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Abstract: The boiling heat transfer performance of porous surfaces greatly depends on the morpho-
logical parameters, liquid thermophysical properties, and pool boiling conditions. Hence, to develop
a predictive model valid for diverse working fluids, it is necessary to incorporate the effects of the
most influential parameters into the architecture of the model. In this regard, two Bayesian opti-
mization algorithms including Gaussian process regression (GPR) and gradient boosting regression
trees (GBRT) are used for tuning the hyper-parameters (number of input and dense nodes, number
of dense layers, activation function, batch size, Adam decay, and learning rate) of the deep neural
network. The optimized model is then employed to perform sensitivity analysis for finding the most
influential parameters in the boiling heat transfer assessment of sintered coated porous surfaces on
copper substrate subjected to a variety of high- and low-wetting working fluids, including water,
dielectric fluids, and refrigerants, under saturated pool boiling conditions and different surface
inclination angles of the heater surface. The model with all the surface morphological features, liquid
thermophysical properties, and pool boiling testing parameters demonstrates the highest correlation
coefficient, R2 = 0.985, for HTC prediction. The superheated wall is noted to have the maximum effect
on the predictive accuracy of the boiling heat transfer coefficient. For example, if the wall superheat
is dropped from the modeling parameters, the lowest prediction of R2 (0.893) is achieved. The
surface morphological features show relatively less influence compared to the liquid thermophysical
properties. The proposed methodology is effective in determining the highly influencing surface and
liquid parameters for the boiling heat transfer assessment of porous surfaces.

Keywords: pool boiling heat transfer coefficient; sintered coated porous surfaces; deep neural
network; Bayesian optimization; gaussian process; gradient boosting regression trees

1. Introduction

Due to rapid advancements in the machining industry, microelectronics devices
have gained popularity. These devices produce large amounts of heat. For the system
safety and health of these devices, the removal of high heat fluxes in minimal space
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has become a challenge. These high heat fluxes cannot be handled by single-phase heat
transfer. With the exploitation of latent heat, two-phase techniques are providing improved
results, and several phase change phenomena are under investigation, for instance pool
boiling, gas-assisted evaporative cooling, and spray cooling. Boiling heat transfer is a
ubiquitous phenomenon because of its large heat-removing ability. Its applications are
diverse, from renewable energy systems to refrigeration industries, desalination, nuclear
reactors, and waste heat recovery plants. Similarly, if there is an uplift in the performance
of the evaporator, it will be reflected in the efficiency of the heat pump. In the past decade,
much research has been carried out to understand the boiling phenomenon.

Boiling heat transfer mainly depends on the surface and liquid thermophysical prop-
erties, and usually there are some constraints on the working fluid [1]. So, the best way
to enhance the heat transfer is to modify the surface geometry [2]. Enhanced surfaces’
morphologies can be changed by using various methods, broadly classified as active and
passive techniques [2]. Surface engineering is performed to encourage rewetting, increase
the nucleation sites, and improve the effective boiling surface area [3]. Advanced additive
manufacturing technique are providing a great deal of flexibility in getting an optimized
porous geometry, and many studies have been conducted on porous surfaces. As reported
by researchers, the boiling performance of enhanced surfaces is improved due to the pres-
ence of a large number of bubble seeding cavities (nucleation sites), facilitating earlier and
more numerous bubble detachment [4,5]. At the same time, porous substrates have also
been able to extend the CHF limit by interrupting the bubbles’ coalescence because of
their having separate liquid–vapor paths, facilitating sustainable liquid replenishment [4].
Leonardo et al. [6] reported on two porous metal foams’ (Ni and Cu) performances with
respect to the heat flux. They found that copper foam showed significant improvement
throughout the boiling curve as compared to the simple surface. They attributed this
enhancement to the improved thermal conductivity of copper. Through visualization,
they found that Ni foam successfully generated many small bubbles at low heat flux and
reduced the ONB; however, at high heat flux, it resisted the early removal of large bubbles,
which deteriorated the heat transfer.

Among various coated surfaces, sintered surfaces have shown promising results with
higher stability [7]. Pastsuzko et al. [8] prepared sintered microporous surfaces and con-
ducted visualization experimentation during the pool boiling of water and FC-72. They
observed 130% and 75% enhancements in heat flux for water and Fc-72, respectively, with
respect to the plain sample. Furthermore, they also developed a simple semi-analytical
model to predict the boiling heat transfer. Halon et al. [9] tested the samples manufac-
tured by Pastsuzko et al. [8] and analyzed the boiling behavior under sub-atmospheric
conditions using water as the working fluid. They also observed enhancement in heat
transfer. However, the best-performing sample under atmospheric conditions was the
worst-performing under sub-atmospheric conditions. Arvind and Satish [10] created three
boiling surfaces to analyze the microchannel performance with varied microporous coat-
ings. During their tests, the maximum degree of enhancement was achieved by the sample
with fully sintered microchannels as compared to the other two surfaces (only fin tops and
channel walls). Xu et al. [11] investigated the role of the shape of the pore opening, coating
thickness and thermal conductivity of the material during the pool boiling of DI water on
open-celled metallic foam-sintered surfaces. They found that the sintered foam sample
performed better than the grooved-shape surface because of the high pore density of the
sintered foam structure. Moreover, the larger grooved samples’ performance was poorer
than the narrow-grooved one’s because of the low capillary force of wide grooves. Jun
et al. [12] conducted a parametric study of the pool boiling of water on sintered copper
surfaces. They studied the particle sizes of 10 µm, 25 µm and 67 µm with different coating
thicknesses. They observed a plausible increase in heat transfer coefficient (HTC) and
critical heat flux (CHF). As compared to the plain sample, the maximum enhancement
in HTC was 8× at a particle size of 67 µm with a coating thickness of 296 µm, and the
highest reported improvement in CHF was 2× at the particle size of 67 µm and coating
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thickness of 428 µm. Within their tested range, both HTC and CHF increased as the particle
size or coating thickness increased. Another research group [13] prepared honeycomb
porous structures with and without radial gradient by electrodeposition and sintering
in a reducing environment. They tested the samples in the pool boiling of DI water and
found that the samples with radial gradient, and smaller pores at the center than near the
edges, showed better heat transfer than the sample with uniform structure. They attributed
this enhancement to the higher K/Reff, and as per their investigation, a radial gradient
from edges to center assisted in quicker rewetting. Furthermore, through visualization
experimentation, they also found that the radially distributed porous sample generated
larger bubbles at a faster rate, which helped in removing more heat than in other samples.
Recently, Pastsuzko et al. [14] investigated the boiling heat transfer of water, FC-72 and
Novec-649 on microporous sintered surfaces with and without mesh. They postulated that
mesh coverings on the sintered micro-finned surfaces are only effective at low heat flux for
liquids with low surface tension, because at the high heat flux (50 kW/m2 for FC-72 and
100 kW/m2 for ethanol), maximum performance was recorded in the sample with no mesh
or covering.

Aim and Motivation of the Study

As reported by researchers, porous surfaces’ performance greatly depends on the
morphological parameters, and these parameters are affected by changes in the working
fluid. So, to develop a predictive model valid for diverse working fluids, it is necessary
to incorporate the effect of these parameters and the thermophysical properties of the
working fluid. The predictability of the empirical correlations is usually hampered by these
parameters, because these correlations were developed on a limited database. To cover
a wide range of data, an artificial intelligence (AI) model, based on advance algorithms
and new libraries, can be developed with high accuracy [1,15]. Keeping this in view, the
objective of this study is to develop Bayesian optimized deep neural network models to
perform a sensitivity analysis for finding the most influential parameters in the boiling
heat transfer of sintered coated porous surfaces fabricated on copper substrate, subjected
to a variety of high- and low-wetting working fluids, including water, dielectric fluids,
and refrigerants, under saturated pool boiling conditions and different surface inclination
angles of the heater surface. The detailed impacts of combined and individual surfaces,
liquids, and boiling condition parameters have been assessed for a range of tested data.
In line with this, the most impactful parameters are highlighted by representing their
predictions. The proposed method can help to assess the strong morphological parameters
of sintered coated porous surfaces subjected to a range of working fluids and pool boiling
conditions. The proposed methodology is effective in determining the highly influential
surface and liquid parameters for boiling heat transfer assessment.

2. Materials and Methods
2.1. Experimental Data Collection

In the present investigation, 380 data points have been collected from the saturated
pool boiling experiments of microporous coated surfaces for different high- and low-surface
tension working fluids including water, dielectric liquids, and refrigerants [11,12,14,16–34].
Most of the tested porous surfaces are manufactured by sintering techniques. The con-
sidered porous surfaces have a range of morphological parameters in terms of particle
diameter, surface roughness, coating thickness, and porosity. The considered data include
the saturated pool boiling results for a variety of surface inclination angles (0–180◦). The
investigated wall superheat is 0–40 K and the heat transfer coefficient ranges between 0.5
and 476 kW/m2 K. The experimental data range of the studied parameters can be seen in
Table 1.
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Table 1. Investigated experimental data range.

Parameter Value Unit

Wall Superheat 0.5–38 K
HTC 0.45–476 kW m−2 K−1

Heat Flux 0.3–18088 kW m−2

Surface Inclination 0–180 ◦

Saturation Temperature 56–100 ◦C
Liquid Density 997–1680 Kg m−3

Heat of Vaporization 88–2257 kJ kg−1

Specific Heat 1100–4180 J Kg−1 K−1

Surface Tension 10–72 m Nm−1

Thermal Conductivity of the Working Fluid 0.057–0.608 W m−1 K−1

Porosity 39–65 %
Particle Diameter 11.2–1000 µm
Coating Thickness 250–590 µm

2.2. Methodology

Training and testing data are divided 80–20% as is commonly practiced in the litera-
ture [35,36]. Firstly, two models were developed by considering the surface parameters,
liquid thermophysical features, and surface inclination angle. In one of the models, other
than the aforementioned parameters, heat flux was taken as the added input parameter,
while in the second model, wall superheat was taken as the added input parameter. It was
noticed that the wall superheat model showed much better prediction ability compared to
the heat flux model. Based on these findings, we decided to consider the wall superheat
model for the further assessment of boiling heat transfer coefficient.

2.2.1. Bayesian Optimization (BO)

Bayesian optimization is used to select the hyper-parameters for evaluation in the true
objective function by building a probability model of the objective function. This employs
the Bayes theorem for determining the maximum and minimum of an objective function.
There are different techniques available based on the BO. Here, the two most common BO
methods, GPR and GBRT, are considered for hyper-parameter optimization.

2.2.2. Gaussian Process Regression (GPR)

The GPR model is an ML framework employed for classification and regression
problems. This is a nonparametric Bayesian method for regression. GPR can work well for
small databanks. The GPR model predicts by including prior knowledge, and provides
predictions uncertainty measures.

2.2.3. Gradient Boosting Regression Trees (GBRT)

Decision trees are machine learning algorithms that are most famous for their feature
selection. These can be used for classification and regression problems. Decision trees
for regression problems are known as regression trees. The model starts learning with
an increase in the iterations. The training process stops when the hyper-parameters are
triggered. GBRTs are iterative algorithms in which each tree takes account of the error in
the previous one, and their final outcome is the mean of all trees’ predictions.

These algorithms require comparatively less effort in preprocessing data, and can
process incomplete data. However, they are expensive in terms of the computational
training time.

In order to achieve the optimized deep learning model, the hyper-parameters were
tuned by using the Bayesian optimization method. Here, two different Bayesian optimiza-
tion methods, namely, Gaussian process regression (GPR) and gradient boosting regression
trees (GBRT), were used for hyper-parameter tuning. For the models’ performance evalua-



Sustainability 2021, 13, 12631 5 of 19

tion, different error metrics, such as the correlation coefficient (R2), mean absolute error
(MAE), and absolute average relative deviation (AARD), were used.

Figure 1a,b represents the procedure and flow charts for fine-tuning the hyper-
parameters by using two different Bayesian optimization methods, such as GPR and GBRT.
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Once the hyper-parameters are optimized, then a deep neural network was developed
based on the acquired information of the optimized hyper-parameters.

2.2.4. Hyper-Parameters

These are the parameters whose values are used in controlling the learning process. In
order to achieve an optimal model with a short computational time, the hyper-parameters’
tuning should be optimized, which is a major goal of the BO. In the developed model, the
hyper-parameters are activation function, learning rate, Adam decay, number of nodes, no.
of hidden layers, no. of neurons in each hidden layer, and batch size, as shown in Figure 1.
A pair plot showing the fine-tuned hyper-parameter can be seen in Figure 2. The red circles
represent the optimal value for each hyper-parameter. In Figure 2, the yellow region shows
a strong relationship (those values can be selected for the hyper-parameter) while the green
region represents a weak relationship (those values are not recommended for selection of
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that hyper-parameter). The optimal hyper-parameters in terms of the partial dependence
are highlighted in Figure 2. It can be seen that the no. of dense layers should be 6, the
activation function should be ReLU, and so on. The range of hyper-parameters considered
in this study can be witnessed in Table 2.
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Table 2. Range of hyper-parameters considered in this study.

Hyper-Parameter Range

Learning rate 0.0001 to 0.1
Adam decay 0.000001 to 0.01
Input nodes 1 to 12
Dense layers 1 to 10
Dense nodes 1 to 500

Batch size 1 to 100
Activation function ReLU, Sigmoid, tanh

The method for achieving the best solution and minimizing the error with respect to
the number of calls can be seen in Figure 3. It is obvious that the error reaches a minimum
level after 40 calls, although the full convergence occurs at the 18th iteration. This represents
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the potential of the Bayesian optimization technique when considering a large number of
input variables for a wide range of data. For instance, timely convergence was achieved
for an optimal solution. The architecture of the optimized models is provided in Table 3,
which clearly shows that both of the Bayesian optimization techniques, GPR and GBRT,
yield the same values of correlation coefficient (R2). Other details regarding learning rate,
no. of input and dense nodes, activation function, batch size, Adam decay, and no. of
dense layers for both of the algorithms, can be found in Table 3.
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Table 3. Architecture of the optimized models.

Bayesian Optimization Method Gradient Boosting Regression Trees Gaussian Process

Learning rate 0.00787965 0.004673739
No. of hidden layers 6 6

No. of neurons in input layer 12 12
No. of neurons in each hidden layer 467 489

Activation function ReLU ReLU
Batch size 19 3

Adam decay 0.0048345 0.000001
No. of neurons in output layer 1 1

Correlation coefficient (R2) 98.48 98.48

3. Results and Discussions
Factors Affecting the Boiling Heat Transfer Coefficient

Pool boiling heat transfer mainly relies on the surface morphological features, liquid
thermophysical properties, and pool boiling testing conditions (see Figure 4).

Generally, the porosity of a material is defined by the ratio of void volume to total
volume, and various hypotheses about the influence of porosity on the boiling surface
have been reported, for instance it can influence the heat transfer through the thickness
of the porous coating, the diameter of the coating particles, the number of pores, and
pore connectivity. By increasing the porosity, the wetted area is increased, and more
nucleation sites become active as it becomes easier to supply the liquid to the nucleation
sites, and this increases the number of bubbles and the bubble generation frequency,
which result in heat transfer enhancement. At low heat fluxes, boiling performance is
improved with the addition of the porous coated layer because of the formation of a
large number of bubbles. However, at high heat flux, increases in coating thickness may
result in the formation of a vapor blanket and heat transfer deterioration, and this is
why the ratio of the coating thickness to particle diameter is calculated and an optimal
value is reported [37]. Furthermore, the heat transfer coefficient can also be augmented
by increasing the roughness of the boiling surface. This effect was reported for the first
time by Jackob in 1931 [38]. A surface is roughened to create bubbles’ seeding cavities in
order to produce a large number of bubbles, and due to this, the heat transfer coefficient is
improved [39,40].
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Some of the most influential liquid thermophysical properties in boiling heat transfer
are liquid density, specific heat, vapor density, the latent heat of vaporization, surface
tension, boiling point, and liquid thermal conductivity. Similarly, for microporous coated
surfaces, the morphological parameters of porosity, coating thickness, particle diameter,
and surface roughness have a strong influence on the boiling heat transfer coefficient.

The surface morphological parameters affecting the boiling heat transfer coefficient or
porous surfaces are porosity, coating thickness, particle diameter, and surface roughness.
The impact of individual morphological parameter on the boiling heat transfer assessment
of various working fluids is provided in Figure 5, followed by the error density analysis in
Figure 6. The impact of liquid thermophysical properties on the BHTC prediction along
with error density analysis is given in Figures 7 and 8, while Figure 9 shows the sensitivity
analysis of surface inclination and wall superheat.

Table 4 presents the individual and combined impacts of surface morphological fea-
tures, liquid thermophysical properties, and pool boiling conditions on the assessment of
heat transfer coefficient. Apparently, the model with all the surface morphological features,
liquid thermophysical properties, and pool boiling testing parameters demonstrated the
highest accuracy for HTC prediction. The wall superheat is noted to have the maximum
impact on the predictive accuracy of the boiling heat transfer coefficient. More specifically,
if the wall superheat is dropped from the modeling parameters, the lowest predictive R2

(0.893%) is achieved. Among the surface morphological parameters, the particle diameter
exhibits the strongest influence on the heat transfer coefficient. On the contrary, the surface
roughness and coating thickness do not seem to have a strong impact on the pool boiling
data of sintered coated porous surfaces for water, refrigerants, and dielectric liquids. In
general, the surface features show relatively less influence compared to the liquid thermo-
physical properties. This is because liquids with totally different thermophysical properties
result in very different boiling phenomena. However, liquid thermal conductivity and
specific heat cause a noticeable impact on the boiling heat transfer coefficient of porous
surfaces. From the above results, it can be stated that liquid thermophysical properties
have much more of an effect on the pool boiling phenomenon of sintered coated porous
surfaces compared to the morphology of the heater surfaces. In addition, the BHTC is
strongly influenced by the surface inclination angle of the heater surface.
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Table 4. Input parameters of the developed models along with their performances.

Model Input Parameters R2 AARD

Original model with
all features

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.9855 17.127

Porosity dropped

coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.975 16.301

Coating thickness
dropped

porosity
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.983 19.25
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Table 4. Cont.

Model Input Parameters R2 AARD

Particle diameter
dropped

porosity
coating thickness
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.948 19.41

Surface roughness
dropped

porosity
coating thickness
particle diameter

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.981 22.088

All surface features
dropped

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.951 25.541

Liquid density
dropped

porosity
coating thickness
particle diameter
surface roughness

specific heat
latent heat of vaporization

surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.969 15.678

Specific heat dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
latent heat of vaporization

surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.984 15.981
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Table 4. Cont.

Model Input Parameters R2 AARD

Heat of vaporization
dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

surface tension
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.967 18.039

Surface tension
dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
boiling point

liquid thermal conductivity
surface inclination

wall superheat

0.979 16.932

Boiling point
dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension

liquid thermal conductivity
surface inclination

wall superheat

0.966 18.643

liquid thermal
conductivity dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

surface inclination
wall superheat

0.981 17.019

All liquid features
dropped

porosity
coating thickness
particle diameter
surface roughness
surface inclination

wall superheat

0.94 35.6
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Table 4. Cont.

Model Input Parameters R2 AARD

Surface inclination
dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
wall superheat

0.967 20.408

Wall superheat
dropped

porosity
coating thickness
particle diameter
surface roughness

liquid density
specific heat

latent heat of vaporization
surface tension
boiling point

liquid thermal conductivity
surface inclination

0.893 30.079

The choice of the pool boiling parameters is a very important aspect of this study. For
instance, to predict the boiling heat transfer coefficient of engineered surfaces subjected
to different working fluids of completely different thermophysical properties for a wide
range of pool boiling conditions, it is extremely important to include the most influential
parameters in the architecture of the model. This is the major limitation of the existing
correlations in the literature—that these correlations cannot account for all of the important
surface, liquid, and testing parameters, resulting in a very poor predictability for different
surface liquid combinations and testing ranges. Other than considering the important
surface and liquid features, the proposed model accounts for important pool boiling testing
parameters. For example, in the proposed model, wall superheat and surface inclination
angle were considered as the inputs. However, the predictions can be done by replacing
the wall superheat with the applied heat flux. However, for the investigated data, the
predictability of the model with the heat flux was relatively lower than the model with the
wall superheat. Hence, wall superheat was chosen as the input parameter.

With the help of the proposed methodology, a highly accurate BHTC can be estimated
by incorporating the strongly influencing liquid, surface, and pool boiling testing parame-
ters into the Bayesian optimization-based neural network model. Owing to improved heat
transfer performance, microporous surfaces are the prime candidate to remove the high
heat fluxes generated through various applications. For instance, 3M copper powder is
widely used in industry to form a boiling coated surface. These boiling surfaces can be
used to cool microprocessors, LEDs, power electronics, MOSFETs and IGBTs. Other than
that, sintered coated surfaces can be used to manufacture high-flux surfaces, employed to
reduce plant size by decreasing the number of reboilers required in petrochemical plants.

4. Conclusions

The objective of this study is to develop Bayesian optimized deep neural network
models to perform a sensitivity analysis for finding the most influential parameters in the
boiling heat transfer assessment of sintered coated porous surfaces subjected to a variety of
high- and low-wetting working fluids, including water, dielectric fluids, and refrigerants,
under saturated pool boiling conditions and different surface inclination angles of the
heater surface. Some of very specific conclusions are provided as follows.
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• The model with all the surface morphological features, liquid thermophysical proper-
ties, and pool boiling testing parameters demonstrates the highest R2 = 0.985 for HTC
prediction.

• The wall superheat is noted to have the maximum impact on the predictive accuracy
of the boiling heat transfer coefficient. For example, if the wall superheat is dropped
from the modeling parameters, the lowest prediction of R2 (0.893) is achieved.

• The surface morphological features show relatively less influence compared to the
liquid thermophysical properties, e.g., liquid thermophysical properties are much
more sensitive to the pool boiling phenomenon of sintered coated porous surfaces
compared to the morphology of the heater surfaces.

• Particle diameter showed the strongest influence on the heat transfer coefficient
compared to the rest of the morphological parameters.

• The BHTC is strongly influenced by the surface inclination angle of the heater surface.
• By dropping the surface inclination angle from the modeled parameters, R2 is reduced

to 0.967.
• The proposed methodology can be applied to a wider range of data in order to

determine the highly influential surface and liquid parameters for boiling heat transfer
assessment.
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