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Abstract: The Industrial Internet of things (IIoT) is the main driving force behind smart manufactur-
ing, industrial automation, and industry 4.0. Conversely, industrial IoT as the evolving technological
paradigm is also becoming a compelling target for cyber adversaries. Particularly, advanced per-
sistent threats (APT) and especially botnets are the foremost promising and potential attacks that
may throw the complete industrial IoT network into chaos. IIoT-enabled botnets are highly scalable,
technologically diverse, and highly resilient to classical and conventional detection mechanisms.
Subsequently, we propose a deep learning (DL)-enabled novel hybrid architecture that can efficiently
and timely tackle distributed, multivariant, lethal botnet attacks in industrial IoT. The proposed
approach is thoroughly evaluated on a current state-of-the-art, publicly available dataset using
standard performance evaluation metrics. Moreover, our proposed technique has been precisely
verified with our constructed hybrid DL-enabled architectures and current benchmark DL algorithms.
Our devised mechanism shows promising results in terms of high detection accuracy with a trivial
trade-off in speed efficiency, assuring the proposed scheme as an optimal and legitimate cyber
defense in prevalent IIoTs. Besides, we have cross-validated our results to show utterly unbiased
performance.

Keywords: Industrial Internet of Things; Internet-of-Things; network security; deep learning

1. Introduction

The Industrial Internet of Things, also known as Industrial IoT, is an industrial frame-
work in which a large number of devices or machines are connected and synchronized
using software tools and third platform technologies for providing varied services to
internet users, public and private sector organizations, and smart industries and Indus-
try 4.0 [1,2]. In the recent era, the IIoTs are experiencing astonishing growth rates due to
their sensing, storing, and intelligence power in the current smart world [3,4]. From a
recent statistical report, 70 billion IoT devices are expected to be connected over the internet
in 2025 [5]. Such dependence on IoT results in the generation of a significant amount of
data, processing, and examination. No doubt, big data analysis is also valuable for business
development [6]. However, the biggest threat to potentially reduce the growth of IIoTs are
numerous cyber threats that can compromise the integrity of user data and underlying
IoT application for further exploitation. Besides, the risk of being physically compromised
that underlies IoT devices due to their prevalent nature is also considered a critical threat
in IIoTs environment [7]. Cyber defense is a pivotal prerequisite for potential growth of
IIoT [8].

Therefore, adversaries practice diverse kinds of malware techniques to obtain access
to an IoT device for malfunctioning the entire IIoT network [9]. Attacks performed on a net-
work are fundamentally resilient to detect and have been a proven strategy to compromise
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interconnected systems and devices [10]. The adversary breaks the security and obtains
the benefit to access the user’s records, steal sensitive information, and inject malicious
code for further exploitation or hijacked hardware. The heterogeneous and dynamic nature
of IoT gadgets and various resource constraints such as energy, memory, and processing
power amplifies the potential cyber threats exponentially that may prompt Denial of Service
(DoS), distributed Denial of Service (DDoS), information infusion, advance persistent threat
(APT), and modern malware botnet attacks altogether [11,12]. Moreover, the IIoT devices
are prone to complex hacking approaches, physical security dangers for the accessibility
and classification of data, or even compromise the complete IoT-based network. Hence,
IIoT requires an adaptable, robust, and cost-effective technique for the identification of
pervasive and prevalent cyberthreats [13].

In recent years, research has been executed for addressing various security challenges
for IIoTs such as confidentiality, privacy, policy enforcement, and key management issues,
and so forth [14]. Besides, traditional techniques such as antiviruses and firewall protection
can be easily evaded by zero-day intrusions [15]. Machine learning (ML) techniques are
also considered powerful and mostly rely on analysis of the features of existing patterns.
However, the extant ML schemes become less effective for zero-day attack variants. The
prime challenge for malware identification framework is to find a means for extraction of
useful features and detect sophisticated malware efficiently [16]. Deep learning is consid-
ered an ideal current shift for the identification of pervasive IIoT cyber malware threats and
attacks [17,18]. To address the aforementioned challenges, we present an efficient hybrid
DL-driven multiclass cyberthreat and -attack detection scheme for proficiently identifying
distributed variant malware botnet attacks in IIoTs. The offered key contributions are
as follows:

1.1. Contributions

• We propose an efficient hybrid DL-enabled technique for the detection of sophisticated
distributed IIoT botnet attacks by deploying Long short-term memory (LSTM) and
Convolutional Neural Network (CNN).

• Extensive simulations have been performed on N_BaIoT 2018 dataset to evaluate
the performance of proposed algorithms by utilizing extended performance metrics
(accuracy, precision, recall, F1-score, etc.).

• For corroboration purposes, the proposed approach is compared with our constructed
hybrid DL-driven architectures (i.e., DNN-DNN and CNN-CNN) and current bench-
marks. Our proposed mechanism outperforms the others in terms of detection accu-
racy.

• Extensive experimental results demonstrate that our proposed method is an effective
and efficient approach for multivector botnet detection.

• We also performed 10-fold cross-validation to avoid showing biased performance results.

1.2. Organization

The remaining parts of the paper are organized in the following way. Section 2
presents the literature review with background knowledge. Section 3 contains the research
approach, dataset description, preprocessing of dataset, architectural description of hybrid
LSTM-CNN. Section 4 consists of software and hardware requirements and experiment
results discussion. At last, Section 5 comes to an end with the proposed scheme and
future map.

2. Background and Related Work

The Internet of Things (IoTs) is a conversion from a basic physical conventional object
to a smart object through the utilization of cutting-edge technologies such as commu-
nication technologies, applications, sensor networks, internet protocols, and pervasive
computing. Due to the wide range of applications of IoTs in the smart city ecosystem, the
flawless implementation of a secure IoT network is necessary. The IoT environment can
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be explained as the enormous interconnected heterogeneous devices and systems with
different communication protocols and patterns [13,19]. To deliver intelligence-enabled
services to users, the IIoT architecture has consisted of computational objects linked with
IoT infrastructure. Moreover, the IoT network has been developed as a four-layer architec-
ture named as the devices layer, network layer, infrastructure layer, and application layer.
The taxonomic simple architectural diagram of IIoT can be visualized in Figure 1.

Figure 1. The Industrial Internet of Things system architecture.

The perception layer is included with the connected physical objects and their con-
nectivity through different access points such as a radio tower, satellite, wireless access
point, and satellite dish. The physical sensors are physical objects and the objective is
to sense, gather, and process information. As the IoT devices are resource-constrained
devices due to limited processing capabilities, data delivery is the key step for designing
a context-aware IoT system. The higher number of IoT devices and ever-increasing data
on a daily basis generated through these devices indicate a correlation with big data and
expansion in intelligence-based ecosystems. The connectivity of heterogeneous devices
helps to provide smart services to users that should be low-powered communication for
transmission of data [20,21].
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The network layer enables the corporation between diverse IoT devices so they can
interact with each other effortlessly. Moreover, the network layer also provides interoper-
ability and scalability in the IoT realm. The main function of this middle layer is context
awareness and device discovery, which should be provided to support the surrounding
IoT objects. The security and privacy of IoT devices are also handled at the middle layer
because the data gathered from these devices are mostly industry or human-related and
the security mechanisms are also deployed for IoT security. The IoT-based system has
applications in several domains including smart healthcare, transportation, smart grids,
and smart cities. At the application level, the services are delivered to consumers and the
data gathered and analyzed are integrated for the business objective. The integrated data
through different levels of IoT models are used for social and economic growth [11].

Due to the advancement of varied IoT devices in the industry, the security of IoT
networks has become the prime focus. To provide a practical solution from the existing
security vulnerabilities in IoT systems, researchers have focused on presenting DL//ML-
based attack identification frameworks [22–25]. In [26], the author proposed an ensemble
technique of Recurrent families that are required to identify various IoT cyberattacks
through analysis of network traffic. The dataset considered is Modbus/TCP network traffic
dataset synthetic based on an industrial automation context. The proposed technique
obtained 99% detection accuracy. Consequently, [27] presented a scheme for IoT-based
phishing and botnet attacks through distributed deep learning. The LSTM classifier has
been practiced and employed with the N_BaIoT dataset and achieved 94.3% and 94.80%
accuracy for phishing and botnet attacks, respectively. Chen et al., in [28], introduced an
intrusion detection method for conversation-based traffic analysis employing five different
machine learning classifiers named Random Forest, REP tree, Random Tree, Bayes-Net,
and Decision Tree. Using the CTU-13 dataset, the approach has achieved a detection rate
of 93.6%.

In another study, Bansal et al. [29] proposed anomaly-based IDS using three different
deep learning classifiers named Clustering, Neural Network stimulated by LSTM, and
Recurrent Neural Networks for IoT’s. The proposed mechanism has been experimented
with using ISCX and CTU-13 datasets, achieving the detection accuracy of 98.8%, 98.39%,
and 83.09% for Clustering, NN-LSTM, and RNN, respectively. For malicious traffic de-
tection, Pektaş et al. in [30] proposed a DL-Driven network traffic flow behavior analysis
leveraging Neural Network. This approach has been evaluated for binary classification
utilizing the ISOT and CTU-13 datasets, and achieved the detection accuracy of 99.3% and
99.1% respectively. Moreover, Sharma et al. in [31] presented a machine-learning-based
approach for the detection of evolving malware through analyzing the network traffic
features. The dataset contains 11,688 malware collected from the Malicia project and 4006
benign gathered from multiple systems connected over the network. The framework has
been executed using diverse machine learning classifiers (i.e., RF (random forest), LMT
(Logistic model tree), NBT (Naïve Bayes Tree), FT (Functional Tree), and J48) whereas
RF achieved an accuracy of 97.95%. In [32], a K-Mean Clustering technique for labeling
the dataset was presented. The decision tree has been experimented for the detection of
cyberthreats in IoT communication using the ISCX dataset, achieving the accuracy of 88%,
which can be improved by using loss function to reduce classification error. Whereas,
in [33], the authors proposed a Logistic-Regression-enabled botnet detection technique for
IoT. The proposed scheme can scale enormous malware samples into groups of clusters
based on their behavior. The technique achieved 97.3% detection accuracy.

The author in [33] used features selection to minimize the features that are helpful to
detect the bots in IoT. These features provide a high accuracy detection rate over the IoT to
detect the botnet. Machine learning technique called decision tree classifier is experimented
on N-BaIoT dataset. Deep learning provides a flexible environment for detecting malware.

The research work of [34] presented an efficient IoT-based malware detection through
packet-level analysis by implementing a Bidirectional Long Short-Term Memory based Re-
current Neural Network (BLSTM-RNN). The paper also generated a labeled dataset having
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attack vectors such as a botnet and benign traffic. Experimental results showed detection
accuracy for Mirai, DNS, and UDP as 99%, 98%, and 98%, respectively. Consequently,
in [35], the authors provided a technique through LSTM to inspect the statistical-based
network flow feature. The experimental results are achieved through the Cresci dataset
and achieved 99% detection accuracy for IoT malware detection. The datasets utilized for
the proposed scheme are CTU-13 and ISOT, which are pure binary (i.e., botnet, normal).
These datasets are a combination of both botnet and normal traffic. Machine learning and
deep learning classifiers i.e., SVM, Logistic Regression, Random Forest, KNN stand-alone
LSTM, stand-alone dense, and combined layer are used and showed an accuracy of 99.3%.
All convolutional approaches are executed on CPU and all deep learning approaches are
executed on GPU.

In [36], the author focuses on finding domain names that do not belong to data in
context, statistical information, etc. For this, Deep-learning-based classifiers known as
LSTM, RNN, CNN, and CNN-LSTM are employed. However, the dataset composed of
one billion records of benign collected from Alexa, open-DNS, and malicious records was
created from 17-DGA. Deep-learning-based IDS in [37] was presented for identification
of intrusions, leveraging Gated Recurrent Neural Network in IoT network. The proposed
classifier achieved a detection accuracy of 98.91% and FAR of 0.76%. Consequently, the
article [38] employed deep Auto Encoder and Deep Forward Neural Network for detection
of malware attacks in IoTs. This model scored a detection accuracy of 99%.

As per the findings from the literature review, despite achieving high detection ac-
curacies, there still exist several limitations including high computational complexity,
reliability on humans, extensive data modifications, and also inconsistent accuracy levels.
Researchers have been working on hybrids, ensembles, and also experimenting on diverse
hyperparameters (e.g., training, optimization, activation, and classification) to come up
with the most accurate and time-saving solution for anomaly detection. Existing research
also demonstrates that ensemble or hybrid techniques have a lot of potential in the field of
network security anomaly detection. The goal of deep hybrid learning techniques is not to
surpass existing classifiers, but to make use of their capability for not misclassifying unseen
data. Nonetheless, in contrast with other existing intrusion detection schemes for IoT, we
present a comprehensive hybrid framework based on cutting-edge deep learning from the
IoT security perspective. This paper presents an efficient approach to identify sophisticated
attacks in IoT environments through utilizing the predictive power of deep learning.

3. Research Methodology

This section presents the proposed hybrid DL-enabled multivector attack detection
framework for IoT systems. The foundation of the presented model is a combination of
several processes. The initial step is the dataset description and observation of features.
In the subsequent step, the preprocessing of the dataset is performed, which is included
with removing data redundancy, cleaning data, visualization, feature engineering, and
data transformation. After preprocessing, data were prepared for input to classifiers for IoT
attack identification. Consequently, the hybrid Long short-term memory (LSTM) [39] and
Convolutional Neural Network (CNN)-based [40] efficient and scalable malware detection
framework is presented.

3.1. Dataset

The features of IoT devices can be analyzed through the internet protocols and ser-
vices they utilize. Network traffic analysis is the ideal choice for the identification and
classification of cyberattacks. In any exploration, to obtain precise results, authentic and
accurate data must be provided as input data. To design a reliable and applicable intrusion
detection system, the data gathered from real devices are optimal to use. However, most
of the present analysis approaches utilized datasets collected using the sandbox, which
is not precise for the real deployment of identification frameworks in IoT infrastructure.
In this study, we used the N_BaIoT 2018 dataset captured through real IoT devices. This
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dataset fills a gap in the public botnet databases, particularly for IoT devices. The dataset
N_BaIoT 2018 contains the features of real normal traffic [41] and 9 different IoT devices
(i.e., Doorbells, Thermostat, Baby Monitor, Security Cameras, and Webcam). The N_BaIoT
dataset considers the two malware families of a botnet: GAFGYT and MIRAI. The available
dataset traffic were comprehensively recorded for normal and 2 distinct botnet attacks. For
our experiment, we considered 6 diverse IoT devices and two botnet families, Gafgyt and
Mirai, to detect Botnet attacks. The dataset distribution for the proposed scheme is defined
in Table 1.

Table 1. N_BaIoT Dataset for Practical Experimentation.

Classes Number of Records

Benign 27,892

Gafgyt 199,651

Mirai 246,559

Total 468,102

3.2. Preprocessing Phase

Deep learning requires a comprehensive data analysis to predict IoT traffic as malicious
and benign. So, the very first step was to arrange information in such arrangement that it
would be compatible with the input to any deep learning classifier. The dataset contains
missing values, infinity, and nan values. In data denoising, these unexpected values were
removed from the dataset. In the following step, the types of features were identified, such
as numerical and categorical data. The conversion of categorical to numeric data was also
performed through label encoding.

3.3. Detection Phase

In this research, a robust, proficient, scalable, and highly accurate hybrid IoT multi-
variant botnet attack detection scheme is presented through leveraging Long-short-term-
memory (LSTM) and Convolutional Neural Network (CNN), as portrayed in Figure 2.
The proposed approach aims to design a system for the identification of Gafgyt and Mirai
attacks. The proposed LSTM-CNN architecture mainly included three steps to recognize
intrusion in smart devices.

Step 1. Modeling of data dimension

At the start, the pre-processed network traffic data is mapped into two-dimensional
(2D) feature vector for CNN. As the variants of CNN classifier can be of different dimen-
sions starting from 1D to 3D, the data for the experimentation are the number of samples
(features, records); so, they are mapped into 2D.

Step 2. Initialization of CNN and LSTM network

For the experimentation, the CNN network was designed with an input layer, three
hidden layers, and an output layer. To facilitate the CNN algorithm for feature learning, the
input layer converted the 1D network dataset into 2D plane data. Three convolution layers
and a flatten layer were included in the implied layer. The convolution layer continually
maps the sample data to a high-dimensional space and learns the network connection data
feature information. By lowering the dimension of the retrieved features, the flatten layer
decreases computation and enhances the model detection efficiency. However, the LSTM
network consists of an input layer; three hidden LSTM layers; and finally, an output layer.
The data were mapped on the input layer to feed forward to LSTM cells. The LSTM layers
were attributed to achieving success in recognizing network anomalies efficiently.
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Step 3. The combined output

Once both the classifiers were initialized and executed for the identification of attacks
in IoT, the additive merge was performed to manifest the ultimate performance of a
proposed algorithm.

The complete design of hybrid LSTM-CNN architecture, including layer architecture,
number of neurons set in each layer, activation function, loss function, number of epochs,
and batch size, are detailed in Table 2. Moreover, we constructed other contemporary
hybrid architectures (i.e., CNN-CNN, DNN-DNN) for a comprehensive evaluation of our
proposed technique. To address bias, we also performed 10-fold cross-validation.

Figure 2. Architectural description for the proposed hybrid LSTM-CNN framework.

Table 2. Description of algorithms for the system model.

Algorithm Layers Type Neuron Output MergeOut Output

CNN

CNN Layer Convolution 25

CNN Output

Output

CNN Layer Convolution 20 Dense Layer(15)
CNN Layer Convolution 15 Dense Layer(10)
CNN Layer Flatten Dense Layer(3)

LSTM
LSTM Layer 25

LSTM OutputLSTM Layer 20
LSTM Layer 15
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Table 2. Cont.

Algorithm Layers Type Neuron Output MergeOut Output

DNN
Dense Layer 25

DNN Output

Merge Output

Dense Layer 20
Dense Layer 15

DNN
Dense Layer 25

DNN OutputDense Layer 20
Dense Layer 15

CNN

CNN Layer Convolution 25

CNN Output

Output

CNN Layer Convolution 20 Dense Layer(15)
CNN Layer Convolution 15 Dense Layer(10)
CNN Layer Flatten Dense Layer(3)

CNN

CNN Layer Convolution 25

CNN OutputCNN Layer Convolution 20
CNN Layer Convolution 15
CNN Layer Flatten

Batch Size = 256, Epochs = 5, Optimizer = Adam, Activation Function = Relu, Loss Function = Categorical Cross-Entropy.

4. Experimental Results and Discussion

This section presents our simulation results and a basic description of performance
metrics. For framework development and evaluation, the Anaconda (python distribution
platform) was utilized. The detailed software and hardware system specifications for the
proposed DL IoT malware detection scheme are defined in Table 3. Moreover, the proposed
solution was evaluated using a set of classification metrics as Detection Accuracy, Recall,
Precision, Area Under Curve (AUC), True Positive Rate (TPR), False Positive Rate (FPR),
False Omission Rate (FOR), False Negative Rate (FNR), Matthews Correlation Coefficient
(MCC), Negative Predictive Value (NPV), and F1 Score. The proposed hybrid LSTM-CNN
was also evaluated against the 10-fold cross-validation technique. The k-Fold validation
technique is a statistical model to evaluate supervised AI-based classifiers. k-Fold provides
prediction accuracy and also avoids overfitting in the model, where it repeats to obtain
maximum scoring while it lacks in obtaining predictions.

Table 3. Hardware and software specifications for evaluation of proposed algorithms.

Component Software

CPU: Corei7-8750H@2.21 GHz Windows 10

RAM: 16 GB Python, TensorFlow, Pandas, Keras

Graphic Card: 4 GB 1050 Ti Numpy, Scikit-Learn, Matplot

Discussion

To show the legitimacy and productiveness of our proposed methodology, we per-
formed some experiments to show a basic implementation of a model for multiple attacks
of IoT botnet. For evaluation, the experiment is executed for three classes, two botnet
attacks (i.e., Marai, gafgyt), and one benign class.

To assess the performance of our experiment, we evaluated our model on various
parameters, i.e., Accuracy, Recall, Precision, Confusion Matrix, and F1-Score. The values
of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
were taken from the confusion matrix, which was further used to calculate other standard
parameters (i.e., accuracy, precision, recall, F1-score, etc.). The confusion matrices for the
proposed and other constructed hybrid classifiers are defined in Tables 4–6. According to
the graph, LSTM-CNN classified 46,794 samples accurately and misclassified 18 samples
overall, which is a more accurate classification compared with DNN-DNN (27 misclassified)
and CNN-CNN (20 misclassified).
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Table 4. Confusion matrix for LSTM-CNN.

Predicted Class
Actual Class

Benign Gafgyt Mirai

Benign 2786 4 0

Gafgyt 9 19,957 0

Mirai 1 4 24,051

Table 5. Confusion matrix for DNN-DNN.

Predicted Class
Actual Class

Benign Gafgyt Mirai

Benign 2784 9 0

Gafgyt 6 19,778 1

Mirai 2 9 24,222

Table 6. Confusion matrix for CNN-CNN.

Predicted Class
Actual Class

Benign Gafgyt Mirai

Benign 2875 7 0

Gafgyt 3 19,755 1

Mirai 5 4 24,165

Standard evaluation parameters such as Accuracy, Precision, Recall, and F1-score were
evaluated to show the performance of the proposed framework, defined in Figure 3. The
hybrid LSTM-CNN performed better with 99.95% detection accuracy, 99.72% precision,
99.58% recall, and 99.58% F1-score compared with other hybrid classifiers. The high
detection rate of LSTM-CNN is due to the combined predictive power of two distinct
classifiers (i.e., LSTM, CNN) from two different families of deep learning. The results for
the 10-fold cross-validation technique are presented in Table 7.

Accuracy Recall Precision F1-Score
99.4

99.6

99.8

100.0

99.58 ~ 99.59

99.68

99.66

99.72

99.59 ~ 99.58

99.92
99.94

Pe
rc

en
ta

ge
 (%

)

 Hybrid Cu-(LSTM & CNN)
 Hybrid Cu-(DNN & DNN)
 Hybrid Cu-(CNN & CNN)

99.95

Figure 3. Accuracy, precision, recall, and F1-score of proposed algorithms.
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Table 7. 10-fold of Our proposed algorithms.

Accuracy (%) Recall (%) Precision (%)

Folds L-C D-D C-C L-C D-D C-C L-C D-D D-D

1 99.9 99.9 99.9 99.5 99.3 99.7 99.8 99.6 99.7
2 99.9 99.9 99.9 99.6 99.6 99.5 99.8 99.3 99.6
3 99.9 99.9 99.9 99.6 99.5 99.5 99.7 99.7 99.7
4 99.9 99.9 99.9 99.5 99.7 99.4 99.7 99.8 99.8
5 99.9 99.9 99.9 99.7 99.6 99.5 99.6 99.6 99.9
6 99.9 99.9 99.9 99.6 99.6 99.6 99.6 99.7 99.2
7 99.9 99.9 99.9 99.2 99.6 99.6 99.7 99.4 99.6
8 99.9 99.9 99.9 99.6 99.5 99.5 99.7 99.7 99.8
9 99.9 99.9 99.9 99.3 99.5 99.7 99.8 99.6 99.5

10 99.9 99.9 99.9 99.7 99.5 99.5 99.3 99.7 99.7
Abbreviation Terms: C-L Hybrid (LSTM and CNN), D-D Hybrid (DNN and DNN) C-C Hybrid (CNN and CNN).

False Positive Rate (FPR) is additionally called False Alarm Rate (FAR), and it speaks
to the proportion between the erroneously classified negative examples to the complete
number of negative examples. False Discovery Rate (FDR) and False Omission Rate (FOR)
measures complement the PPV and NPV, respectively. The False Negative Rate (FNR) or
miss rate is the proportion of positive samples that were incorrectly classified. The hybrid
of LSTM-CNN achieved rates for FPR, FDR, FNR, FOR as 0.017%, 0.027%, 0.041%, and
0.026% respectively (Figure 4).

Hybrid Cu-(LSTM&CNN)

Hybrid Cu-(DNN&DNN)

Hybrid Cu-(CNN&CNN)
0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.017

0.022

0.019

0.027

0.035

0.031

0.041 0.04

0.025
0.026

0.036

0.04

Pe
rc

en
ta

ge
(%

)

 FPR  FDR  FNR  FOR

Figure 4. FNR, FPR, FDR, and FOR of proposed algorithms.

In addition, the TNR, MCC, and NPV values were calculated from the confusion
matrix. The true negative rate (TNR) is the ratio of correctly classified attack samples to the
total number of attacks. The Matthews Correlation Coefficient (MCC) measurement shows
the correlation between the observed and predicted rankings. Negative Predictive Value
(NPV) calculates the ratio of correctly classified attack dataset to the total predicted attack
dataset. The calculated values are portrayed in Figure 5.
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Hybrid Cu-(LSTM&CNN)

Hybrid Cu-(DNN&DNN)

Hybrid Cu-(CNN&CNN)
99.88

99.90

99.92

99.94

99.96

99.98

100.00

99.98

99.97

99.98

99.92

99.89

99.92

99.97

99.96

99.97

Pe
rc

en
ta

ge
 (%

)

 TNR  MCC  NPV

Figure 5. TNR, MCC, and NPV Rate of Proposed Algorithms.

Table 8 shows the comparison of our proposed technique with four very similar
approaches for malware identification in IoT. The compared results clearly show efficient
results in terms of detection accuracy and other standard performance metrics. Moreover,
none of the compared schemes were executed for multivector attacks.

Table 8. The table of comparison for our findings and other existing benchmarks.

Parameters [42] [43] [44] [41] Proposed

Dataset ISCX2012 CTU-13 POT N_BaIoT N_BaIoT

Algorithm CNN MLP Deep CNN Autoencoder LSTM-CNN

Binary_class – X X – –

Multi_class X – – – X

10-fold – – – – X

Accuracy 99.57 99.20 92.00 99.95

Precision 99.02 98.80 86.65 98.80 99.72

Recall 99.26 98.92 91.85 98.92 99.58

F1-score 99.10 98.92 94.00 98.92 99.58

Testing Time 2078 (ms) – – – 1.58 (ms)

FPR 0.11 – – – 0.013

Other
Metrics X – – – X

Others = TNR, FNR, FDR, FOR, BM, MCC, TS, NPV.

The execution time for the proposed classifier is defined as shown in Figure 6.
Three milliseconds were taken by the model LSTM-CNN higher compared with other
hybrids (DNN-DNN, CNN-CNN). It can be viewed from the graph that LSTM-CNN has
a trivial trade-off with other algorithms in testing time. Consequently, there is a need
for improvement to minimize the execution time of the proposed algorithm. AU-ROC is
considered an essential graphical observation parameter. The relationship between True
Positive Rate (TPR) and False Positive Rate (FPR) has been shown through AU-ROC. The
line representation of every class near to axis indicates its potential. AU-ROCs for proposed
and constructed contemporary classifiers are presented in Figure 7. The achieved results of
more than 90% for TP rate for almost all 3 distinct classes direct the AU-ROC curve close
to unity.
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Figure 6. Testing time of proposed algorithms.

Figure 7. AU-ROC curve of proposed algorithms.
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5. Conclusions

The inadequate security measures of diverse IoT devices and prevalent environments
expose them to diverse sophisticated threats and attacks in IIoTs. In this study, we pro-
posed a hybrid DL-driven architecture leveraging Long short-term memory (LSTM) and
Convolutional Neural Network (CNN) for cyberthreats and lethal botnet distributed attack
detection in IIoTs. The proposed method outperformed 99.95% in attack detection rate
against multivector attacks, and after careful evaluation, we found a negligible trade-off in
terms of speed efficiency. Finally, we inscribe and investigate the other hybrid architecture
of deep learning for the detection of varied cyberattacks in diverse IoT communication and
computational environments.
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