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Abstract: The rising human activities and resource exploitation have increased pressure in the coastal
zone and the marine environment, risking the very existence of Marine Priority Habitats (MPH) and
Underwater Cultural Heritage (UCH). The delimitation of these two priority areas in a time- and
cost-effective way is essential for the sustainable management and exploitation of sea resources and
natural-cultural heritage preservation. We propose an Integrated Methodological Approach for the
Detection and Mapping of MPH and UCH. To achieve this, we used a downscale methodological
approach of increasing spatial resolution based on three main methodological axes: (i) desk-based
research, (ii) marine geophysics/seafloor classification, and (iii) in-depth visual inspection/3D map-
ping. This methodological scheme was implemented at the Saronic Gulf and focused on Aegina
island. The methodology proposed, which combines existing and new techniques, proved successful
in detecting and mapping the MPH and UCH in detail, while it compiled the information necessary
for the establishment of Marine Spatial Planning (MSP) maps. Finally, the MSP map constructed
for the Saronic Gulf demonstrated the lack of holistic coastal zone management plans due to im-
pacts on UCH linked to anthropogenic intervention and the sparsity of marine habitats owing to
marine pollution.

Keywords: marine geophysics; marine spatial planning; Aegina; Salamis; seafloor classification;
3D seismic profiles; photogrammetry; Posidonia oceanica; downscaling

1. Introduction

The vision for sustainable coastal development lies within the balanced economy-,
environment-, and society-related actions [1]. However, the increasing population, es-
pecially in coastal areas, led to urban development, land reclamation, resource over-
exploitation, and pollution. The human-induced pressure, together with climatic change
effects (i.e., sea-level rise, sea surface temperature rise), poses a significant threat to marine
biodiversity and underwater cultural heritage [2–9]. Therefore, detection and detailed
mapping of the cultural and biological wealth of our seas is essential for their protec-
tion and inclusion in integrated coastal management plans [10–12].The European Union
is following specific policies and directives regarding the protection, preservation, and
sustainable development of the cultural and biological wealth (Valetta, 1992; ICOMOS
Sofia, 1996; UNESCO, 2001; Barcelona, 1970-Directive: 92/43/EEC-21/05/1992; NATURA,
2000), while all European countries are obliged to fully map the extent of their marine
bio-habitats and base any action in the marine environment on its ecological significance
(Marine Strategy Framework Directive-Descriptors of Good Environmental Status). These
directives constitute the main pillars regarding the capabilities and limitations of the ma-
rine environment, intending to enact Integrated Coastal Zone Management (ICZM) and
Marine Spatial Planning (MSP) strategies. The ultimate objective of these strategies is to
protect the marine environment but also support the European economy through maritime
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development (Blue Growth). It should be mentioned that the value of coastal UCH is
mentioned in ICZM; however, it is usually neglected in coastal management plans even
though it can be a highly beneficial resource [10].

According to MESH (Development of a framework for “Mapping European Seabed
Habitats”), habitats can be defined as “both the physical and environmental conditions
that support a particular biological community together with the community itself”. The
Mediterranean Sea is the birthplace of many unique habitats [6,13–15]. At the Saronic Gulf,
two of the most important marine habitats, P. oceanica meadows [15,16] and coralligenous
formations [15,17], are flourishing. P. oceanica is a marine angiosperm, endemic to the
Mediterranean Sea shallow habitat (0–40 m), and presents multi-aspect benefits to the
marine environment. Posidonia meadows cover 23% of the sea bottom between 0 and
50 m water depth [18], and through photosynthesis, they are one of the key contributors
to the oxygenation of the sea. In addition, the canopy created by the Posidonia leaves act
as a natural wave barrier and prevent coastal erosion, while high amounts of sediment
are retained inside its high-density rhizome [19,20]. Lastly, the Posidonia beds are one
of the habitats with the highest biodiversity as they constitute the feeding and nursing
ground for a plethora of other marine species [21–23]. Coralligenous formations are found
in the whole of the Mediterranean Sea in many different forms [14,24], and their ecological
value is also highly valuable [25]. These unique formations of the eastern Mediterranean,
especially those of the Cyclades Plateau and the Saronic Gulf, are only stated as part of the
ecological dynamics of these areas [13,14,25], and so far, only one article is dedicated to
mapping and studying their characteristics [26].

Since the Last Glacial Maximum (~19 ka Before Present-BP), the sea level has risen by
almost 120 m due to eustatic and relative sea-level change processes [27,28]. Therefore, the
coastal zone was flooded, and prehistoric and historic evidence was submerged under the
sea [29–31]. The maritime tradition in the Mediterranean has offered a wealthy repository
of archaeological remains, submerged port facilities, settlements, and shipwrecks [32–36],
while the geographic location of Greece and its widespread submerged landscapes favor
the existence of findings related to hominin migrations and evolution, early seafaring,
colonization and seaborn trade [37,38]. The earliest archaeological findings to date in
Greece revealed early human occupation during the Lower Paleolithic (0.5 ma BP) [38],
when that of the earliest modern humans’ dispersal out of Africa were dated 210 ka
BP [39]. The first-ever recorded underwater archaeological survey was performed by the
archaeologist C. Tsountas in 1884 A.D. [40], who attempted to find ruins from the historical
Salamis naval battle using diving equipment and a long rod to validate the texture of the
seabed’s substrate. Unfortunately, the low visibility and the great extent of the survey
area did not allow any findings, while he concluded that “maybe in the future more
opportune moments will come for succeeding in such difficult tasks”. Today, the advance
in marine geophysical surveying makes it possible to simultaneously map a great area
of the seafloor’s surface and the substrate with an accuracy of a few centimeters and in
minimum time, without the presence of humans underwater [8,41].

The condition for achieving sustainable coastal zone management and development
is the deep knowledge of the foundations on which it will be based. The foundations
are laid through the detection and detailed mapping of the areas of interest. Given the
dangers that the marine environment confronts, the scientific community needs to develop
an efficient methodology for locating and mapping areas that contain both marine priority
habitats and submerged antiquities within a short period and in a cost-effective way.
Usually, the existence of the two is interdependent since multiple archaeological sites are
accompanied by the presence of seagrass. Seagrass has been proved to play a central role
in the preservation of submerged archaeology, while its ability to accumulate sediment
secures the site and preserves the sedimentary balance [42]. Artificial seagrass mats have
been installed on submerged archaeological sites within the framework of the SASMAP
project, aiming to protect them from erosion [11]. Existing methodologies for mapping
UCH or MPH have been established on the basis of an unambiguous perspective aimed
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at locating and mapping only one of the two elements. In this paper, we propose a
robust methodology that combines existing standard methodologies and merges them with
new/developing practices on how to approach and document areas with a high presence
of MPH accompanied by UCH. This is accomplished through collecting and interpreting
data in three (3) levels of increasing spatial analysis constituting a “downscale approach”
(Figure 1). The proposed methodological scheme was implemented in the Saronic Gulf,
Greece, and was mainly focused on the coastal zone of Aegina city in Aegina island. The
acquired information from the three (3) different data levels contributed to a first attempt
for the development of a Marine Spatial Planning map of the Saronic Gulf.
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Figure 1. Methodological plan for the Detection and Mapping of Marine Priority Habitat Types and Submerged Antiquities.

2. Study Area

To validate our methodological approach, an area that holds great potential of including
both elements (MPH and UCH), and that is under rapid development and anthropogenic
intervention, is needed. For this purpose, the area of the Saronic Gulf (Figure 2), Greece, was
appointed. Since prehistoric times, the islands of the Saronic Gulf were connected through a dense
maritime route network as witnessed by more than a dozen submerged ancient installations,
scattered all around the Saronic shoreline (Kenchreai, Epidaurus, Aegina (Figure 2b), Salamis
(Figure 2c), Zea, Sounio, etc.) [43–47]. Nowadays, the Saronic Gulf is one of the busiest marine
areas in the country, in terms of industrial, shipyard, and shipping activities, while it is the
receptor of the capital city Athens and Piraeus sewage discharge. Especially the northern part of
the Gulf, called Elefsina Bay, is among the most polluted areas in the country, affecting the fauna
assemblage on the seafloor [48–50]. In order to evaluate the human impact on this area, studies
have focused on examining the induced pollution through its accumulation into several benthic
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communities [49,51], and specifically in P. oceanica [16], and applying new desk-based techniques
to evaluate and combine previous [52]. The research was also focused on the water circulation
patterns [53,54], on the detection of alien species invading the gulf area [55], and in the benthic
litter that constitutes a serious threat to the benthic environment [56]. However, according to
the General Directorate of Sustainable Fisheries, the east coast of the Saronic Gulf and part of
Aegina island belong to the areas of maximum priority as the percentage of bottom cover from
the habitat of P. oceanica is of the order >35% per sq. km.
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Figure 2. (a) Map showing the Saronic Gulf and the submerged archaeological findings around it and (b) the surveyed
areas of Aegina and (c) Salamis.

3. Data and Methodological Approach
3.1. First Level of Information: Desk-Based Survey

The first step in the investigation of an area of great ecological or archaeological
importance is the desk-based research, which aims in the collection of broad-scale data
and information about the study area. This is achieved by studying previous scientific
research and literature and collecting data from public access databases. The use of aerial
photographs, satellite imagery and open access bathymetric data is also useful for the
detection of shallow-water marine habitats and submerged antiquities [57,58].

Information regarding the geomorphological characteristics of the survey area (i.e., bathymetry,
topography, landforms) can be acquired through the public access databases such as EMODnet,
European Environment Agency, EU Science Hub, Copernicus, and GEBCO (Table 1). Geological
information and tectonics can be acquired through the National Institutes of Geology since they
are updated more often. An ongoing process of collecting data for marine habitats and submerged
archaeological sites or landscapes have been performed by EMODnet lately, yet it is still in an early
stage. Hence, for more detailed information, it is preferred to study the existing literature for the area
of interest regarding the known submerged archaeological sites. Information for the location and
extent of the marine habitats is usually supplied by each ministry responsible for their mapping and
protection. Additionally, the first delimitation of shallow marine habitats (usually P. oceanica in the
Mediterranean) can be performed by using satellite imagery [59–62] or aerial photos [18,63] (Table 1).

Through the manipulation of these data, a digital map can be created combining all the
available information of different spatial resolutions. The evaluation of this multi-thematic
map will result in mining areas of possible archaeological and also ecological interest,
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which will finally be selected for the implementation and accurate planning of the second
and third levels of the proposed methodology.

Table 1. Instrumentation and means used for the establishment of the 1st level of the proposed
methodological approach.

Information Source Resolution e-link

Satellite Imagery

Google Earth 15 m earth.google.com

IKONOS Satellite 4 m multispectral/1
m panchromatic

earth.esa.int

Spot5 Satellite
10 m

multispectral/2,5 m
fused

Sentinel 2 10–60 m sentinel.esa.int

Geomorphology
(bathymetry,

elevation, sediment
thickness etc.)

EMODnet,
Copernicus,
European

Environment Agency,
EU Science Hub,

GEBCO

25–500 m

emodnet.ec.europa.eu,
www.copernicus.eu

(accessed on 5 August
2021), ec.europa.eu,

gebco.net

Geology, Tectonics Literature, National
Databases - -

Seabed Habitats,
Archaeological Sites

Literature, National
Databases - -

3.2. Second Level of Information: Remote Sensing Survey

When the areas of interest are defined through the first level of the methodology and
the survey area limits are defined, a marine remote sensing survey follows. This step is
about defining and prospecting the survey areas through non-intrusive marine remote
sensing techniques. Marine geophysics is used for mapping extensive areas of the seafloor
with a great vertical and spatial resolution that fits the needs of the survey’s goals, whether
it is for mapping marine habitats, underwater archaeological sites, or a combination of
them both, in a time-efficient and cost-effective way.

For the marine remote sensing survey, a research vessel properly equipped with
modern-day sensors is needed. The vessel must always be equipped with a Multi-Beam
Echosounder (MBES) for high-resolution bathymetrical surveying of the seafloor or/and
a Single Beam Echosounder (SBES) mostly for MBES data verification, a Side-Scan Sonar
(SSS) for the detection and mapping of the morphological features of the seafloor and
targets lying on top, and a Sub-Bottom Profiler (SBP) for the detection of the geological
bedrock, the estimation of the sediment thickness deposited in the survey area, and the
detection of targets buried below the seafloor. Those sensors are the core of every marine
remote sensing survey. More specifically:

• Research vessel and Navigation

The first step for starting the remote sensing survey is choosing the appropriate vessel.
Traditional research vessels are, in most cases, too big to fit the needs of a remote sensing
survey in shallow waters. The vessel must be agile and big enough to accommodate all of
the equipment that will be used for surveying. The high-precision geographical location
through GPS and the monitoring of the vessel’s motion in three axes is of crucial importance.
These are used for data georeferencing, the vessel’s navigation and marine geophysical
data correction. Conventional GPS systems have a precision of about 1m, which is too low
for the goal of accurately mapping the seafloor and especially archaeological areas. Thus, a
Differential GPS with a precision of a few decimeters and even better RTK GPS connected
to GNSS receivers with a precision of some centimeters can be utilized (Table 2).

earth.google.com
earth.esa.int
sentinel.esa.int
emodnet.ec.europa.eu
www.copernicus.eu
ec.europa.eu
gebco.net
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Table 2. Instrumentation and means used for the establishment of the 2nd level of the proposed
methodological approach.

Instrument Use Characteristics Resolution

SSS Morphology/Target
detection

Frequency 100–1000
kHz/Swath 5–200 m 10 cm

MBES Bathymetry/Morphology Frequency 300–455 kHz Depth accuracy~1 cm

SBP Stratigraphy/Target
detection Frequency 1–12 kHz/ 30 cm (Vertical Res.)

Positioning Vessel positioning and
Data Georeference - GPS~1 m/DGPS~0.1

m/RTK GPS~0.01 m

• Seafloor marine geophysical survey

The base for any marine survey that aims to map marine habitats or submerged
antiquities is a bathymetric map of high detail. MBES is the instrument used to achieve this.
MBES consists of an array of multiple transducers that emits a fan-shaped pulse through
multiple narrow beams. The frequency range of MBES systems is between 70 and 700 kHz.
Higher frequencies produce a more detailed bathymetric map at the cost of swath range
and lower depth limit. A high-frequency MBES system in shallow water can achieve up to
1 bathymetric point per 5 cm2. MBES systems are also used for mapping geomorphological
features of the seafloor through backscatter analysis of the echoes. Mapping of underwater
biological communities through MBES is considered one of the most effective techniques
as it has been applied in many different cases [64–66], such as detecting P. oceanica mead-
ows [67–69] and coralligenous formations [70]. In marine geoarchaeology, the MBES is
now a basic tool for mapping submerged landscapes and delimiting ancient submerged
structures or shipwrecks [71,72].

For the mapping of the seafloor’s acoustic properties, the SSS is the most appropriate
instrument [73]. SSS is an underwater acoustic sensor that creates 2D images of the sea
surface and the objects lying on top of it. This is conducted by emitting acoustic pulses
in high frequency and recording the reflected echo of it. The interpretation of the echo
is based on: (a) the strength, where a higher backscatter intensity corresponds to a hard
bottom or surface (i.e., geological outcrop or a wreck) and a lower backscatter intensity
represents soft substrate (fine-grained sediments), and (b) the time difference between the
emitted pulse and the recorded reflection of it (the bigger the delay the furthest the pulse
has reached from the sonar) [74]. The frequency range of it is between 100 and 1000 kHz.
SSS offers higher resolution with higher frequencies that are traded with a lower scanning
range. For high-resolution general archaeological surveying, the standard range is 40 m
and 10–15 m for site-specific surveying [11]. SSS is regarded as the most efficient tool for the
detection and mapping of habitats. P. oceanica meadow is a habitat that has been thoroughly
investigated through SSS [75–78] for mapping its extent or evaluating its ecological status.
SSS is even more important for the mapping of coralligenous formation due to the depth
that most of these formations are found [17,26,34,79–81]. Modern-day remote sensing
surveying considers the simultaneous use of both MBES and SSS a must, and this is why
integrated systems that are able to supply bathymetric and backscatter intensity data
simultaneously have been developed. The technological advancements in the construction
of these sensors make it possible to operate both, if not even more (SBP and magnetometer),
simultaneously in USVs [80,82] and AUVs. With this, it is possible to reduce the survey
time and cost to the bare minimum while maintaining high-resolution mapping. Similarly,
the SSS offers marine geo-archaeologists the possibility to map great areas in minimum
time and discover submerged archaeological sites, shipwreck remains of naval battles, or
submerged landscapes regardless of visibility and environmental conditions [83,84].

• Substrate marine geophysical survey

Remote sensing surveying is not limited to the sea bottom surface. Using the SBP,
information can be gathered for the sediment accumulation at the area of interest, the
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detection of the geological bedrock, and, most importantly, of objects buried inside the
sediment. The SBP emits low-frequency vertical acoustic pulses of a conical shape, which
penetrate the seafloor. The echo is reflected in the layers of the different sediment properties
(acoustic impedance). The stronger the reflected echo, the more compact the sediment
layer. The profile created through this is interpreted based on their continuity, sharpness,
distinctiveness, and amplitude [85]. SBP is widely used in marine geo-archaeology for the
reconstruction of paleogeography and the detection of buried features of archaeological
interest [32,35,86]. SBP, while crucial to the detection of underwater antiquities, is not so
widely used for mapping benthic habitats. This is mostly because most of these habitats
are growing as a layer on top of the seabed with a great spatial extent. Recent studies have
focused on the detection of different habitats through SBP sonograph analysis and for the
evaluation of the substrate where the habitats are developed [34,70]. In addition, seismic
profiles proved useful for calculating the P. oceanica seagrass matte height and estimating
the carbon sink size in the Mediterranean [87,88].

• Seabed Classification

The ultimate aim of the detection and mapping of submerged habitats and antiquities
is to produce simple seafloor classification maps that will constitute the base of the Marine
Spatial Planning maps. All of the maps produced in the second level of information can then
be validated using both manual and automatic seafloor classification methods. Lately, a lot
of classification software products have been developed for classifying acoustic or image
data [34,67,89,90] through object-based image analysis, geostatistical analysis, and machine
learning. The manual or “expert” classification contains the scientists’ manual delimitation
of areas based on the different backscatter intensity, the morphological characteristics, its
validation through ground-truthing techniques, and their experience on their interpretation.
The most trustworthy methodology so far is the combination of all the available means—the
use of the existing automatic classification software and thereafter the manual validation
of the results produced.

For the classification of the acquired data, we used: (i) the Benthic Terrain Modeler [89]
software for the classification of the benthic environment based on the bathymetric position
index, slope, and terrain ruggedness; (ii) the TargAn image segmentation software [90] was
used for the delimitation of the archaeological targets. An image of the bathymetric slope
was used as input where areas with specific characteristics, controlled by the user, were
outlined. The results from these two methodologies were combined with the “expert” clas-
sification results, resulting in the delimitation of the areas covered by P. oceanica and those
related to archaeological findings (Figure 5). The final classification map was validated
using ground-truthing techniques, as described in the third level of information.

3.3. Third Level of Information: In-depth Inspection and 3D Mapping

The third level of the methodology aims to acquire data with maximum vertical and
spatial resolutions from the areas of interest (“hotspots”). These “hotspots” were derived
after the findings of the second level of the methodological scheme and the classification of
the acoustic data using manual and automatic techniques. To acquire data of maximum
resolution, a high-quality inspection of these sites should be performed via visual, acoustic,
or sampling means. The means presented in this methodological part are dependent on
the nature of each “hotspot”. The two broad “hotspot” categories distinguished are those:
(a) lying on the seafloor and (b) buried under the sediments.

The “hotspots” detected lying on the seafloor can be visually inspected through
remotely operated vehicles (ROVs) that are equipped with HD and/or action cameras, laser
scalers, small grabbers, and ultra-short baseline acoustic positioning system (USBL) [91,92].
With this equipment installed on the ROV, researchers can capture high-quality footage
of the site at every possible angle, place measuring scales on site, measure targets, or
perform a small sampling while knowing the position of the ROV underwater at all times.
In the post-process, the visual data collected can be used to create accurate 3D models
of the site through photogrammetry (structure from Motion (SfM) and MultiView Stereo
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(MVS) techniques). SfM-MVS merges photogrammetric principles with advances in 3D
computer vision algorithms [93]. A set of overlapping photographs of the study area
is required as input data. The use of ROVs, especially in deep waters, decreased the
operational risk since the presence of divers underwater is now optional for these tasks.
By these visual means, the biological status of marine habitats, such as corals [94] can be
assessed while regarding the submerged antiquities’ level of preservation and possibly
assessing their age [95]. Unmanned surface vehicles (USVs) have also been used for
photogrammetric and bathymetric purposes in shallow areas that are not accessible by boat
to map submerged antiquities [96], and they can also be used for bathymetric mapping in
shallow waters. In the case that “hotspots” are detected in extremely shallow waters or
they are a continuation from the land towards the sea (semi-submerged), a very detailed
combined elevation and bathymetry can be acquired by using airborne remote sensing
techniques, such as Laser Imaging Detection and Ranging (LiDAR) systems and UAVs,
which are able to produce detailed bathymetric data of high quality [97]. Their application
has been growing recently, using them for the detection of archaeological features [98,99]
and seagrass mapping [60,100].

In the second category, the inspection of sites buried under the sediments cannot
be achieved via visual means unless an excavation is preceded. The first non-intrusive
approach to a buried site is to use a 3D sub-bottom profiler and acquire a dense grid of
data [101]. This cutting-edge technology gives the researchers the ability to acquire seismic
profiles from very shallow areas (<−0.5 m) and create a 3D cube of seismic data with a
resolution of a few centimeters. By using sophisticated 3D software, researchers are able in
post-process to “slice” the cube in all directions and reveal the information needed.

Another non-intrusive method to detect submerged (ferromagnetic) antiquities under
the sediments is the magnetometer. Magnetometers can map the Earth’s magnetic field and
the magnetic anomalies created by the presence of ferromagnetic buried targets. It is usually
used to detect metallic objects, yet, ancient anthropogenic constructions and habitation
ruins can also be detected [102]. A less often used method is electromagnetic surveying
which uses electromagnetic signals for the detection of conductive objects. Acquisition of
magnetic and electromagnetic data is operated by towing the equipment behind a research
vessel while performing a grid of track lines with spacing less than double the size of the
selected target [103].

Apart from excavation, another intrusive and less destructive method of sampling
a site is coring. Cores are natural archives of earth and human history. Coring can be
performed via using a gravity, hammer, or piston corer to vertically sample a sedimentary
sequence. Depending on the sediment texture and permeability, researchers can retrieve up
to a maximum of 16 m of undisturbed sediment [104]. In this way, multiple sedimentary
analyses can be performed to study the sedimentation rate of the area, paleo-climatology
(via various proxies), sea-level change, and environmental biota changes. To unravel the
information hidden inside the microcosm of the core, an extended series of analyses can be
performed. Important core scanning non-destructive techniques include X-ray radiography
and computerized tomography (CT), X-ray fluorescence analysis (XRF), etc. Using X-ray
radiography and CT, it is possible to visualize core internal structures (that are visible
due to the density difference and atomic composition), fractures, and general physical
properties of the core in 3D [105,106]. Paleo-climatic variations can be reconstructed by
studying the chemical composition of sediment archives. This can be achieved by using
X-ray fluorescence (XRF) core scanning. XRF counts the major and trace elements, and by
calculating the ratios of different elements, it is possible to understand the paleoclimatic
factors that affected the environment over a great timescale [107].

Intrusive techniques include the most important dating techniques (137Cs, 14C, 210Pb,
Th230, Optically Stimulated Luminescence (OSL)) that are essential for the establishment of
the sedimentation rate, and they are powerful tools when combined with other analyses.
More traditional techniques for paleo-climatic information include microfossil analysis
(geochemical proxies, total organic carbon (TOC), total nitrogen (TN), lipid biomarkers,
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etc.), palynology, and isotopes (δ18O, δ13C) These techniques can supply scientists with
important information for paleoenvironmental reconstruction. In addition, currently
evolving techniques such as environmental-DNA (e-DNA) analysis can help scientists to
record alterations in the environment and the organisms living in it. When combined with
dating analysis it is feasible to reproduce paleo-environmental and paleo-biotic changes in
time and, as a result, track the evolution and adaptation of organisms [108].

4. Results and Analysis
4.1. Implementation of the First Level: Desk-Based Survey

Data regarding the broader area of the Saronic Gulf were collected to build a map
that summarizes all the available information for our survey area. The Saronic Gulf is the
northwestern end of the South Aegean Active Volcanic Arc. The mountainous environment
surrounding it is responsible for the formation of the central NS-oriented bathymetric
plateau with a 90-meter maximum depth, which connects the island of Salamis with those
of Aegina and Methana. Due to this plateau and the NS extensional back-arc tectonism, the
Saronic Gulf is segmented into eastern and western parts that form four basins: Megara,
Epidavros, Salamis, and Aegina basins with a maximum depth of 220 m, 421 m, 98 m,
and 226 m, respectively (Figure 3). The enclosed Saronic Gulf bounded by the Attica and
Peloponnese peninsulas offered protection from the extreme wave and wind conditions of
the Aegean, while the spatial distribution of the islands offered an easy connection between
them in antiquity. For these reasons, the gulf is surrounded by ancient submerged coastal
facilities all along its shoreline. At least nine submerged archaeological sites are reported in
the literature [43,45,47,101], which extend from the southwestern to the southeastern capes
of the Saronic gulf (Vagionia, Vathi, Psifta, Ancient Epidaurus, Aegina, Kenchreai, Salamis,
Piraeus-Zea-Mounichia, Sounio). The seafloor geomorphology and oceanographic setting
favored the development of extended seagrass fields (P. oceanica) at the eastern part of the
gulf and the island of Aegina. The data derived from the Hellenic Ministry of Agricultural
Development and Food were disseminated as maps of tiles, with a dimension of 1 × 1
km, with each tile presenting the percentage of coverage of the seafloor with P. oceanica
(red: over 35%; green: 25–35%; yellow: 5–25%). P. oceanica meadows in the Saronic gulf
are only found to the north and west coast of Aegina island, and an even bigger extent is
mapped at the west coast of the Attica Peninsula (Figure 3). The absence of P. oceanica at the
western part of the gulf is probably linked to the geomorphological characteristics of the
coast, such as the steep seafloor that prohibits the development of extended seagrass fields.
In the northern part, at the area of Elefsina, the anthropogenic intervention that caused
marine pollution is the main factor responsible for the sparse life on the seafloor [109–112].

By interpreting the final map, the two candidate areas fulfilling the criteria (existence of
both ecological and archaeological features) for the implementation of the second and third
levels (Figure 3) were those of the coastal zone of Aegina and that of Sounio in south Attica.
The area of interest in Sounio has been extensively surveyed in the frameworks of the
SASMAP project [11,47]. Thus, the main area used for the methodology implementation is
that of the coastal zone of Aegina city, in Aegina island, where one of the biggest P. oceanica
fields in the Saronic Gulf is apparent. The seafloor at the west coast of Aegina is covered by
35% per sq. km by the priority habitat P. oceanica. This seagrass field is accompanied by
an ancient submerged archaeological harbor complex, which is of utmost archaeological
importance since it contributed to the dominance of the Aegineans in the naval and trading
field from ~1800 to 459 BC [113]. Aegina fulfills all the criteria needed for implementing
both the second and third levels of our proposed integrated methodological plan. Finally, an
additional area was used to present only new practices for the detection of buried features
under the seabed. This area is the gulf of Ampelakia in Salamis island (north Saronic),
where an ancient harbor, which is believed to have served as the Greek naval base before the
crucial win against the Persians, was recently discovered [114]. Salamis island is a heavily
affected area by human activities, as some of the largest shipyards in Greece have been
functioning there in the last few decades; thus, the bay lacks the presence of marine habitats.
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Even if the area does not fulfill both criteria needed for our methodological approach, both
the second and third research levels were implemented, but only specific new practices
were selected to be presented at the third level of the methodological approach (Section
4.3). The results from the second level of the methodology are presented extensively in the
book Salamis 480 B.C (pp. 392–411) [101].
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4.2. Implementation of the Second Level: Remote Sensing Survey

For the implementation and testing of the second level of the downscale approach, the
area of the Aegina harbor was selected (Figure 4a). The vessel used for the survey was modified
to perform the survey and carry the whole of the instrument array (Table 3). The design of
the survey lines was conducted through the Hypack 2014 navigation software. The line plan
consisted of two parts: (a) one with lines parallel to the shoreline with a spacing of 40 m
(Figure 4b) and, when needed, (b) one with lines perpendicular to the shoreline with a spacing
of 80 m. These two track line plans, in conjunction with the swath range of the SSS being
100 m and MBES ground range of 150m, allowed full coverage of the area with sufficient
overlap between 25 and 50%, with each successive line to achieve the best data resolution.
The RTK GPS Emlid Reach was utilized for the vessel positioning and the IMU-108 Motion
Sensor for recording its three-axis movement. For the bathymetric survey, the ITER Systems
BathySwath1 interferometric MBES was deployed. The Edgetech 4200 SP SSS was used for the
morphological survey and target detection, while for the stratigraphic evaluation, sediment
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thickness accumulation, and the detection of buried targets, the Kongsberg GeoPulse Plus SBP
was operated.
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zone); (c) example from the satellite imagery showing the two criteria needed for the proposed methodology: marine habitat
(P. oceanica) and submerged archaeological findings (conical rubble structures); (d) example of the SSS backscatter intensity
from the same area; (e) MBES bathymetry and location of the seismic profile in (f); (f) seismic profile as derived from the SBP.
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Table 3. The marine remote sensing techniques applied and their specifications.

Instrument Type Deployment Specs Resolution

ITER Systems
BathySwath1 MBES Over the Side

Depth Range 50 m/
Beams 126/Beam width
1.5◦/Frequency 234 kHz

Depth accuracy of ~2
cm

Edgetech 4200 SP SSS Towed

Frequency 100 and 400 kHz
(Simultaneously operated with

Chirp Technology)/Swath
Range 25–500 m/Depth Rating
2000 m/Beam Width 1.5◦ @100

kHz and 0.4◦ @ 400 khz

Across track resolution
of 8 cm @100 kHz and 2

cm at 400 kHz

Kongsberg
GeoPulse Plus SBP Over the Side

Transducers 4/Frequency
1.5–18 kHz (Chirp

technology)/Pulse Length
down 1 mS- Penetration 80 m@

Clay, 6 m @ Coarse Sand

Penetration 80 m @
Clay, 6 m @ Coarse

Sand/Vertical down to
6 cm

The marine remote sensing survey in the Aegina coastal zone yielded several new
pieces of information about the submerged antiquities and the extent of the P. oceanica fields.
The bathymetry of the coastal area is characterized by smooth inclination, and the deepest
surveyed depth was 15 m (Figure 4e) at a distance of 800 m from the coast. The seabed
is mostly covered by P. Oceanica seagrass and sandy sediments, while rocky outcrops are
especially apparent close to the shore (Figure 4d,e). The extent of the P. Oceanica field is
between 1 m and 15 m water depth. The densest field was recorded at the northern part
of the area, where its deep limit was not recorded as the field extends in greater depths.
This seagrass is observed in the backscatter mosaic (Figure 4d) as areas of medium to high
backscatter intensity, while the sandy parts of the seafloor are of low backscatter intensity.
P. oceanica appears in the seismic profile as areas of chaotic reflections that acoustically mask
the subsurface (Figure 4f). The sediment thickness of the area is derived by the digitization
of the seafloor and the acoustic bedrock (Figure 4f).

Through the SSS survey, the submerged antiquities of the area were mapped in high
detail. The archaeological findings consist of conical rubble structures, part of which is
shown in Figure 4d. These structures are constructed parallel to the shoreline in depths
ranging between 8.5 and 10.1 m. The whole site is about 1.6 km in length and extends up to
250 m from the coast. The sediment thickness of the area is between 0–5 m, and the thickest
part is located in the southern area, while the area close to the shoreline is the one with the
least accumulated sediment. While no buried targets of archaeological value were found in
the area, several pieces of new information, such as the morphometric characteristics, were
extracted for the conical rubble structures [115]

• Seafloor Classification

The Benthic Terrain Modeler [89] (BTM) software was used to classify the benthic
environment based on the bathymetric data and the seafloor geomorphic derivatives
(i.e., bathymetric position index, slope, aspect, and ruggedness) (Figure 5a). BTM con-
tributed to the broader delimitation of the seagrass P. oceanica, the rocky outcrops, and
the archaeological remains. The detailed delimitation of the archaeological remains was
performed through seafloor segmentation. The bathymetric slope was converted to a
greyscale image and was processed in the TargAn software for segmentation. The software
segmented the image into areas by detecting the image’s strong and weak edges. TargAn
proved highly efficient in their detection (Figure 5b) and was also used for the extraction
of the seafloor parameters. However, areas that were affected by anthropogenic activities
(i.e., dredging) complexed the seafloor segmentation process and resulted in their inclusion
in the possible archaeological areas. To avoid this biased result, these two methodologies
were combined and were evaluated based on the “expert” classification (manual), where
the P. oceanica seagrass, the rocky and sandy seafloor, and submerged antiquities were
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classified based on the acoustic data interpretation (i.e., backscatter intensity, bathymetry,
seismic profiling). The combined classification techniques resulted in the creation of a
detailed classification map where the submerged antiquities, the seagrass P. Oceanica, and
the seafloor texture were defined (Figure 5c).
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archaeological targets using TargAn software [67]; (c) final classification map after validation with expert classification.

4.3. Implementation of the Third Level: In-Depth Inspection and 3D Mapping

• ROV Ground-truthing and Photogrammetry

To perform a high-quality visual inspection of the areas of interest, so-called “hotspots”,
which were mapped on the seafloor, the filming of a small part of a well-shaped conical
rubble structure was performed. For the accurate inspection of the cone, a remotely oper-
ated vessel (ROV) was deployed. The ROV was always equipped with a USBL acoustic
positioning system. At first, a ground-truthing survey was performed, which confirmed
the existence of the rubble structures and that of the seagrass P. oceanica (Figure 6a,b).
A carbon fiber tube was installed at the front part of the ROV, where three action cameras
were screwed onto it (Figure 6c). The two side cameras were placed at a 30◦ angle on the
Y-axis and 45◦ on the X-axis so that they both focus on the front and center view. The
middle camera was also inclined 30◦ on the Y-axis, while it remained oriented to the front.
The cameras were synchronized and set to record high-quality videos (1920 × 1080 pix)
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to acquire footage from three different cameras and three different angles. In this way,
a very dense set of overlapping photographs was collected. The post-processing of the
data collected was performed using Agisoft Metashape (www.agisoft.com, accessed on 5
August 2021) software, where 3D models were constructed [116,117] (Figure 6d). The pho-
togrammetric survey revealed the size of the stones and was used to calculate the number
of rocks needed for the cone construction.
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the rubble cone as derived from the photogrammetric survey.

• 3D Sub-bottom Profiler

Since no buried targets were detected at the area of Aegina, an example of the use of
the 3D SBP in the Saronic Gulf was selected to be presented for this part of the method-
ology from the island of Salamis, Ampelakia bay, where the ancient port of Salamis was
found [101]. It is supported that this is where Greek naval forces gathered before the
naval battle against the Persians in 480 B.C. [114]. An extended network of survey lines
was performed at the bay of Ampelakia with a spacing of 5 m, while, at the areas where
submerged features were detected, the lines were densified down to 1 m of spacing. In the
following example, the top view of two selected targets found within the 1 m interval
grid is presented (Figure 7). These two cubes consist of sub-bottom seismic data that
were interpolated using sophisticated 3D interpolation software (Voxler©). The red colors
represent the high backscatter intensity, the green is medium, and the blue represents low.
The two targets are placed at a distance of 30 m and are of different geometries. Target
A is located south of Target B, and it is buried at −1 m below the seafloor at a depth of
−2.8 m and is fringe-shaped. The maximum length (Y-axis) is 14 m, and the maximum
width is 7 m (X-axis). Target B is at a distance of 40 m NW from Target A, and it is buried
at the same depth. It has a triangular shape, a maximum thickness of 0.5 m, and a depth
of −2.8 m. Its length reaches 12 m and has a width of 8 m. The reflectivity of Target B is
slightly lower.

www.agisoft.com
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• Sediment sampling

In the same area of Salamis, Ampelakia bay, at a close distance to “Target A”, a 1.2 m
length sediment core was acquired from the seabed. For this operation, a hammer-type
corer was used by professional divers at a depth of 2.2 m (Figure 8a). The sediment core was
carefully retrieved on land, where e-DNA samples were retrieved right after the core was
retrieved. e-DNA constitutes a great tool in paleoecology. Sediment is a natural repository
of the earth’s and humans’ history. After the e-DNA sampling, the core was moved to
the sedimentology laboratory for further sampling and analysis. At first, the core was
measured and scanned in order to make a photomosaic of it. Then, a detailed macroscopic
description of the core was performed. In the macroscopic description, features such as
the color of the sediment were described using a Munsell color swatch book, while an
estimate of the grain size (cobbles, sand, silt) and grain size distribution (sorting: poor,
medium, well) was described. In addition, an extended description of the biogenic material
(size, kind, presence, etc.) and bioturbation was made (Figure 8b). This first part of the
core description is very important since it provides the first pieces of information about
the stratigraphy of the area and also shows the depths where transitions or abrupt events
altered the sedimentary regime.
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5. Discussion
5.1. Marine Spatial Planning

The first objective of the proposed methodological plan is to create a multi-leveled and
multi-thematic geodatabase that will allow users to correlate, join and combine datasets of
different spatial analyses and information. These datasets include information regarding
the seafloor, such as morphology (bathymetry, slope, backscatter intensity), the stratigraphy
and composition of the substrate, the extent, type, and ecological assessment of marine
priority habitats, and, to add to that, the extent and morphological characteristics of the
archaeological findings (coastal-submarine).

After that, these data should be assembled in a univocal and easy-to-read map by
the stakeholders and decision-makers. Therefore, a proposed marine spatial planning
map was developed for the Saronic Gulf and was categorized based on already existing
plans [118–121] adjusted to the modern needs of the society and ecological objectives [122]
(Figure 9). It appears that the Saronic Gulf is a multifaceted area that contains a great
amount of tourist/recreation areas and aquacultures even though it is heavily affected by
marine pollution from the Attica peninsula, the most densely populated area of Greece.
However, the presence of P. oceanica habitats is limited to the island of Aegina and the
east part of the Saronic Gulf, while the areas of submerged underwater cultural heritage
are also abundant. By focusing on the two areas surveyed, it was possible to observe the
consequences of the lack of the implementation of marine spatial planning. In the area
of the coastal zone of Aegina, the passenger vessels’ route is crossing on top of shallow
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archaeological structures. This has damaged part of the archaeological site in front of the
modern harbor, where water turbulence and mechanical disturbance from the passing-by
vessels have wrecked them [115] (Figure 9c). In the northern part of the Saronic Gulf, which
is heavily affected by marine pollution, the P. oceanica fields are not apparent [109–112]. At
the area of Ampelakia Bay, Salamis (Figure 9b), the archaeological site is bounded to the
east by shipyards during the last decades, risking the viability of the site and contributing
to marine pollution.
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The rising human activities and resource exploitation has increased pressure on the
coastal zone and the marine environment. For this reason, the delimitation of areas
including priority habitats and cultural heritage is essential. Stakeholders and decision-
makers should be aware of the resources’ spatial extent in order to plan a sustainable
future that will allow the balanced management of sea resources’ exploitation and nature’s
cultural heritage preservation. With the implementation of the proposed methodology,
it is possible to perform marine spatial planning (MSP) and supply the local community
with information for the establishment of an integrated coastal zone management plan
(ICZM) [123]. Maritime and coastal cultural heritage is generally protected; however,
cultural resources have been neglected in integrated coastal management plans thus far
[10]. The development of holistic management plans is not universal and common for all
countries, yet it has been found that marine spatial plans should be adjusted to the needs
and resources of each area [124]. For instance, the Greek and the Mediterranean coastline,
in general, contain an enormous part of human history that is of utmost importance to
be preserved and available for educational and recreational purposes. This coastal and
underwater wealth cannot be ignored from marine spatial planning since it constitutes a
vital part of our history [10].

5.2. Open Challenges

The proposed methodological approach presents many advantages in mapping both
MPH and UCH but also limitations that remain open as future challenges.

• Extremely shallow waters

Marine geophysics is an essential tool in offshore coastal mapping, yet its efficiency is
restricted up to specific depths. In extremely shallow waters, where archaeological remains are
primarily apparent, including many marine priority habitats, the acquisition and interpretation of
acoustic data are much more complicated, even in perfect weather conditions [38]. Recently, this
gap has been efficiently covered by using cost-effective USVs equipped with sonars especially
for extremely shallow waters or with underwater cameras that can be used to produce detailed
3D models through photogrammetry [125–127]. To add to that, more efficient tools for mapping
in very shallow waters are airborne systems, such as LIDARs [97,128,129], drones [117,130],
and satellite images [131]. By using laser or imagery, researchers can produce highly accurate
maps/3D models and fill the “white ribbon” zone between the offshore and onshore coastal parts.
These are considered unique tools for connecting the offshore with onshore findings, without the
need to merge different Digital Elevation Models, acquired through different instrumentation,
while they are considered much more efficient than acoustics in very shallow waters [132].

The detection of buried features under the sediment and especially those of smaller
sizes still remains a challenge for researchers since sub-bottom profilers are not able to
work efficiently above the depth of 1 m. For this reason, electrical resistivity tomography
has been used to map the extremely shallow buried archaeological remains with great
success [133–135].

• Integrated Multi-Frequency Systems and Seafloor Classification

The advance in Multi-beams (MBES), Side-Scan Sonars (SSS), and ROVs have facili-
tated large-scale seafloor mapping compared to the classic surveying techniques (i.e., sam-
ple collection) that provided detailed information but only for a small area [136,137]. The
integrated MBES and SSS systems allow the simultaneous acquisition of accurate backscat-
ter intensity and bathymetric data, which can be corrected through the use of RTK GPS
and motion sensors. In addition, the use of multi-frequency systems in a single vessel pass
proved very efficient in marine habitat mapping [67] since it increased the accuracy of the
seabed classification.

Lately, there is increasing interest in automated classification, especially in the detec-
tion of marine priority habitats, such as object-based image analysis (OBIA), geostatistical
analysis, and machine learning methods [138–140]. These modern methodologies now
have similar results with the “expert” classification, and they allow the repeating and unbi-
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ased classification [136]. However, “expert” classification is a common and trustworthy
approach that is still a prerequisite for the evaluation of automated classification results.
Automatic detection and classification of submerged archaeological remains are not so
common [36] among geoscientists since it was a challenging task in previous years [141].
However, in the current article, the TargAn image analysis software proved highly efficient
in their detection using the seafloor slope parameter.

A future challenge in seafloor automatic detection software is the creation of an
all-inclusive software that will be able to combine acoustic data (backscatter intensity,
bathymetry, and seismic profiles) and produce real-time seafloor classification maps
(or probability classification maps) that will allow scientists to make decisions on the field.

6. Conclusions

To achieve sustainable coastal zone development and simultaneously protect the
marine environment in times of increasing anthropogenic pressure, local stakeholders
and decision-makers must be aware of the biological and cultural wealth that is hidden
underwater. For this reason, we propose a time- and cost-effective methodological approach
for its detection and detailed mapping. The downscale methodological approach consists
of three methodological axes of increasing spatial resolution:

(i) Desk-based research: The desk-based research contributed to the establishment of a
multi-thematic digital database created from online databases and literature, which
contains all the available information regarding the broader area of interest. It con-
tains geomorphological data (elevation, bathymetry, geology, tectonics, paleoshores,
etc.), already known areas containing marine priority habitats, and submerged ar-
chaeological findings. The evaluation of this multi-thematic map will result in mining
areas of possible archaeological and also ecological interest for further analysis.

(ii) Marine geophysics/Seafloor classification: The selected areas were further surveyed
using marine geophysical means, resulting in the establishment of geomorphological
maps of the coastal area (i.e., bathymetric, acoustic backscatter intensity, stratigraphy).
Automatic combined with “expert” seafloor classification techniques produced a
multi-thematic map where the different seafloor classes (sand, rock, seagrass, sub-
merged antiquities) were outlined.

(iii) In-depth visual inspection/3D mapping: The outlined seafloor classes were validated
using ground-truthing techniques (ROV). Photogrammetric techniques were used for
the detailed 3D reconstruction of archaeological features, while 3D seismic profiling
revealed the geometric characteristics of buried features under the seafloor.

The methodology proposed can be used to set the basis of the Integrated Coastal
Zone Management (ICZM) and Marine Spatial Planning (MSP) strategies as it produces
the necessary information for their establishment. It combines existing and new techniques
that proved successful in the detection and mapping of marine habitats and submerged
antiquities. The MSP map constructed for the Saronic Gulf demonstrated the lack of
holistic coastal zone management plans due to impacts on UCH linked to anthropogenic
intervention in the Aegina coastal zone and the sparsity of marine habitats owing to marine
pollution in the broader area of Salamis.
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