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Abstract: The DDoS attack is one of the most notorious attacks, and the severe impact of the DDoS
attack on GitHub in 2018 raises the importance of designing effective defense methods for detecting
this type of attack. Unlike the traditional network architecture that takes too long to cope with
DDoS attacks, we focus on link-flooding attacks that do not directly attack the target. An effective
defense mechanism is crucial since as long as a link-flooding attack is undetected, it will cause
problems over the Internet. With the flexibility of software-defined networking, we design a novel
framework and implement our ideas with a deep learning approach to improve the performance of
the previous work. Through rerouting techniques and monitoring network traffic, our system can
detect a malicious attack from the adversary. A CNN architecture is combined to assist in finding an
appropriate rerouting path that can shorten the reaction time for detecting DDoS attacks. Therefore,
the proposed method can efficiently distinguish the difference between benign traffic and malicious
traffic and prevent attackers from carrying out link-flooding attacks through bots.

Keywords: distributed denial of service (DDoS) attack; link-flooding attack (LFA); deep learning
(DL); software defined networking (SDN)

1. Introduction

Various network attacks had caused severe damage to the Internet community in the
real-world over recent years [1-6]. The link-flooding attack is a kind of distributed denial
of service (DDoS) attack that does not directly attack the target devices but congests the
target link with a large number of low-speed flows to reduce the connectivity between end
devices, so it is difficult to detect with the intrusion detection system or firewall. Thus, it
draws the attention of designing an effective way to detect link-flooding attacks quickly to
protect the Internet infrastructure from danger. Rasool et al. [2] gave a pretty nice survey
on this issue, and they suggested a possible solution via the machine learning approach.
We propose a deep learning method to help resolve the link-flooding problem based on
software-defined networking.

Link flooding attack is one of the most troublesome attacks in modern Internet soci-
ety [2]. It utilizes a large quantity of seemingly normal traffic to congest the target link in
the network. It can be hard to identify the low-rate network traffics as malicious flows
since they use normal flows to avoid being prone to distinguish. However, in practice, an
attacker may carry out link-flooding attacks through many bots with low-rate flows to
tremendously degrade the connection between end devices with low costs.

Due to the flexible architecture of the software-defined networking (SDN) environ-
ment, designing an SDN-based defense mechanism to deal with link-flooding attacks can
be a good choice. SDN is a relatively new type of network paradigm that separates the
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control plane from the data plane. SDN’s programmable features can help quickly respond
to threats that are usually difficult to counteract in the traditional network framework.

We use rerouting techniques to relieve the link-flooding attack by virtually increasing
the bandwidth of the target link in the network [7,8], which is also easier to implement with
SDN architecture. A fast defense workflow is crucial when addressing the link-flooding
attacks problems to mitigate the harm to the Internet. A state-of-the-art link-flooding attacks
defense mechanism, SPIFFY, develops a fast traffic-engineering algorithm to increase the
bandwidth of the target link with a binary search procedure [7]. However, binary search is
a deterministic procedure since it always searches the middle m value without leveraging
different situations in the network. We combine the SDN-based defense mechanism with
deep learning methods used to adjust the bandwidth to respond quickly to link-flooding
attacks automatically. A CNN architecture aims to predict the probability of all candidate
m values. That is, searching more adaptively and efficiently.

We leverage its flexibility to construct a network topology for simulation to better
plan and manage network traffic and realize network security monitoring in the SDN
environment. We can detect malicious attacks from attackers through rerouting technology
and a deep learning model that assists in finding an appropriate rerouting path and
shortens the reaction time. In addition, our method can efficiently distinguish between
benign traffic and malicious traffic, and prevent link flooding attacks through bots.

2. Related Work

Recently, machine learning and deep learning approaches have been widely used
in network security for optimization and classification due to the rapid growth in cloud
computing and big data [2]. For instance, Lal et al. [9] introduced a framework that can
guarantee the security and robustness of those artificial intelligence approaches by preserv-
ing the classification with correct labeling. In addition, in network security, an intrusion
detection system (IDS) is an application that can effectively detect malicious behaviors.
Mena [10] proposed that IDS can be categorized into two groups: misuse intrusion and
anomaly intrusion, by its detection patterns. Precisely, the misuse intrusion approach will
match the network traffic to all known intrusion types. In contrast, the anomaly intrusion
will analyze network traffic behaviors and compare them to past behaviors to determine
an attack.

The vast growth of the total number of Internet of Things (IoT) devices also makes
DDoS attacks more lethal by IoT malware, such as Mirai [11], and there have been some
profound research dedicated to dealing with these attacks. For example, Ahmed et al. [12]
proposed a novel network traffic classification network based on application fingerprinting,
classifying DDoS attacks and normal traffic with an accuracy higher than 97% in 5 different
real-world datasets. In addition, Alharbi et al. [13] proposed a local-global best Bat Algo-
rithm for Neural Networks (LGBA-NN) to classify ten different botnet attacks. These two
studies are so-called misuse intrusion-based methods making use of network traffic classi-
fication techniques. However, the abnormal behaviors must be defined firstly for misuse
intrusion-based methods. Otherwise, any unknown behavior will be considered normal.

In addition, SDN-based techniques are new approaches to network management that
improve the performance in traditional attack mitigation and detection [14]. However,
some attacks may also specifically have a devastating effect on SDN and increase risks
different from traditional network architecture. Therefore, there are also some IDS designed
in the SDN-based environment. For example, Wang et al. [15] proposed a Safe-Guard
scheme to protect the control plane from DDoS attacks. The core concept is deploying
multiple controllers and defending dynamically to reduce the impact of DDoS attacks on the
control plane.However, the overhead of synchronization of multiple controllers is not yet
moderately considered and raises the importance of efficient synchronization. Furthermore,
Nam et al. [16] proposed two DDoS attack detection techniques to classify normal and
DDoS network traffic based on self-organizing map (SOM), an unsupervised learning
algorithm mapping from the high-dimensional space to two-dimensional space. However,
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previous studies have shown that SOM-based IDS comes across low performance since
SOM is insufficient for the topology representation with unbalanced distributions [17,18].

In recent years, many studies on mitigating DDoS attacks have explored the effective-
ness of bandwidth reservation techniques. Zhang et al. [19] proposed a spatio-temporal
heterogeneous bandwidth allocation (STBA) mechanism to mitigate DDoS attacks by en-
abling domain-level resource management. Wang et al. [20] proposed LFADefender, a
system based on SDN to defend the link flooding attack. The method involves some
critical technologies, especially the congestion link detecting and rerouting. Tran et al. [21]
presented an in-depth analysis of the feasibility of the routing around congestion (RAC)
defense and pointed out the challenges for the rerouting approach.

SPIFFY [7] is an anomaly-based intrusion detection approach to detect the link-
flooding attack by temporary bandwidth expansion (TBE). The core idea is that after
increasing adequate bandwidth with a factor m by rerouting, legitimate users will also
increase their sending rate approximately m times. At the same time, the bots used by
attackers will not work due to the cost consideration. The different behavior patterns can
help the system correctly identify link-flooding attacks by performing the rate-change test.
Moreover, SPIFFY used a greedy method to find an approximate solution for the effective
factor m and the rerouting path through the target link with a binary search procedure.
In this way, SPIFFY can find an acceptable solution of m with some searching cost and
react quickly to the link-flooding attack. To further decrease the cost of detecting the
link-flooding attack, we design a model combining a deep learning approach based on
state-of-the-art studies. Thus, we replace the binary search with a deep learning approach.

3. Method

Our research aims to use deep learning methods to solve the excessive response time
of traditional networks to malicious attacks. Furthermore, SDN’s flexibility allows better
planning and managing network behaviors and finding abnormal users, identified as
the link-flooding attackers by rerouting. Eventually, we can reduce the time cost when
recognizing the link-flooding attackers with the deep learning approach.

We first generated a link-flooding attack dataset related to our research goals—using
such a dataset to train the deep learning models and learn the value of m required for
rerouting, thereby shortening the reaction time for detecting DDoS attacks. Furthermore,
our method can efficiently distinguish between benign and malicious traffic to prevent link
flooding attacks through bots.

We implemented a defense mechanism for network security monitoring based on SDN
technology. With a deep learning model trained in advance, we only need to analyze the
current network traffic to quickly calculate the rerouting path and perform a rate-change
test after rerouting to identify the attackers. Figure 1 shows the structure of our method.

Ingress/egress pairs ,
Residual network

Traffic Bot
analysis detection

DL models

Rerouting Traffic

(install flow rules)

Pred|ct m

Algorithm 2 analysis

SDN

Figure 1. The structure of our method.
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SPIFFY [7] has an algorithm to find a rerouting path when given the target link,
ingress and egress pairs crossing the target link, residual network, and the magnification
of bandwidth expansion if the path exists. Our pre-trained DL model will predict the
magnitude of bandwidth expansion, which is a value of m. Then, when there is a link-
flooding attack, do traffic analysis to get all sending rates of flows. By combining the DL
model with SPIFFY’s algorithm, the controller in our SDN environment will install flow
rules into switches to perform rerouting. Then, do traffic analysis again, and perform a
rate-change test to identify the bots used in link-flooding attacks.

As shown in Algorithm 1, at the start, the controller knows the overall topology and
installs flow rules to the switches. Before the packet transmission starts, we use breadth-
first search to pre-calculate the shortest path of all source-destination pairs and let all the
switches on the path know how they should handle the packets. In a typical network, the
switches usually forward packets according to their destinations, but in our method, we
need to know the transmission rate of the source-destination pairs. Therefore, dividing
into different flow rules helps us capture the usage rate of each flow rule. After installing
all flow rules, if a packet is transmitted to the switch, it will check the flow rule. Then,
the packet will be forwarded by following the matching flow rule, and the match bytes
of which flow rule will be accumulated. Since there is no need to transmit the packet
to the controller under normal circumstances, the speed will be faster than those sent to
the controller.

Algorithm 1 An algorithm for initial flow rules

Require: H: hosts, S: switches, L : links
1: forall i1 € H do
2: Applying breadth-first search (BFS) algorithm from #; to all the others hosts

3 forall i, # h1 € H do

4 for all switch s on the paths from h; to iy do
5: Install flow rule on switch s

6 end for

7 end for

8: end for

As shown in Algorithm 2, when the system detects a flooded link, the controller
starts to calculate the short-term transmission rate of all source-destination pairs and the
residual network. For all the source-destination pairs flowing through the link, we need
to recalculate whose paths. We expect the transmission rate of those pairs to be increased
to m times on the new paths. In Algorithm 2, we select the pairs in random order. When
recalculating the path for each selected pair, the topology consists of the links with capacity
at least m times the transmission rate. We use breadth-first search to calculate the route
again and then install new flow rules into switches. For normal TCP users, all the link
capacities on their new routes are at least m times their original transmission rate, which
should be increased to at least m times in a short time. It only takes tens of seconds to
distinguish between benign users and malicious users. After that, we restore the original
flow rules and continue to monitor the next attack.

Given the usage amount of network traffic and the pairs of nodes having the target
link, we train a CNN model to output the probabilities of different magnifications of
network traffic. Our model contains two parts: preprocessing and model learning. We
explain as follows.
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Algorithm 2 An algorithm for temporary bandwidth expansion (TBE)

Require:
Ctg: The target link,
P: All ingress/egress pairs (s, t) crossing (tq,
Lg: All links with residual bandwidth in the topology
M: A fixed-size array predicted from Deep Learning model, where M; has a higher
probability to be the answer when i is smaller. We divided [1,6) into 16 equal parts,
and M is a permutation of which.

1: procedure REROUTING(P, Lr, M, {g)

Iy <1, u, <6 > We use lower bound and upper bound to prevent redundant
computation. That is, it is not necessary to test M; if M; is out of [I, up).
3: fori =1to 16 do > We will test M; in order.
4: if M; < I or up, < M; then > M; is out of the range, so skip it.
5: continue
6: end if
7: Lt <+ Ly > A temporary copy of Lg for computing
8: ok <— True 1> A flag variable to record whether there is a new path for every
(s,t) € P
9: while (3(s,t) € P hasn’t been selected) do
10: Ly < {¢ | bandwidth of £ >= bandwidth of (s, t) x M;, £ € Lt \ lig}
11: do breadth-first search to find a path from s to t with edges Ly,
12: if (There is a path from s to t) then
13: for all link / € Lt on the path do
14: bandwidth of ¢ := bandwidth of £ — bandwidth of (s, ) x M; >
Recalculate the residual bandwidth of L.
15: end for
16: else > M; is too large to be the answer.
17: ok = False
18: break
19: end if
20: end while
21: if ok = True then
22: Iy == M;
23: else
24: up = M;
25: end if
26: end for
27 > I is the best m value. That is, [}, is large enough, and for each pair (s, t) € P, there

is a new path whose bottleneck bandwidth is at least [, times of the bandwidth of (s, t).
28: forall (s,t) € Pdo
29: Install new flow rules into all the switches on the new path.
30: end for
31: end procedure

3.1. Preprocessing

The available network is translated to an adjacency matrix A € R"*", where n is the
number of switches in a given network topology. Let C;; be the link capacity between
switch 7 and switch j. Then, 0 < AZ-]' < C,-]- represents the residual network between them.

CNN only accepts the fixed-size input while the number of ingress/egress pairs
crossing the target link often varies. Therefore, we translate the pairs into a fixed-size
matrix B € R"*"", where Bj; represents the transmitting rate from switch i to switch j, and
n is the number of switches in the network topology. Note that the bandwidth of flows
with the same source and destination switches will be summed up to the corresponding
matrix entry. CNN is a supervised learning model. In order to formulate our labels, we
initiate the possible values of m based on some observations. It turns out that most of the
values between 1 and 6 are sufficient. Additionally, we divide this interval, i.e., [1,6), into
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16 bins of the same size, By, - - - , By, k = 16, and then the label of a sample is equal to ¢ if
its m value is in the interval [1 + (£ — 1) x ¢, 1+ ¢ x {]. Therefore, we use our proposed
model to classify the best value of m by 16 possible candidates in the interval of [1,6).

3.2. Model Learning

This model takes the matrices A and B generated from the pre-processing part as the
input of CNN. Let the training samples be X = {x;|i = 1,---, N} and the corresponding
labels Y = {y;|li =1,---,N}, where x; is a training sample with two channels A and B,
y; € RF is an one-hot vector represents the ground-truth label of x;, and N is the number of
samples. Our CNN architecture is shown in Figure 2, which contains three hidden layers
and one fully connected layer. Each hidden layer contains a convolution layer, ReLu as
the activation function, and a max-pooling layer. The three convolution layers contain 8,
16, and 32 feature maps, respectively. The size of the kernel is 3 x 3. In the training phase,
we minimize the cross-entropy loss function. The form of the objective function is shown
as follows: Loss(X, Y, 0) = —% YN, 2};1 yijlog(softmax(7;;)), where N is the sample
size, k is the number of bins, 1j; € R* is the output of our non-linear model (i.e., the CNN
architecture), and 6 is the set of parameters of our proposed model.

A hidden layer

Residual network

Pairs in
target link

input

v
[Convolution Layer |
[ RelU |
[Max-pooling Layer |
v
|Fu||y Connected Laver|
Output

|
hidden layer X3

Figure 2. Our CNN architecture.

4. Experiment

Our proposed model aims to improve the approach proposed in SPIFFY by combining
a CNN model. That is, reducing the number of searching times to find a proper factor m
for rerouting. Thus, we create a synthetic dataset and compare our results with SPIFFY. In
our experiment environment, we construct a topology with 10 switches and some links, as
in Figure 3, to evaluate our method. The flow utilization and the target link are generated
randomly to construct the dataset with approximately 45k different situations. In addition,
the proportion of the train-test split is 2:1. Table 1 provides the dataset information for
samples of each class.

Table 1. Number of samples for each class in the dataset.

m 1 1.3125 1.625 1.9375 2.25 2.5625 2.875 3.1875
# 2510 5528 476 3884 4336 1489 2547 5236
m 3.5 3.8125 4.125 4.4375 475 5.0625 5.375 5.6875
# 2485 1606 3247 1369 5854 1316 733 2638
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Figure 3. Topology. There are 10 switches and links (blue square points). Grey circles indicate
the hosts.

The range of m value is from 1 to 6, and we partition the interval [1, 6) into 16 equal bins.
We continuously test m different values sorted in descending order with their probability
given by our CNN architecture. In addition, the top-k accuracy is an evaluation metric that
computes the predicted label’s accuracy among the top k predicted labels. Therefore, we
adopt top-k accuracy to evaluate the performance of our proposed model. Figure 4 shows
the top-k accuracy of the CNN architecture. As the number of training epochs increases,
the top-k accuracy can be improved; the higher the accuracy, the faster the execution speed
of finding a rerouting path in the SDN environment. The accuracy can reach over 90% for
the top 3 candidates of the best m value derived from CNN.

CMIN

10

0.9 —

aCcuracy

=
n

=
T

=
Lu

epoch
Figure 4. Accuracy for the first k candidates of the value of m.

We demonstrate our idea with a simple deep learning model to improve SPIFFY’s
performance since they are easier to design and understand. As a result, we have tried
CNN and DNN architectures rather than other more complicated models such as RNN or
LSTM. Table 2 provides the top-k accuracy for both CNN and DNN architectures, where
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DNN contains three fully-connected layers with ReLU functions and there are 80, 100, and
16 neurons in three layers, respectively. According to our experiment results provided in
Table 2, CNN has a better performance than DNN, so we take CNN architecture as the
deep learning model in our proposed approach.

Table 2. The comparison of top-k accuracy for different deep learning models.

Top-k Accuracy(%) k=1 k=2 k=3 k=4 k=5 k=6
CNN 61.95 78.03 85.60 90.18 93.24 95.03
DNN 62.09 77.83 84.86 89.25 92.64 94.82

The binary search used in SPIFFY [7] aims to find the best m value for temporary
bandwidth expansion by rerouting. Since the range of m is divided into 16 equal parts,
binary search always takes four attempts to look for the best m value. Binary search will
only search for the value greater or less than the current value of m. Similarly, we do not
need to make unnecessary attempts in our proposed architecture, even if the candidate
m value has a higher probability of becoming the best solution. For instance, if there is
a rerouting path with m = 3.5, it implies that the path with m = 2.25 also exists without
additional calculation. Figure 5 shows the distribution of times required for CNN to obtain
the best m value. On average, CNN requires 3.17 times, which is better than the binary
search approach. Thus, using the deep learning method to improve the original binary
search method [7] can reduce the average number of searches. Except for very few cases,
most of them only require a relatively small number of iterations.

CNN

6000 A

5000 A

4000

3000

number of data

2000 4

1000

times
Figure 5. Numbers of searching for finding the best m value.

Moreover, Figure 6 shows the result of setting a threshold to further reduce the number
of searches by considering the top-k accuracy of the CNN architecture. Since the top-k
accuracy shows that there is a 95% chance that the best m value will fall in the first six
candidate m values, most of the cases do not need to search all the possible m values.
Experimental results show that the average number of searches required for CNN is only
2.56 times after adding the user-defined threshold. Note that we should consider whether
this threshold does decrease the number of searching times significantly while keeping
high accuracy.
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6000
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CNN
4000 -
3000 1
2000 1
o- .
1 2 3 4 5

times

number of data

Figure 6. Numbers of searching for finding the best m value with a threshold.

Rasool et al. [2] proposed eight quality metrics for systematically judging the pros
and cons of different link-flooding attack mitigation and detection approaches from an
objective point of view. According to the basis of those performance metrics, we have
improved SPIFFY [7] in terms of detection time and approach used, whereas maintaining
the advantages of SPIFFY in other aspects, such as detection accuracy and scalability.

Specifically, SPIFFY utilizes binary search, which is a traditional technique. By contrast,
we apply a DL-based technique for optimization and thus improve the performance.
Rasool et al. [2] also illustrated the significance of using ML-based detection and mitigation
techniques as an effective first-line of defense against link-flooding attacks. As we have
already mentioned and discussed earlier, Figures 5 and 6 have shown that our proposed
method can reduce the average number of searches for finding an effective m factor of
TBE. Consequently, our approach takes less time for detecting bots used in launching
link-flooding attacks and is more time-efficient than SPIFFY.

Additionally, Figure 6 shows that we can find an appropriate m value using a pre-
defined threshold in most cases. Employing this threshold in our CNN model will maintain
the detection accuracy of SPIFFY. As we develop our approach in the manner of deep learn-
ing, the scalability of our link-flooding attack detection solution can also be guaranteed,
which means it can be deployed in a large-scale network environment.

5. Conclusions

SPIFFY [7] was proposed to defend against link-flooding attacks. However, it is
time-consuming to recalculate the feasible paths for all the source-destination pairs that
pass through the target link. Furthermore, it must be calculated online, unlike the initial
transmission path that can be pre-calculated. Therefore, binary search is used in SPIFFY
to search for the appropriate m value. However, the paths must be recalculated for every
attempt of m value because the graph is associated with m. Therefore, we propose a
deep learning method to reduce the number of search attempts, achieving over 95% top-6
accuracy. Our method generates the probability of the possible distribution of the m value
through the model. We try from the m value with high probability first and then use
the upper and lower bounds to avoid the impossible m values. On average, we can find
the appropriate m value with fewer attempts of 2.56 times with a pre-defined threshold,
which is better than 4 attempts with binary search in SPIFFY. As a consequence, in a
real-time network environment, it can identify malicious attackers and reduce the impact
of malicious attacks.
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Abbreviations

The following abbreviations are used in this manuscript:

DDoS Distributed denial-of-service

IoT Internet of things
SDN  Software-defined networking
IDS Intrusion detection system

DL Deep learning

BFS Breadth-first search

TBE Temporary bandwidth expansion
CNN  Convolutional neural network
ReLU Rectified Linear Unit

RNN  Recurrent neural network

LSTM  Long short-term memory
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