibration of the water molecular –OH in the soil
silicate minerals, and the absorption of water molecules are also main reasons [63–65].

Spectral transformation is a necessary and effective method for the prediction mod-
elling of soil heavy metal(loid)s [66]. Appropriate transformation can effectively highlight
the characteristic bands of the spectrum, make the reflection peak and absorption val-
ley of the spectral curve more prominent, and enhance the correlation between the soil
spectrum and heavy metal(loid) content, so as to improve the prediction accuracy of
the model. SG-smoothing pre-processing can eliminate the multiplicative interference of
granularity, separating and removing complex effects, and leaving accurate soil spectral
information [67]. The SG-smoothed spectra were transformed by different mathematical
methods, which improved the correlation between soil spectra and heavy metal(loid) con-
tent, especially the first and second derivatives. The results showed that the derivative
transformation of the spectrum can distinguish similar spectra and effectively highlight the
absorption characteristics of the spectrum. However, the integer derivative tends to ignore
the progressive changes in the spectrum and curvature in the slit, resulting in the loss of
subtle information [68]. Previous studies also showed that the combination of different
spectral pre-treatment methods can improve the prediction accuracy of the model [5,11],
which agrees with the findings of other studies [5,61,69].

In this study, six optimal spectral indices (DIV, NPDI, RI, DI, NDSI, and SI) were used
to investigate the feasibility of using spectral indices for the prediction of soil Ni, Hg, Cr,
Cu, and As contents. A correlation between six spectral indices and soil Ni, Hg, Cr, Cu,
and As contents was found. Compared with the correlation of the optimal characteristic
bands (Table 2), the correlation between the spectral indices and soil Ni, Hg, Cr, Cu, and
As contents was significantly stronger.

Compared with the single-band model, the model accuracy significantly increased.
In the single-band model, except for Hg, Cu, and As contents, Ni and Cr contents could
be estimated, but the model accuracy was low, with R2 of 0.424 and 0.361, respectively.
The results showed that the modeling accuracy can be significantly improved by using
the optimized spectral indices because they can effectively reduce the influence of back-
ground noise, and can detect more detailed spectral characteristics. The optimal spectral
indices well-magnified the correlation between dependent and independent variables,
thus highlighting some important information useful for heavy metal(loid) estimation.
Therefore, the optimal spectral indices could effectively compensate for the deficiency
of the full-band and characteristic-band methods. Wavelength interaction could also be
considered to reduce the influence of irrelevant wavelengths and deal with the overlapping
absorption of soil components [70–72], showing the potential for estimating the content of
heavy metal(loid)s in soil by spectral indices.

This study showed that the optimal spectral indices can be successfully used to esti-
mate the content of heavy metal(loid)s in agricultural soils, and the precision of modeling
can be markedly improved. Among the prediction models of soil heavy metal(loid) contents
established by the MLR, PLSR, RFR, and ANFIS algorithms, MLR is the most commonly
used model because of its clarity and simple structure [73–75]. However, compared with
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MLR, the second generation of the PLSR algorithm has better predictive ability. MLR is
a combination of principal component analysis and multiple linear regression, reducing
the advantages of variable constraints. Independent variables are used in the PLSR algo-
rithm, which can effectively eliminate the influence of noise, thereby improving the model
prediction ability [76–78]. In this study, two relatively new machine learning algorithms
(RFR and ANFIS) were also adopted, but their model accuracy was significantly lower
than those of MLR and PLSR. The main reason may be that a linear relationship exists
between the optimized spectral indices used in this study and the soil Ni, Hg, Cr, Cu, and
As contents; some studies also reported a significant linear correlation between the spectral
band and the content of heavy metal(loid)s [79]. Although RFR and ANFIS algorithms have
excellent performance, efficiency, and excellent performance in solving complex nonlinear
problems, they tend to lack generalization ability [80,81]. The small sample size is another
possible reason limiting the prediction accuracy of the RFR algorithm in this study. By
analyzing the accuracy of different models, we found that the optimal spectral indices can
weaken nonlinear relationships and enhance linear relationships, improving the prediction
accuracy of the model. Therefore, estimating soil heavy metal(loid) contents using optimal
spectral indices is feasible, which provides technical support for the rapid monitoring of
soil heavy metal(loid) contents.

Our research object was the soil sample point, and the research scope may have some
limitations. In future studies, we hope that hyperspectral satellite and UAV remote sensing
data can be fully used to obtain soil heavy metal(loid) estimation results in the region.
Based on these methods, other substances (such as nitrogen, phosphorus, and potassium)
could also be included in a study, which could provide a basis for comprehensive detection
and protection of soil. Although we obtained good estimation results in this study, only
92 soil samples were used to develop and verify the model. This small number of soil
samples may have affected the stability of the model, and more samples are needed to
further improve the model. Some problems have not yet been explored and solved in
practical application, such as the influence of soil thickness, soil moisture, soil temperature,
and different soil properties on the spectrum, and the correlation between noninteger
differential spectra and heavy metal(loid) contents in soil. To summarize, the quantitative
modeling of soil heavy metal(loid)s using spectral remote sensing still needs further study.
Finally, it is hoped that this study could provide a theoretical basis for the sustainable
development of agriculture.

5. Conclusions

In the past, few studies have used the optimal spectral indices to predict the content
of heavy metal(loid)s in agricultural soils. Taking Ni, Hg, Cr, Cu, and As in the agricultural
soil of the Suzi River Basin, Liaoning Province as an example, we studied the potential
of using optimal spectral indices to estimate the contents of Ni, Hg, Cr, Cu, and As in
agricultural soil. The results showed that the correlation between the spectrum after
mathematical conversion and the Ni, Hg, Cr, Cu, and As contents in agricultural soil
is significantly stronger than that of the original spectra, which indicates that spectral
processing technology is an effective method to eliminate noise and highlight spectral
characteristics, being essential in the spectral analysis process. The correlation between
the optimal spectral indices and the contents of Ni, Hg, Cr, Cu, and As in agricultural soils
showed that the optimal band combination algorithm could effectively avoid the influence
of noise. By using MLR, PLSR, RFR, and ANFIS algorithms to estimate the Ni, Hg, Cr, Cu,
and As contents in the soil, we found a strong linear relationship between the optimized
spectral indices and the Ni, Hg, Cr, Cu, and As contents in agriculture soil; the Ni, Hg, Cr,
Cu, and As contents could be better estimated by MLR and PLSR. The results showed that
the introduction of more spectral indices could weaken the nonlinear relationships and
enhance the linear relationships and could quickly and accurately estimate the contents of
Ni, Hg, Cr, Cu, and As in farmland soil. In addition, this study has some limitations. The
influence of different soil types, soil temperature, and other conditions on the spectrum
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was not considered in the study. More sample data are needed to test the stability of the
model. Therefore, in future work, more samples of different soil types will be collected to
establish a more scientific and reliable estimation model of soil heavy metal(loid)s. This
study’s findings are sufficient to provide a feasible reference for the estimation of heavy
metal(loid) contents in other regions or for the estimation of the content of other heavy
metal(loid)s, and it provides a theoretical basis for the estimation of metal(loid) contents
in soil using hyperspectral satellites, which has strong promotion value. This study also
provides technical support for sustainable agricultural development.
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